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SCIP: Global Optimization of Mixed-Integer Nonlinear
Programs in a Branch-and-Cut Framework

Stefan Vigerske∗and Ambros Gleixner†

May 8, 2016

Abstract

This paper describes the extensions that were added to the constraint integer programming
framework SCIP in order to enable it to solve convex and nonconvex mixed-integer nonlinear
programs (MINLPs) to global optimality. SCIP implements a spatial branch-and-bound algorithm
based on a linear outer-approximation, which is computed by convex over- and underestimation
of nonconvex functions. An expression graph representation of nonlinear constraints allows
for bound tightening, structure analysis, and reformulation. Primal heuristics are employed
throughout the solving process to find feasible solutions early. We provide insights into the
performance impact of individual MINLP solver components via a detailed computational study
over a large and heterogeneous test set.

1. Introduction

Nonlinear optimization problems in finite dimension containing both discrete and continuous
variables are called mixed-integer nonlinear programs (MINLPs). Such problems arise in many
fields, like energy production and distribution, logistics, engineering design, manufacturing, and the
chemical and biological sciences [8, 38, 49, 74, 83]. State-of-the-art solvers for MINLP harness a
variety of algorithmic techniques and the overall computational performance of a solver crucially
depends on its single constituents and their mutual interplay.

In this paper, we first present the extensions of the constraint integer programming framework
SCIP (Solving Constraint Integer Programs) [1, 3] that enable it to solve factorable nonconvex
MINLPs to ε-global optimality. SCIP is freely available in source code for academic research
uses. Second, we aim to provide insights into the impact of single MINLP solver components via
a detailed computational study comparing SCIP’s performance with varying algorithmic features
deactivated.

Formally, a general MINLP reads

min{〈c,x〉 : x ∈ X}, (1a)
X := {x ∈ [x,x] : Ax≤ b, g(x)≤ 0, xi ∈ Z ∀i ∈ I} , (1b)

where x,x ∈ R̄n are the lower and upper bounds on the variables (R := R∪{±∞}), the matrix
A ∈ Rm′×n and the vector b ∈ Rm′ specify the linear constraints, I ⊆ {1, . . . ,n} denotes the set of
variables with integrality requirements, c ∈ Rn determines the objective function, g : [x,x]→ Rm are
the (nonlinear) constraint functions, and 〈·, ·〉 denotes the scalar product of two vectors. Here and in
the following, we denote by [x,x] := {x ∈Rn : xi ≤ xi ≤ xi, i = 1, . . . ,n} the box for the variables and
by xJ := (x j) j∈J the subvector of x for some index set J ⊆ {1, . . . ,n}. The set X is called feasible set
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of (1). The restriction to a linear objective function and inequality constraints is only for notational
simplicity. A problem of the form (1) without nonlinear constraints (m = 0) is called a mixed-integer
linear program (MIP). If only integrality requirements are absent (I = /0), (1) is called a nonlinear
program (NLP). The case of only linear constraints and continuous variables (m = 0, I = /0) is
denoted as linear program (LP).

The combination of discrete decisions, nonlinearity, and possible nonconvexity of the nonlinear
functions in MINLP combines the areas of mixed-integer linear programming, nonlinear program-
ming, and global optimization into a single problem class. While linear and convex smooth nonlinear
programs are solvable in polynomial time in theory [55, 85] and very efficiently in practice [27, 70],
nonconvexities as imposed by discrete variables or nonconvex nonlinear functions easily lead to
problems that are NP-hard in theory and computationally demanding in practice. The most common
method to solve nonconvex MINLPs to ε-global optimality is spatial branch-and-bound [54, 57, 62]:
recursively divide the original problem into subproblems on smaller domains until the individual
subproblems are easy to solve. Bounding is used to decide early whether improving solutions can be
found in a subtree. These bounds are computed from a convex relaxation of the problem, which is
obtained by dropping the integrality requirements and relaxing nonlinear constraints by a convex or
even polyhedral outer approximation. Branching, i.e., the division into subproblems, is typically
performed on discrete variables that take a fractional value in the relaxation solution and on variables
that are involved in nonconvex terms of violated nonlinear constraints. The restricted domains allow
for tighter relaxations in the generated subproblems.

Over the last decades, substantial progress has been made in the solvability of both mixed-integer
linear programs [28, 56] and nonconvex nonlinear programs [39, 48, 60]. Since its beginning in
the mid 1970’s [10, 40], also the integration of MIP and global optimization of NLPs and the
development of new algorithms unique to MINLP has made remarkable progress [14, 29, 58]. Even
though not competitive with MIP, yet, today there exists a variety of general purpose software
packages for the solution of medium-size (nonconvex) MINLPs [30]. One of the first of this kind
and still actively maintained and improved is BARON [84], which implements a branch-and-bound
algorithm employing LP relaxations. Later, Lindo, Inc., added global solving capabilities to their
Lindo API solver suite [43]. An open-source implementation of a global optimization solver is
available with Couenne [12]. A branch-and-bound algorithm based on a mixed-integer linear
relaxation is implemented in the solver ANTIGONE [65]. The extension of the constraint integer
programming framework SCIP by capabilities to handle nonlinear constraints is the topic of this
paper. Thereby, we focus on extensions that have been available with SCIP 3.1 (released in 2014).

The article is organized as follows. In Section 2, we describe the design and algorithmic features
of SCIP concerning MINLPs. In Section 3, we measure the impact of the individual components of
SCIP on its overall computational performance using the public benchmark set MINLPLib2. To
this end, we compare SCIP’s performance with default settings to its performance with one feature
disabled or switched to a different strategy. Section 4 contains our conclusions.

2. A Constraint Integer Programming Approach to MINLP

The paradigm of constraint integer programming (CIP) [1, 5] combines modeling and solving
techniques from the fields of constraint programming (CP), mixed-integer linear programming,
and satisfiability testing (SAT). Several authors have shown that this integration can help to solve
optimization problems that are intractable with any of the constituting techniques alone. For an
overview see [52]. The strength of CP is the strong modeling potential. While a MIP formulation
of a constraint may require a large set of linear constraints and additional variables, in CP very
expressive constraints that contain a lot of structure can be used. The latter can often be exploited
directly by the domain propagation routines. The concept of constraint integer programming aims at
restricting the generality of CP modeling as little as needed while still retaining the full performance
of MIP and SAT solving techniques.
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Definition 1 (Constraint Integer Program). A constraint integer program (CIP) is a tuple (C , I,c)
that encodes the task of solving

min{〈c,x〉 : C (x) = 1, x ∈ Rn, xI ∈ Z|I|},

where c ∈ Rn is the objective function vector, C : Rn→{0,1}m specifies the constraints, 1 = {1}m,
and I ⊆ {1, . . . ,n} specifies the set of variables that have to take integral values. Further, a CIP has
to fulfill the condition1

∀x̂I ∈ Z|I| ∃(A′,b′) ∈ Rk×|C|×Rk : PrxC{x ∈ R : C (x) = 1,xI = x̂I}= {y ∈ R|C| : A′y≤ b′}, (2)

where C := {1, . . . ,n}\ I and k ∈ N.

Condition (2) states that the problem becomes a linear program when all integer variables are
fixed. Thus, if the discrete variables are bounded, a CIP can be solved, in principle, by enumerating
all values of the integral variables and solving the corresponding LPs. In Proposition 1.7 of [1] it is
shown that CIP includes MIP and CP over finite domains as special cases.

Note, that while MINLP is a special case of CP, it is in general not a special case of CIP, since
the nonlinear constraint g(x)≤ 0 may forbid a linear representation of the MINLP after fixing the
integer variables, i.e., (2) would be violated (unless I = {1, . . . ,n}). However, the main purpose of
condition (2) is to ensure that the problem that remains after fixing all integer variables in the CIP is
efficiently solvable. Thus, for practical applications, an algorithm that can solve the remaining NLP
up to a given precision within finite time is sufficient.

The idea of CIP has been implemented in the branch-cut-and-price framework SCIP [1, 3], which
also implements state-of-the-art techniques for solving MIPs. Due to its plugin-based design, it can
be easily customized and extended, e.g., by adding problem specific separation, presolving, domain
propagation, or branching algorithms. In [23] it has been shown how quadratic constraints can be
incorporated into a CIP framework. In this section, we discuss an extension of this work to the
handling of general nonlinear constraints.

Figure 1 shows the main solving loop of SCIP, into which the handling of nonlinear constraints
has been integrated seamlessly. During presolving, SCIP reformulates factorable nonlinear con-
straints into elementary nonlinearities by introducing auxiliary variables. It tries to detect special
mathematical structures and convexity and applies bound tightening procedures. The bounding step
solves an LP relaxation built from convex envelopes for well-known univariate functions, outer
approximation cuts for convex constraints, and the classical McCormick relaxation of bilinear terms.
All of these are dynamically separated, for pure NLPs also at a solution of the NLP relaxation.
The McCormick relaxation is generated without artificial variables by adding up violated facets
for each bilinear term in a quadratic constraint. The separation rounds are iterated with bound
tightening. Branching is first performed on integer variables with fractional value in the LP solution,
subsequently on variables contained in violated nonconvex constraints. Primal heuristics that attempt
to find high-quality solutions early during the search are applied at various points during the solution
process. If an integer feasible solution candidate is available, the integer variables are fixed and the
remaining NLP on the space of continuous variables is solved to local optimality.

The strength of SCIP lies in the deep integration of these nonlinear components into the main
solving loop and hence with the state-of-the-art techniques available for constraint integer programs
in general and for MIPs in particular. Examples are cutting planes, which tighten the MIP relaxation,
or conflict analysis, which tries to obtain short certificates of infeasibility from infeasible nodes
and propagates them to reduce the size of the search tree. This benefits the performance on
problems where the discrete part poses the main challenge. Furthermore, it enables the user to
combine classical models for MINLPs with more general types of constraints found in constraint
programming, see [22, 24] for examples. In the following, we describe the nonlinear extensions of
SCIP summarized above in more detail.

1PrxJ S := {xJ ∈ R|J| : ∃x̂ ∈ S : x̂J = xJ} denotes the xJ-components of the points in S.
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Figure 1: Flowchart of the main solving loop of SCIP.

2.1 The Expression Graph

The most general form of MINLPs handled by SCIP are those where each nonlinear function
g j(x) can be expressed by the root of an expression tree, where leave nodes correspond to variables
and non-leave nodes to algebraic operations on the children given by either a signomial function
y 7→ ∑

k
j=1 α jy

β j,1
1 · · ·yβ j,m

m or any of the univariate functions y 7→ sign(y)|y|a, a > 1, y 7→ exp(y),
y 7→ log(y), and y 7→ |y|. For expression trees, SCIP can compute first and second derivatives of the
associated function by use of the algorithmic differentiation code CPPAD2.

The most general nonlinear constraints in SCIP have the form

`≤ 〈a,x〉+h(x)≤ u (3)

with `,u ∈ R̄, a ∈ Rn, and h : [x,x]→ R. Functions h(x) that occur in nonlinear constraints are
stored in a single so-called expression graph, which is a directed acyclic graph that has variables
and constants as sources and the functions h(x) as sinks, see also [81, 87]. When an expression
tree, specifying a single nonlinear function, is added to an existing expression graph, SCIP tries to
recognize subexpressions that are already stored in the graph and, thus, avoids adding new nodes to
the graph for such subexpressions. During presolve, SCIP flattens the expression graph by applying
some simple transformations, e.g., constant folding.

2.2 Bound Tightening

The tightness of the relaxation for nonconvex nonlinear constraints depends on the tightness of
the bounds of the variables involved in these constraints. Hence bound tightening, also known as
propagation, forms a crucial component of nonconvex MINLP solvers. SCIP’s standard propagation
engine includes, e.g., reduced cost tightening [79] and probing on binary variables [80]. Specifically
for MINLP, SCIP implements the constraint-based and optimization-based reduction procedures
explained below.

2.2.1 Constraint-Based Bound Tightening

For nonlinear constraints, a constraint-based bound tightening method, also known as feasibility-
based bound tightening (FBBT), has been implemented in SCIP. The method is based on interval
arithmetic, an extension of arithmetic on R to the set of intervals on R [67, 68]. SCIP includes

2http://www.coin-or.org/CppAD
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an implementation of rounding-safe extended interval arithmetic for elementary operations and
functions. Given bounds on the variables, intervals for the linear term 〈a,x〉 in (3) and all nodes in
the expression graph can be computed. Bounds on a function h(x) in a nonlinear constraint (3) are
then obtained from the interval of the corresponding sink in the expression graph.

Using the bounds [`,u] on 〈a,x〉+h(x) from (3), possible tighter bounds on the variables involved
in both 〈a,x〉 and h(x) are computed by applying the interval evaluation in a backward manner,
thereby propagating intervals from the sinks of an expression graph to the sources.

Alternating propagation of variable bounds and constraint sides may be repeated as long as bound
tightenings are found. However, to avoid an endless loop with very little improvements in the
bounds, interval tightenings are only propagated if the amount of tightening, relative to the interval
length, is above a certain threshold, see also Section 7.1 in [1].

Univariate quadratic functions. For univariate and bivariate quadratic functions, special interval
arithmetic routines that ensure tightest possible bounds are used. The univariate case has been
discussed in [35]. In summary, bounds on a quadratic form ax2 +bx, a 6= 0, are given by

{ax2 +bx : x ∈ [x,x]}=
{

conv{ax2 +bx,ax2 +bx,− b2

4a}, if − b
2a ∈ [x,x],

conv{ax2 +bx,ax2 +bx}, otherwise,
(4)

where convS denotes the convex hull of a set S. To find the smallest interval containing all solutions
of ax2 +bx≥ c, a 6= 0, we rewrite this inequality as

a
(

x+
b

2a

)2

≥ c+
b2

4a

If c+ b2

4a ≤ 0 and a > 0, then obviously [x,x] =R. If c+ b2

4a > 0 and a < 0, then [x,x] = /0. Otherwise,

i.e., 1
a (c+

b2

4a )≥ 0, we obtain

x ∈
[
−∞,−

√
c
a
+

b2

4a2 −
b
2a

]
∪
[√

c
a
+

b2

4a2 −
b

2a
,∞

]
for a > 0, (5a)

x ∈
[
−
√

c
a
+

b2

4a2 −
b

2a
,

√
c
a
+

b2

4a2 −
b
2a

]
for a < 0. (5b)

Bivariate quadratic functions. Next, consider a bivariate quadratic form

q(x,y) := axx2 +ayy2 +axyxy+bxx+byy (6)

with axy 6= 0. To find bounds on q(x,y) for (x,y)∈ [x,x]× [y,y], we compute the minima and maxima
of q(x,y) in the interior and on the boundary of [x,x]× [y,y]. The (unrestricted) minima/maxima of
q(x,y) with 4axay 6= a2

xy are

x̂ =
axyby−2aybx

4axay−a2
xy

, ŷ =
axybx−2axby

4axay−a2
xy

⇒ q(x̂, ŷ) =
axybxby−ayb2

x−axb2
y

4axay−a2
xy

.

If 4axay = a2
xy and 2aybx = axyby, then

x̂ ∈ R, ŷ =− bx

axy
− axy

2ay
x̂ ⇒ q(x̂, ŷ) =−ayb2

x

a2
xy

.

Otherwise (4axay = a2
xy and 2aybx 6= axyby), there is no unrestricted minimum/maximum. For x or

y fixed to x, x, or y, y, respectively, bounds on q(x,y) can be derived from (4). Bounds on q(x,y)
are then obtained by comparing the bounds at the boundary of [x,x]× [y,y] with the value at (x̂, ŷ),
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if (x̂, ŷ) ∈ [x,x]× [y,y]. The latter need to be computed only if 4axay 6= a2
xy, since otherwise the

unrestricted minimum/maximum, if any, is also attained for x ∈ {x,x}.
Finally, we aim to compute the interval

conv{x ∈ [x,x] : q(x,y) ∈ [c,c] for some y ∈ [y,y]} (7)

for given [x,x], [y,y], and [c,c] (analogously for bounds on y). First, consider the case ax 6= 0. Thus,
w.l.o.g., assume ax > 0. We can rewrite the equation q(x,y) ∈ [c,c] as

(
√

axx+b(y))2 ∈ r([c,c],y), (8)

where
b(y) :=

bx +axyy
2
√

ax
and r(c,y) := c−ayy2−byy+b(y)2.

Using (4), we can compute the interval r([c,c], [y,y]). If r([c,c], [y,y])∩R+ = /0, then (7) is empty.
Otherwise, the set of x that satisfies (8) is{

x : ∃y ∈ [y,y] :
√

axx+b(y) ∈ −
√

r([c,c],y)∪
√

r([c,c],y)
}
. (9)

It thus remains to compute minimal and maximal values for ±
√

r([c,c],y)−b(y). Using a lengthy
case distinction, these values can be computed analytically, see [86, Section 7.4.2] for details.

In the case ax = 0, (7) reduces to finding x ∈ [x,x] such that there exists an y ∈ [y,y] with
(bx +axyy)x ∈ [c,c]−ayy2−byy. Thus, an interval that encloses the set{

[c,c]−ayy2−byy
bx +axyy

: y ∈ [y,y]
}
. (10)

has to be found. In the case − bx
axy
∈ (y,y), this enclosure is R. If − bx

axy
6∈ [y,y], then it is sufficient to

find the minima and maxima of c−ayy2−byy
bx+axyy for c ∈ {c,c} and y ∈ [y,y]. This can be done analytically,

see again [86, Section 7.4.2] for details. Finally, in the case − bx
axy
∈ {y,y}, the SCIP implementation

assumes that no bound tightening for x is possible.

Example 1. Consider the quadratic inequality

2x2− y2 + xy− y≤ 0 (11)

and bounds x ∈ [0,1] and y ∈ [−1,1], see also Figure 2. We are interested in deriving a tighter upper
bound for x.

First, let us relax (11) into a univariate form by rewriting as

2x2 +[−1,1]x≤max{y2 + y : y ∈ [−1,1]}.

Applying (4) to the right-hand side and (5) to the left-hand side (considering the two boundary
cases separately), we obtain the bounds [1/4(1−

√
17),1/4(1+

√
17)]≈ [−0.780776,1.28078] for x,

which do not improve on the existing ones.
Next, we write (11) in the form of (8), which gives (

√
2x+ b(y))2 ∈ r(R−,y) with r(c,y) =

c+ y2 + y+b(y)2 and b(y) = y
2
√

2
. Due to (9), an upper bound on

√
2x is given by

max
{√

r(0,y)−b(y) : y ∈ [−1,1]
}
= max

{√
y+

9y2

8
− y

2
√

2
: y ∈ [−1,1]

}
=

√
17−1
2
√

2
,

which yields (
√

17−1)/4≈ 0.780776 as new (and tight) upper bound for x.
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Figure 2: Feasible region of inequality (11).

2.2.2 Optimization-Based Bound Tightening

Compared to the propagation techniques above, OBBT – short for optimization-based bound
tightening – is a rather expensive procedure that minimizes and maximizes each variable over the
feasible set of the problem or a relaxation thereof. In SCIP, the current LP relaxation is used.
Whereas FBBT propagates the nonlinearities individually, OBBT considers (the relaxations of)
all constraints together, and may hence compute tighter bounds. See [32, 61, 76, 77, 82, 90] for
appearances of OBBT in the literature.

OBBT solves for each variable xk the two auxiliary LPs

min/max{xk : Dx≤ d,〈c,x〉 ≤U,x ∈ [x,x]} (12)

where Dx≤ d, D ∈ R`×n, d ∈ R` is a linear relaxation of the feasible region that can be constructed
as described in Section 2.4, and 〈c,x〉 ≤U is an objective cutoff constraint that excludes solutions
with objective value worse than the current incumbent. The optimal value of (12) may then be used
to tighten the lower / upper bound of variable xk.

OBBT is a standard feature of many MINLP solvers [6, 7, 12, 64, 72]. SCIP, by default, applies
OBBT at the root node to tighten bounds globally. It restricts the computational effort by limiting the
amount of LP iterations spent for solving the auxiliary LPs and interrupting for cheaper propagation
techniques to be called between LP solves. As a special feature, SCIP does not only use the optimal
objective values of (12) to tighten the bounds on xk, but it also exploits the dual solution in order to
learn valid inequalities useful for propagation during the subsequent search.

Suppose the maximization LP is solved and feasible dual multipliers λ1, . . . ,λ`,µ ≥ 0 for Dx≤ d,
〈c,x〉 ≤U and the corresponding reduced cost vector r are obtained. Then

xk ≤∑
j

r jx j + 〈λ ,d〉+µU (13)

is a valid inequality, which we call Lagrangian variable bound (LVB), and

∑
j:r j<0

r jx j + ∑
j:r j>0

r jx j + 〈λ ,d〉+µU (14)

is a valid upper bound for xk that equals the OBBT bound if the dual multipliers are optimal. Figure 3
gives an illustrative example.

SCIP learns LVBs at the root node and propagates them at local nodes of the search tree whenever
the bounds of variables on the right-hand side of (13) become tighter and globally whenever an
improved primal solution is found. This gives a computationally cheap approximation of OBBT
during the branch-and-bound search and can notably reduce solution times and the number of
branch-and-bound nodes. For further details, see [46].
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Figure 3: Example min{y− x : y = 0.1x3− 1.1x,x ∈ [−4,4],y ∈ [−2,2]}. On the left, the shaded
region over which OBBT is performed is defined by the LP relaxation R and the dashed objective
cutoff resulting from the zero solution. Minimizing x gives a lower bound of − 16

9 and the LVB
x≥− 10

9 U− 16
9 . Maximizing x does not tighten its upper bound, still the LVB x≤ 10

37 y+ 128
37 can be

learnt. In this two variable example, this is only the rightmost facet of R, but in higher dimensions
it may be nontrivial. On the right is the resulting, tighter relaxation.

2.3 Convexity Detection

Recognizing convexity of a function h(x) in (3) (w.r.t. x ∈ [x,x]) is advantageous, as it considerably
reduces the effort to construct a linear relaxation of (3). Further, if a function h(x) is concave, its
convex envelope is a polyhedral function given by the values of h(x) in all vertices of [x,x] [36].

Existing deterministic methods for proving or disproving the convexity of a function (given as
composition of elementary expressions) with respect to bounds on its variables are based on walking
an expression tree and applying convexity rules for function compositions [9, 41] or estimating the
spectra of the Hessian matrix [66, 69]. Both methods may give inconclusive results, i.e., check only
sufficient criteria for convexity. Nevertheless, SCIP implements the former method to recognize
“evidently” convex/concave expressions in an expression graph.

Consider a composition f (g(x)) of twice-differentiable functions f : R→ R and g : Rn → R.
Then

( f ◦g)′′(x) = f ′′(g(x))∇g(x)(∇g(x))>+ f ′(g(x))∇2g(x). (15)

Thus, for convexity of f (g(x)), it is sufficient that f (x) is convex and monotonically increasing on
[g,g] and g(x) is convex on [x,x], where we denote by [g,g] an interval that contains {g(x) : x∈ [x,x]}.
Analogously, if f (x) is concave and monotonically increasing on [g,g] and g(x) is concave on [g,g],
then f (g(x)) is concave on [x,x]. Similar conclusions can be drawn if f (x) is monotonically
decreasing. These observations allow to propagate convexity and concavity properties through the
expression graph, see [86, Table 7.2] for a summary of the applied rules.

Additionally to the convexity detection for expressions in an expression graph, SCIP detects con-
vexity of quadratic constraints 〈x,Qx〉+ 〈q,x〉+ q̄≤ 0 by checking whether the minimal eigenvalue
of the matrix Q is nonnegative.

2.4 Outer Approximation

SCIP constructs and strengthens the LP relaxation by adding valid cuts. These can be added either
during the cut-and-price loop or in the constraint enforcement step, see also Figure 1. During
the cut-and-price loop, all separation routines can be called. Here, cuts derived from nonlinear
constraints are added only if they sufficiently much violate the relaxations solution (10−4 is the
default tolerance). During enforcement, however, also weaker cuts can be added as long as they cut
off the LP solution w.r.t. the feasibility tolerance (10−6 in default settings). Note, that integrality
constraints are enforced before nonlinear constraints in SCIP. Thus, as long as the relaxation solution
is fractional (w.r.t. xI), cuts from nonlinear constraints are only added during the cut-and-price loop.

In the following, we discuss the cut generation routines for the various types of nonlinear functions
that are implemented in SCIP. Let x̃ be a solution of the LP relaxation that we aim to separate.
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2.4.1 General Nonlinear Functions

Assume that the right-hand-side of a constraint (3) is violated by x̃. Further, assume that function
h(x) in (3) is represented as

h(x) =
k

∑
j=1

h j(xJ j), (16)

where J j ⊆ {1, . . . ,n}, j = 1, . . . ,k. Due to the convexity check from Section 2.3, SCIP may know
that some h j : R|J j |→ R are convex or concave on [x,x]. SCIP tries to compute a cut by adding up
linear underestimators for each h j(·). If this fails, the constraint need to be enforced by other means
(bound tightening, spatial branching).

Convex h j(·). If h j(·) is convex, a linear underestimator is obtained by linearization of h j(·) at
x̃J j , i.e.,

h j(xJ j)≥ h j(x̃J j)+ 〈∇h j(x̃J j),xJ j − x̃J j〉. (17)

If h j(·) or ∇h j(·) cannot be evaluated at x̃J j , SCIP retries (17) with a slightly perturbed x̃J j .

Concave h j(·). If h j(·) is concave, its convex envelope w.r.t. [xJ j
,xJ j ] (if bounded) is given by

inf

2|J j |

∑
i=1

λih(xi) :
2|J j |

∑
i=1

λixi = xJ j ,
2|J j |

∑
i=1

λi = 1, λ ≥ 0

 , (18)

where {xi}
i=1,...,2|J j | are the extreme points of [xJ j

,xJ j ] [36]. By duality, (18) is equivalent to

sup
{
〈µ,x〉+σ : 〈µ,xi〉+σ ≤ f (xi), i = 1, . . . ,2|J j |

}
. (19)

Thus, solving the linear program (19) for x = x̃J j yields a linear function 〈µ,x〉+σ that under-
estimates h j(·) on [xJ j

,xJ j ] and that takes the value of the convex envelope at x = x̃J j . No cut is

generated if [x,x] is unbounded or h j(·) cannot be evaluated for some xi, i = 1, . . . ,2|J j |.
If h j(·) is also univariate (|J j|= 1), the convex envelope is explicitly given as

h j(xJ j)≥ h j(xJ j
)+

h j(xJ j)−h j(xJ j
)

xJ j − xJ j

(xJ j − xJ j
). (20)

Indefinite h j(·). If h j(·) is neither convex nor concave, but continuously differentiable, and [x,x]
is bounded, then SCIP can compute a linear underestimator of h j(·) by using interval arithmetic on
the gradient of h j(·).

Note, that by Taylor’s theorem,

h j(xJ j)≥ h j(x̃J j)+ min
y∈[xJ j

,xJ j ]
〈∇h j(y),xJ j − x̃J j〉 (xJ j ∈ [xJ j

,xJ j ]). (21)

Let [d,d] be such that ∇h j(xJ j) ∈ [dJ j
,dJ j ] for all xJ j ∈ [xJ j

,xJ j ]. Then (21) yields

h j(xJ j)≥ h j(x̃J j)+ ∑
i∈J j :xi≥x̃i

di(xi− x̃i)+ ∑
i∈J j :xi<x̃i

di(xi− x̃i)

By moving the reference point x̃J j to a closest extreme point of the box [xJ j
,xJ j ], we can derive a

linear underestimator. Thus, let x̂J j and dJ j be defined by

x̂i =

{
xi, if x̃i ≤ (xi + xi)/2,
xi, otherwise,

di =

{
di, if x̂i = xi,

di, if x̂i = xi,
(i ∈ J j). (22)
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Then
h j(xJ j)≥ h j(x̂J j)+ 〈dJ j ,xJ j − x̂J j〉 (23)

is a valid underestimator, which is used to derive interval gradient cuts [71, Section 7.1.3]. A
generalization of (23) by using interval slopes instead of interval gradients is discussed by [44, 81].

If [xJ j
,xJ j ] or [dJ j

,dJ j ] is unbounded and this results in infinite values in x̂J j or dJ j , then no cut is
generated. The box [dJ j

,dJ j ] is computed in SCIP by calling the automatic differentiation methods
for the computation of gradients in CPPAD with the base data type changed from usual floating-point
numbers to intervals.

Note, that the underestimator (23) can be very weak, even though it usually improves when the
box [xJ j

,xJ j ] shrinks (by bound tightening or branching). Thus, SCIP avoids general indefinite
functions h j(·) by reformulating the expression graph (see Section 2.5.1) during presolve.

2.4.2 Odd and Signed Power Functions

Consider the constraint
`≤ sign(x+b)|x+b|a + cz≤ u, (24)

where a> 1, b,c∈R, `,u∈ R̄. For a∈ 2Z+1 (odd power), (24) is equivalent to `≤ (x+b)a+cz≤ u.
Assume x̃ violates the right-hand-side of constraint (24).

For the interesting case x+b < 0 < x+b, the convex envelope of x 7→ sign(x+b)|x+b|a on [x,x]
is given by the secant between (x,−|x+b|a) and (x∗,(x∗+b)a) for x ∈ [x,x∗] and by the function
itself for x≥ x∗, where x∗ >−b is such that the slope of the secant coincides with the gradient of
the function at x∗, i.e.,

(x∗+b)a + |x+b|a
x∗− x

= a(x∗+b)a−1 (25)

As in [59, 86], it can be shown that (25) has exactly one solution, which can easily be found
numerically via Newton’s method.

If x 6=−∞, a linear underestimator of x 7→ sign(x+b)|x+b|a is obtained by linearization of the
convex envelope in x̃, which yields the cut

−|x+b|a + (x∗+b)a + |x+b|a
x∗− x

(x− x)+ cz≤ u for x̃≤ x∗,

(x̃+b)a +a(x̃+b)a−1(x− x̃)+ cz≤ u for x̃ > x∗.

If the left-hand-side of (24) is violated, then a similar method is used to derive a cut.

2.4.3 Quadratic Functions

Consider a quadratic constraint
〈x,Qx〉+ 〈q,x〉+ q̄≤ 0 (26)

with Q ∈ Rn×n, q ∈ Rn, and q̄ ∈ R.

Convex quadratic functions. If the quadratic function in (26) is convex (Q� 0), SCIP generates
the cut

〈x̃,Qx̃〉+ 〈2Qx̃,x− x̃〉+ 〈q,x〉+ q̄≤ 0, (27)

which is obtained by linearization in x̃. In the special case that 〈x,Qx〉 ≡ ax2
i for some a > 0 and

i ∈ I with x̃i /∈ Z, SCIP generates the cut

q̄+ 〈q,x〉+a(2bx̃ic+1)xi−abx̃icdx̃ie ≤ 0, (28)

which is obtained by underestimating xi ∈ Z 7→ x2
i by the secant defined by the points (bx̃ic,bx̃ic2)

and (dx̃ie,dx̃ie2). Note, that the violation of (28) by x̃ is larger than that of (27).

10



Nonconvex quadratic functions. For a violated nonconvex constraint, SCIP underestimates each
term of 〈x,Qx〉 separately, if none of the special structures discussed below are recognized. A convex
term ax2

i with a > 0, i ∈ {1, . . . ,n}, is underestimated as discussed above. For the concave case
a < 0, the secant underestimator a(xi + xi)xi− axixi is used (cf. (20)), if both xi and xi are finite.
Otherwise, if xi =−∞ or xi = ∞, SCIP does not generate a cut. For a bilinear term axix j with a > 0,
McCormick underestimators [62] are utilized,

axix j ≥axix j +ax jxi−axix j,

axix j ≥axix j +ax jxi−axix j.

If (xi− xi)x̃ j +(x j− x j)x̃i ≤ xix j− xix j and the bounds xi and x j are finite, the former is used for
cut generation, otherwise the latter is used. If both xi or x j and xi or x j are infinite, SCIP does not
generate a cut. Similar, for a bilinear term axix j with a < 0, the McCormick underestimators are

axix j ≥axix j +ax jxi−axix j,

axix j ≥axix j +ax jx j−axix j.

If (xi−xi)x̃ j− (x j−x j)x̃i ≤ xix j−xix j and the bounds xi and x j are finite, the former is used for cut
generation, otherwise the latter is used.

Second-order cones. Quadratic constraints of the form

γ +
n−1

∑
i=1

(αi(xi +βi))
2 ≤ (αn(xn +βn))

2, (29)

where αi,βi ∈ R, i = 1, . . . ,n, γ ∈ R+, and xn ≥−βn or xn ≤−βn are recognized as second-order
cone constraints by SCIP. Assume w.l.o.g. αn ≥ 0 and xn ≥−βn. Then (29) can be reformulated as√

γ +
n−1

∑
i=1

(αi(xi +βi))2 ≤ αn(xn +βn). (30)

As the left-hand-side of (30) is convex, SCIP can apply (17) to generate a cut.

Factorable quadratic functions. SCIP checks, whether a quadratic constraint (26) can be written
in a form

(〈a1,x〉+b1)(〈a2,x〉+b2)≤ u, (31)

where a1,a2 ∈ Rn, b1,b2 ∈ R, and u ∈ R\{0}. If a form (31) exists and 〈a1,x〉+b1 or 〈a2,x〉+b2

is bounded away from 0 on [x,x], then (31) can be reformulated by dividing by 〈a1,x〉+ b2 or
〈a2,x〉+b2. Assume, w.l.o.g., that 〈a1,x〉+b1 > 0 on [x,x]. Then (31) can equivalently be written
as

〈a2,x〉+b2− u
〈a1,x〉+b1 ≤ 0. (32)

Since y 7→ 1
y is convex for y > 0, − u

〈a1,x〉+b1 is convex for u < 0 and concave for u > 0. Thus, for
u < 0, a cut that supports the (convex) set defined by (26) is generated by applying (17) to (32).

To find the form (31), Sylvester’s law of inertia can be utilized, see [86, Section 7.5.3]. If linear
variables exist in constraint (26), then a reformulation into the form (31) does not exist. However,
one may find a reformulation into a form

(〈a1,x〉+b1)(〈a2,x〉+b2)≤ u+ 〈c,x〉, (33)

where c ∈ Rn. For u+ 〈c,x〉< 0, similar to (17), a linear underestimator of 〈a1,x〉+b1− u+〈c,x̂〉
〈a2,x〉+b2

can be derived for fixed linear variables (〈c,x〉 fixed to 〈c, x̂〉). Next, [13] has shown how to lift such
an underestimator to be valid for all x̂ ∈ [x,x]. SCIP uses COUENNE’s implementation of these
so-called lifted tangent inequalities.
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2.5 Reformulation

2.5.1 Reformulating the Expression Graph

Nonlinear constraints that are given neither by a sum of convex, concave, power, nor quadratic
functions are reformulated by SCIP to obey one of these forms. The aim is to reformulate the
MINLP into a form such that for all nonlinear constraints, methods to generate linear underestimators
exist (other than (23)).

The reformulation routine inspects the expression graph and replaces nodes that correspond to
certain subexpressions by new variables, while adding a new constraint to assign the subexpression
to the new variable. That is, for a subexpression f (g1(x), . . . ,gm(x)), the following happens:

• if f (g(x)) is known to be convex or concave (cf. Section 2.3), do nothing,

• if the function y 7→ f (y) is quadratic or convex or concave or a (signed) power function,
ensure that all arguments correspond to linear expressions by replacing nonlinear g j(x) by
new auxiliary variables z j and adding new constraints z j = g j(x),

• if f (g(x)) = α ∏
m
j=1 g j(x)β j , m≥ 2, add auxiliary variables z1 and z2, new constraints z1 =

∏
bm/2c
j=1 g j(x)β j , z2 = ∏

m
j=bm/2c+1 g j(x)β j , and replace f (g(x)) by αz1z2,

• if f (g(x)) = ∑
k
j=1 α jg1(x)β j,1 · · ·gm j(x)

β j,m j , k≥ 2, add auxiliary variables z j, new constraints

z j = g1(x)β j,1 · · ·gm j(x)
β j,m j , j = 1, . . . ,k, and replace f (g(x)) by ∑

k
j=1 α jz j.

For expressions that are created by these rules, the same reformulation rules are applied.

2.5.2 Quadratic Constraints with Binary Variables

Binary variables in quadratic constraints (26) experience a special treatment by SCIP. Obviously,
the square of a binary variable can be replaced by the binary variable itself. Further, if a quadratic
term contains a product of a binary variable with a linear term,

xi

n

∑
j=1

Qi, jx j,

where xi is a binary variable, Qi,i = 0, and all x j with Qi, j 6= 0 have finite bounds, then this product
is replaced by a new variable z ∈ R and the linear constraints

M1xi ≤ z≤M1xi
n

∑
j=1

Qi, jx j−M0(1− xi) ≤ z≤
n

∑
j=1

Qi, jx j−M0(1− xi),

where [M0,M0] and [M1,M1] are bounds on ∑
n
j=1 Qi, jx j for the cases xi = 0 and xi = 1, respectively3.

2.5.3 Quadratic Complementarity Constraints

A quadratic constraint
Qi, jxix j +qixi +q jx j +

qiq j

Q2
i, j

= 0 (34)

is equivalent to
(xi−a)(x j−b) = 0 with a =− q j

Qi, j
and b =− qi

Qi, j
. (35)

3The case [M0,M0] 6= [M1,M1] can occur by taking implications of the form xi = a→ (b ≤ x j ≤ b) into account,
a ∈ {0,1}. SCIP stores these implications in a central data structure [1, Section 3.3].
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Thus, (34) can also be written as (xi = a)∨ (x j = b), which yields the following conjunction of
bound disjunction constraints:

(xi ≤ a∨ x j ≤ b)∧ (xi ≤ a∨ x j ≥ b)∧ (xi ≥ a∨ x j ≤ b)∧ (xi ≥ a∨ x j ≥ b). (36)

SCIP replaces a quadratic complementarity constraint (35) by the bound disjunctions (36). Similar
reformulations are applied for quadratic constraints that can be written as (xi−a)(x j−b)≥ 0 or
(xi−a)(x j−b)≤ 0.

2.5.4 Signed Square Functions

For pairs of constraints of the form (24) with `= u and a = 2, a special presolving is applied.
Assume, two constraints

sign(x+b1)(x+b1)
2 + c1z =u1 (37a)

sign(x+b2)(x+b2)
2 + c2z =u2 (37b)

with c1 6= 0, c2 6= 0, and c1u2 = c2u1 are given.
Subtracting c1·(37b) from c2·(37a) yields

c2 sign(x+b1)(x+b1)
2 = c1 sign(x+b2)(x+b2)

2 (38)

If c1 = c2, then also u1 = u2. If b1 6= b2, then (38) (and thus the system (37)) has no solution due to
strict monotonicity of sign(x)|x|. In the opposite case, b1 = b2, (37a) and (37b) are identical.

If c1 6= c2, then (38) can be shown to have a unique solution, which is

x =
b2−b1

sign(c2/c1)
√
|c2/c1|−1

−b1.

As a consequence,

z =
b1− sign(x+b1)(x+b1)

2

c1

and both constraints (37a) and (37b) can be removed from the problem.

2.6 Branching

If an infeasible relaxation solution x̃ is not cut off by bound tightening or separation SCIP performs
variable-based branching. The violations of integrality and of nonlinear constraints are treated
hierarchically as suggested in [12]: if a fractional integer variable x̃i 6∈ Z, i ∈ I, is present, inte-
ger branching is performed; if x̃ is integer feasible, spatial branching on a variable that appears
nonlinearly in a violated nonlinear constraint is performed.

For integer branching SCIP applies a hybrid reliability rule in order to select one variable among
the candidate set of fractional variables, see [1, 4] for details. Hybrid reliability branching has
proven one of the most successful rules in state-of-the-art mixed-integer linear programming solvers.
For spatial branching, each unfixed variable xi that appears in a nonconvex nonlinear constraint that
is violated by the current relaxation solution x̃ is included into the set of branching candidates:

• for general nonlinear constraints (16), include variables xi with i ∈ J j for concave or indefinite
h j(·), j = 1, . . . ,k;

• for odd or signed power constraints (24), include the variable x;

• for nonconvex quadratic constraints (26), include variables in bilinear terms4 and in concave
terms ax2

i with a < 0.

4For bilinear terms xix j that involve binary variables, only the binary variable is considered for branching, since it
linearizes this term in both child nodes. If a bilinear term involves unbounded variables, only the unbounded variables are
considered for branching.
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By default, pseudocosts [12, 15] are used in order to select a promising candidate variable for
spatial branching. Pseudocosts give an estimate of the objective change in the LP relaxation relative
to the change caused by branching downwards and upwards. In classical pseudocost branching for
integer variables, this change is quantified by the distance of x̃i to the nearest integers [15]. For
continuous variables, a measure that is similar to “rb-int-br” in [12] is used: the distance of x̃i to
the bounds xi and xi for a variable xi. If the domain of xi is unbounded, then a measure for the
“infeasibility” of the variable xi similar to “rb-inf” in [12] is used.

The domain [xi,xi] of the selected variable is split at a branching point x′i in the interior of the
domain. This point is chosen by projecting x̃i onto [λxi +(1−λ )xi,λxi +(1−λ )xi] with λ = 0.2.
When branching on variables appearing in violated power constraints (24) with x <−b < x, x′ :=−b
is chosen as branching point. This allows to exploit convexity/concavity of the power terms in the
resulting child nodes. For more details see [86, Section 6.1.4].

2.7 Primal Heuristics

The primal bound on the optimal objective function value is used to prune suboptimal nodes of
the search tree and to perform problem reductions in the bound tightening procedures described in
Section 2.2, which in turn leads to tighter underestimators and an improved dual bound. Hence,
finding good feasible solutions early during the search is not only beneficial in practice, but helps
to speed up the global solution process – this is the objective of primal heuristics. In the following
we will give a brief overview over the primal heuristics available in SCIP. For more details and a
discussion on recent research efforts in this direction we refer to the exhaustive treatment of the
topic in [18].

2.7.1 MIP Heuristics

When solving MINLPs, SCIP still makes use of all its default MIP primal heuristics [16]. Most of
these heuristics aim at finding good integer and LP feasible solutions starting from an optimum of
the LP relaxation or the incumbent solution. If lucky, the solutions found also satisfy the nonlinear
constraints. Otherwise, they provide a reference point for the NLP local search heuristic.

2.7.2 NLP Local Search

The NLP local search heuristic considers the space of continuous variables, i.e., it searches for a
local optimum of the NLP obtained from the MINLP by fixing all integer variables to the values
of a reference point (e.g., integer-feasible solution of the LP relaxation), which is also used as a
starting point for the NLP solver. Each feasible solution of this sub-NLP is also a feasible solution
of the MINLP. The framework of SCIP allows to switch between several NLP solvers, which may
be beneficial depending on the problem at hand. Currently, SCIP uses only the interior point solver
IPOPT [88].

After fixing the discrete variables and before transferring the resulting problem to the NLP solver,
SCIP applies presolving in order to find further problem reductions implied by the discrete fixings.
This may also eliminate redundancies that could create trouble in the NLP solver and may potentially
detect infeasibility of the NLP early.

The heuristic is called at the root node and every few hundred nodes during the search. SCIP
uses a dynamic strategy based on iteration limits, on the earlier success of the heuristic, and on the
availability of an integer feasible reference point to control exactly when the heuristic is executed.
Note, that also the solutions found by the MINLP-specific heuristics outlined in the following are
used as starting points.

2.7.3 Undercover Heuristic

The Undercover heuristic developed in [20, 21] is based on the observation that it often suffices to
fix only a comparatively small number of variables such as to yield a subproblem with all constraints
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being linear. This sub-MIP is less complex to solve and its solutions are immediately feasible for
the original MINLP. The variables to fix are chosen by solving a set covering problem, which aims
at minimizing the number of variables to fix. The values for the fixed variables are taken from the
solution of the LP or NLP relaxation or a known feasible solution of the MINLP.

The sub-MIP is solved by a new SCIP instance, where limits on the number of nodes and the
number of nodes without improvement in the primal bound are used to restrict the effort spend for
solving the subproblem. By default, this powerful heuristic is called during root node processing.

2.7.4 Sub-MINLP Heuristics

The idea of large neighborhood search (LNS) heuristics is to restrict the search for “good” solutions
to a neighborhood of promising, usually near-optimal or almost feasible solutions. The heuristically
restricted problem is obtained by fixing variables or imposing additional constraints that make the
search easier and hopefully still allow for finding high-quality solutions.

SCIP’s LNS heuristics for the MIP relaxation have been extended to work on the full constraint
integer program in a generic fashion [25], and are hence also available for MINLPs. The definition
of the neighborhood is the distinguishing feature of an LNS heuristic and is crucial for its success.
In the following, we list LNS heuristics typically used by SCIP.

RINS, short for relaxation induced neighborhood search [33] searches the neighborhood of the
incumbent MINLP solution and the LP relaxation defined by fixing all integer variables that take the
same value in both solutions.

RENS, short for relaxation enforced neighborhood search [19] searches the neighborhood of all
feasible integer roundings of the LP or NLP relaxation. Because it does not require an incumbent
solution, it can be used as a start heuristic.

Crossover is an improvement heuristic that is inspired by genetic algorithms [16, 78] and requires
more than one feasible solution. For a set of feasible solutions it fixes variables that take identical
values in all of them.

Local Branching [37] measures the distance to the starting point in Manhattan norm on the integer
variables and only considers solutions which are inside a k-neighborhood of the reference solution
where k is typically between 10 and 20.

DINS [45] combines the ideas of RINS and local branching. It defines the neighborhood by
introducing a distance function between the incumbent solution and the optimum of the LP relaxation.
When applied during a branch-and-bound search, it further takes into account how variables change
their values at different nodes of the tree.

3. Impact of Solver Components

In the following, we investigate the impact of individual SCIP components onto the computational
performance for solving MINLPs. This analysis is inspired by the computational study in [26],
which investigates the impact of solver components for an earlier version of SCIP over a smaller set
of mixed-integer quadratically constrained programs. By now SCIP can handle general MINLPs
and the considerably extended instance library MINLPLib25 provides a much larger test bed. To
measure the impact of individual components, we compare SCIP’s performance with default settings
to its performance with one feature disabled or switched to a different strategy. Since many MINLP
instances contain a considerable linear and discrete part, we also investigate the effect of the classical
MIP components. All in all, we compare 14 alternative settings against the SCIP default.

3.1 Computational Setup

For our experiments we used the publicly available benchmark library MINLPLib24 as of April 4,
2014 (revision 171). Amongst others, this includes instances from the first MINLPLib [31] and
from the recent CMU-IBM intiative minlp.org [50]. MINLPLib2 puts a focus on models that

5http://www.gamsworld.org/minlp/minlplib2/html/index.html
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bear relevance in practice. At the time of writing it constitutes the largest single collection of
publicly available MINLP test instances. We included all 789 instances from MINLPLib2 that were
available in OSiL format and could be read by SCIP (in particular, this excludes instances that utilize
trigonometic functions, which are not supported by SCIP so far).

The computations were performed on a cluster of Dell PowerEdge M610 blades with 48 GB
RAM, Intel Xeon X5672 CPUs running at 3.20 GHz, and Linux 3.13 (64bit). We used SCIP 3.1 with
SoPlex 2.0.0 as LP solver and Ipopt 3.11.8 as NLP solver. Ipopt was built with MA27 as underlying
linear equations solver. We set a memory limit of 30 GB in SCIP. Note that this applies to its internal
data structures and does not include the memory usage of the LP and NLP solvers.

We set an optimality gap tolerance of 10−4 and a primal feasibility tolerance of 10−6 with respect
to the original problem formulation. For increased numerical stability, we modified SCIP such as to
use a slightly tighter feasibility tolerance of 10−7 during the solving process, which is with respect
to the presolved problem formulation.

For our final comparison, we imposed a time limit of one hour per instance and setting. However,
in order to use our available computing resources most effectively and to avoid unnecessary com-
putations, we performed a preliminary run with default settings and a time limit of two hours and
removed the instances that could not be solved. Arguably, since the alternative settings described
below are typically worse than the default, most of these instances would time out also with the other
14 parameter settings. This resulted in a test set of 475 instances (listed in Appendix A). Out of
these, SCIP default solves 455 instances within the time limit of one hour. For 11 of the 12 instances
where SCIP stopped at the time limit, a feasible solution was found. On 8 more instances, SCIP
declared a non-optimal solution as optimal or aborted due to numerical difficulties. None of the
instances terminated due to reaching the memory limit with any of the evaluated settings.

3.2 Benchmarking Methodology

In addition to the comparison on the whole set of instances, we evaluated the performance measures
on the following subsets of instances:

solved + ≥ 100s: Comparisons of solution times or number of nodes for instances where at least
one of the solvers stopped at a time limit are strongly biased by the choice of the time limit.
Hence, we consider the subset of instances that were solved by both settings. Additionally,
in order to focus on interesting, harder instances, we exclude trivial instances that could be
solved with both default and non-default setting in less than 100 seconds.

diff: Many of the analyzed features may only have an effect on a certain subset of the test set, e.g.,
changing the tree search strategy only has an effect for instances that are not already solved in
the root node. For this reason, we consider the set of instances where the runs with default
and non-default settings produced different numbers of exploited branch-and-bound nodes or
different accumulated numbers of LP simplex iterations.

diff + solved: As described above, we also consider the subset of instances from the “diff” set that
were solved by both settings.

diff + ≥ 100s: As described above, we also consider the subset of harder instances from the “diff”
set where SCIP ran for at least 100 seconds with default or non-default settings.

diff + solved + ≥ 100s: Finally, we consider the set of instances given by the combination of all
these restrictions.

For some settings, SCIP fails on a few instances, e.g., by computing a wrong dual bound. We
discard these instances for the evaluation of this setting. In the following tables, the column “size”
gives the number of instances in the respective subsets. The remaining columns provide several
performance indicators for a comparison with the SCIP default settings. As a rough indicator of the
usefulness of a component, the third column reports how many instances more or less were solved.
Next, for instances that could not be solved within the time limit, we count on how many instances
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the primal and dual bounds were “better” or “worse” by at least 10%, respectively. Additionally, we
display the absolute number of instances for which a particular setting was faster or slower by more
than 10% and by at least one second.

Further, we compare the shifted geometric means of the primal-dual integral, the number of
branch-and-bound nodes, and the overall running time. The primal-dual integral (PDI) introduced
in [17] is computed as the integral of the relative gap between the primal and dual bound over
the overall running time. This measure favors runs where good solutions and tight relaxations are
produced early. As pointed out by [18, p. 38], compared to other performance measures, “it is less
prone, though not immune, to common weaknesses of standard performance measures, notably the
dependence on an (arbitrarily chosen) time limit”. For the PDI and the running time, a shift of one
second was used, for the number of nodes a shift of 100 nodes.

With considering three different performance measures we aim at making our evaluation more
robust. However, comparing performance only based on mean values may still be misleading: it
does not allow us to draw conclusions on how a change in the mean is distributed over the test set.
A reduction in mean running time may stem from a consistent improvement over the whole test
set, or could be the result of a drastic speedup on only few instances while the performance on the
majority of instances deteriorates. Especially for experiments with algorithms that exhibit high
performance variability, it is crucial to carefully analyze computational results in this respect. By
performance variability, we understand the occurrence of considerable changes in the performance
of an algorithm caused by small and seemingly insignificant modifications to its implementation. As
noted by [34], this phenomenon can be quite pronounced for state-of-the-art MIP solvers. Though
this has not been thoroughly studied yet, it is our experience that performance variability looms even
larger on mixed-integer nonlinear programs, amongst others because of the effects of branching on
continuous variables.

Hence, we use statistical hypothesis testing to analyze how consistently a change in performance
is distributed across the test set. Because there is no ground to assume that, e.g., running times adhere
to a specific distribution such as the normal distribution, we employ methods from nonparametric
statistics. A suitable nonparametric test for the setting described above is the Wilcoxon signed-rank
test [89], see also the detailed description in [51, Sec. 3.2] in the context of comparing MIP solvers.
We use the implementation of the Wilcoxon signed-rank test available in the SciPy package [63, 73]
with parameters correction=False (default) and zero method="pratt". The Pratt treatment
removes anomalies due to samples with no performance difference [75]. In the tables, we indicate
the significance of the relative change in overall solution time by one, two, or three ’+’ signs if
the p-value is below 5%, below 0.5%, and below 0.05%, respectively. Note that the concept of
significance is independent of the magnitude of change in the shifted geometric mean.

3.3 Reformulation

Table 1 summarizes the impact of reformulations working on quadratic and on general nonlinear
equations, respectively.

Reformulation of quadratic constraints. With setting quadratic reformulation, we evaluate
disabling the recognition of second-order cone constraints (Section 2.4.3), the reformulation of
products with binary variables (Section 2.5.2), and the recognition of complementarity constraints
(Section 2.5.3).

Out of the 465 instances, only 167 were affected by this setting. These are mostly instances that
contain products with binary variables or second-order cone (SOC) constraints. The recognition of
the latter is crucial for all affected instances, as not recognizing structure (30) leads to weak cuts and
branching on variable xn in the original formulation (29). For example, on the portfol robust*

and portfol shortfall* instances, disabling SOC recognition leads to a substantial increase in
both computing time and number of nodes.

The reformulation of products with binary variables (Section 2.5.2) is sometimes but not always
beneficial. With respect to the number of solved instances, the reformulation is essential for
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Table 1: Impact of components affecting the reformulation.

settings better : worse relative difference

subset size solved primal dual time PDI nodes time

quadratic reformulation 465 4 : 10 0 : 1 4 : 2 33 : 55 9% -13% 8%+++

solved + ≥ 100s 89 0 : 0 0 : 0 0 : 0 15 : 17 5% -30% -2%+

diff 167 4 : 10 0 : 1 4 : 2 33 : 54 23% -32% 18%+++

diff + solved 144 0 : 0 0 : 0 0 : 0 29 : 43 13% -34% 7%++

diff + ≥ 100s 57 4 : 10 0 : 1 4 : 2 19 : 28 43% -48% 33%
diff + solved + ≥ 100s 34 0 : 0 0 : 0 0 : 0 15 : 17 12% -61% -6%

expression reformulation 464 0 : 66 2 : 10 19 : 35 4 : 76 167% 283% 153%+++

solved + ≥ 100s 85 0 : 0 0 : 0 0 : 0 1 : 8 29% 86% 43%+++

diff 108 0 : 66 2 : 10 19 : 35 4 : 76 4542% 28250% 4593%+++

diff + solved 30 0 : 0 0 : 0 0 : 0 4 : 10 166% 1217% 269%++

diff + ≥ 100s 87 0 : 66 2 : 10 19 : 35 1 : 74 10762% 87520% 11223%+++

diff + solved + ≥ 100s 9 0 : 0 0 : 0 0 : 0 1 : 8 1102% 35964% 3004%+

10 instances, but also obstructive for 4 other instances. To understand this, consider the edgecross*
instances, which become a MIP after this reformulation step. Even though solving this MIP requires
significantly more nodes than the (non-reformulated) MINLP, the node processing time for the MIP
is also much reduced. A reason for this behavior is that in the MINLP formulation cuts are generated
throughout the tree-search. These cuts are essentially the same big-M constraints that are created by
the reformulation step, but with a tighter value of M due to tightened variable bounds. A potential
for improving SCIP’s linearizations of a product with a binary variable is to find a compromise
between using a “static” big-M during presolve and a “dynamic”, i.e., tighter, but only locally valid
big-M during tree-search, possibly by employing SCIP’s implementation of indicator constraints.
See also [11] for a detailed discussion on this topic.

Note that the average reduction of the number of nodes stems from an increase on 62 instances
(probably due to turning off SOC detection) and a decrease on 74 instances (probably due to not
reformulating products with binary variables). We refer to [26, 86] for previous, separate analyses
on the impact of these reformulation steps.

Reformulation of the expression graph. With setting expression reformulation, we evaluate
the loss in performance when not moving subexpressions of nonlinear expressions into additional
constraints (Section 2.5.1). When disabling this reformulation, indefinite non-quadratic terms in
general nonlinear constraints are under- and overestimated using interval gradients, see (23). Note,
that domain propagation does not suffer from disabling this reformulation.

Only 108 instances are affected by this setting. Conversely, this shows that for three quarters of the
instance set all nonlinear constraint functions are either quadratic, convex, or univariate. However,
the numbers in Table 1 show clearly that this reformulation is essential: if disabled, 66 instances are
solved less, no instance is solved additionally, and the time and number of nodes required for the
30 instances in the diff + solved subset increases considerably. Thus, the interval gradient based
estimator (23) in its current form does not provide a tight relaxation in many situations.

However, there are instances in the test set that can be solved faster by disabling this reformulation.
On the instance clay0205h from the subset solved + ≥ 100s, disabling reformulation increases the
number of nodes by 440%, but decreases the size of the LP relaxation (less cutting planes and a
smaller non-reformulated problem) and hence the node processing time. As a result, the overall
running time is decreased by 36%.
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Table 2: Impact of components related to bound tightening.

settings better : worse relative difference

subset size solved primal dual time PDI nodes time

domain propagation 456 0 : 36 0 : 3 7 : 18 57 : 143 85% 150% 86% +++

solved + ≥ 100s 91 0 : 0 0 : 0 0 : 0 25 : 50 77% 146% 70% +

diff 430 0 : 36 0 : 3 7 : 18 57 : 143 89% 162% 92% +++

diff + solved 380 0 : 0 0 : 0 0 : 0 57 : 104 34% 67% 32% +++

diff + ≥ 100s 141 0 : 36 0 : 3 7 : 18 25 : 89 313% 730% 363% +++

diff + solved + ≥ 100s 91 0 : 0 0 : 0 0 : 0 25 : 50 77% 146% 70% +

OBBT 466 1 : 25 0 : 1 13 : 4 67 : 76 32% 89% 46% +++

solved + ≥ 100s 92 0 : 0 0 : 0 0 : 0 24 : 22 -5% 67% 33%
diff 354 1 : 25 0 : 1 13 : 4 67 : 76 43% 129% 63% +++

diff + solved 317 0 : 0 0 : 0 0 : 0 66 : 51 -6% 32% 7% +++

diff + ≥ 100s 111 1 : 25 0 : 1 13 : 4 25 : 47 199% 833% 362% ++

diff + solved + ≥ 100s 74 0 : 0 0 : 0 0 : 0 24 : 22 -6% 89% 42%

conflict analysis 467 0 : 4 0 : 0 2 : 2 44 : 58 1% 7% 2% +++

solved + ≥ 100s 89 0 : 0 0 : 0 0 : 0 19 : 31 2% 15% 6%
diff 257 0 : 4 0 : 0 2 : 2 44 : 58 2% 12% 4% +++

diff + solved 241 0 : 0 0 : 0 0 : 0 44 : 54 1% 11% 2% +++

diff + ≥ 100s 92 0 : 4 0 : 0 2 : 2 19 : 35 5% 20% 12% +

diff + solved + ≥ 100s 76 0 : 0 0 : 0 0 : 0 19 : 31 2% 17% 7%

3.4 Domain Propagation and Conflict Analysis

Table 2 summarizes the impact of variable bound tightening.

Domain propagation. With setting domain propagation, we evaluate the loss in performance
when disabling all domain propagation routines (Section 2.2) during presolve and in node pre-
processing. Note, that constraint-based bound tightening may still be performed when enforcing
violated constraints.

With this setting, a significant and large degradation in performance on a broad set of instances can
be observed: 94% of the instance set is affected. This underlines the importance of bound tightening
for MINLP. On the set of instances that were solved neither with or without domain propagation, a
worsening of the dual bound at termination can be observed in the majority of instances, while the
primal bound stayed unaffected for most of these instances.

Optimization-based bound tightening. With setting OBBT, we evaluate the effect of disabling
only OBBT (Section 2.2.2) on the performance of SCIP. With 76% of the instance set, OBBT
affects many instances. When disabling OBBT, SCIP solves 24 instances less and on average OBBT
improves the running time. However, the numbers also show that there are many instances for which
the extra time spent by OBBT often does not seem to pay off. This shows that designing a good
automatic default strategy for OBBT is nontrivial. We refer to [47] for a more in-depth analysis of
OBBT performance.

Conflict analysis. With setting conflict analysis, we evaluate the effect of disabling conflict
analysis, that is, not trying to learn additional constraints from the analysis of bound changes that
lead to pruned subproblems [2]. This setting affects 55% of the test set. When averaging over
these instances, disabling conflict analysis leads to almost no difference in running time and slightly
increases the number of enumerated nodes. On harder instances (solving time ≥ 100s), conflict
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Table 3: Impact of cutting plane/outer approximation separators.

settings better : worse relative difference

subset size solved primal dual time PDI nodes time

MIP cuts 460 4 : 36 1 : 0 20 : 14 77 : 119 66% 110% 59% +++

solved + ≥ 100s 85 0 : 0 0 : 0 0 : 0 29 : 37 52% 103% 55%
diff 393 4 : 36 1 : 0 20 : 14 77 : 119 78% 136% 71% +++

diff + solved 344 0 : 0 0 : 0 0 : 0 73 : 83 20% 65% 20% +++

diff + ≥ 100s 127 4 : 36 1 : 0 20 : 14 33 : 73 327% 487% 313% +++

diff + solved + ≥ 100s 78 0 : 0 0 : 0 0 : 0 29 : 37 57% 116% 61%

outer approximation 465 1 : 100 0 : 12 5 : 85 39 : 205 352% 691% 288% +++

solved + ≥ 100s 71 0 : 0 0 : 0 0 : 0 12 : 47 172% 749% 215% ++

diff 414 1 : 100 0 : 12 5 : 85 39 : 205 431% 914% 353% +++

diff + solved 301 0 : 0 0 : 0 0 : 0 38 : 105 67% 235% 73% +++

diff + ≥ 100s 176 1 : 100 0 : 12 5 : 85 13 : 147 2679% 7115% 2012% +++

diff + solved + ≥ 100s 63 0 : 0 0 : 0 0 : 0 12 : 47 209% 1015% 265% ++

analysis slightly improves running time. Most importantly, SCIP solves four more instances and no
instance less when conflict analysis is enabled, making it a good default setting.

We want to note that the significance of this comparison is limited by the fact that currently most
nonlinear constraints in SCIP do not participate in conflict analysis. Extending SCIP in this respect
could shorten the conflicts that are found and thus lead to a larger improvement of the performance
due to conflict analysis.

3.5 Separation

Table 3 summarizes the impact of generating a tight linear relaxation.

MIP cutting planes. With setting MIP cuts, we evaluate the effect of disabling cutting planes that
cut off fractional solutions, e.g., Gomory, mixed-integer rounding, and flowcover cuts. This setting
leads to different search trees or number of simplex iterations on 85% of the instances. The average
tree sizes and running times increase considerably when turning these cuts off. On 77 instances,
however, the time to compute MIP cuts and to solve the resulting LPs does not pay off. On hard
instances (≥ 100s) the improvement due to MIP cuts is substantial, especially since 32 instances are
solved less when disabling MIP cuts. Overall, MIP cuts are beneficial, both on average and in the
number of solved instances.

Outer approximation of nonlinear constraints. With setting outer approximation, we evaluate
the effect of disabling the separation of linear cuts that approximate the nonlinear constraints (see
Section 2.4) during node preprocessing. Note, that cuts of this type may still be generated while
resolving violations of nonlinear constraints by the LP relaxation solution. However, as SCIP first
resolves fractionalities in integer variables, an outer approximation of nonlinear constraints will only
be separated for nodes with integer feasible LP relaxation solution.

This setting affects most instances that were not reformulated into a MIP during presolve. It
has drastic effects on the number of solved instances (99 less), average solving time, and dual
bounds (both when hitting the time limit and in the early phase of the tree search, see PDI). The
separation also has a positive effect on the primal bound for 12 instances, probably because the
tighter relaxation helped to guide the search of primal heuristics that depend on the relaxation such as
rounding, diving, or some large neighborhood search heuristics. However, there are also 39 instances
where the extra time for generating these cuts and solving the corresponding LPs does not pay off.
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Table 4: Impact of components affecting the tree search.

settings better : worse relative difference

subset size solved primal dual time PDI nodes time

breadth first 465 1 : 21 0 : 8 1 : 20 17 : 170 47% 25% 38% +++

solved + ≥ 100s 92 0 : 0 0 : 0 0 : 0 9 : 74 137% 82% 110% +++

diff 384 1 : 21 0 : 8 1 : 20 17 : 170 55% 30% 47% +++

diff + solved 351 0 : 0 0 : 0 0 : 0 16 : 150 46% 30% 41% +++

diff + ≥ 100s 124 1 : 21 0 : 8 1 : 20 10 : 94 157% 68% 118% +++

diff + solved + ≥ 100s 91 0 : 0 0 : 0 0 : 0 9 : 74 139% 84% 111% +++

inference branching 467 0 : 26 0 : 3 0 : 11 8 : 35 24% 32% 31% +++

solved + ≥ 100s 82 0 : 0 0 : 0 0 : 0 2 : 2 -3% -2% -1% +++

diff 104 0 : 26 0 : 3 0 : 11 8 : 35 136% 236% 209% +++

diff + solved 65 0 : 0 0 : 0 0 : 0 8 : 8 -7% 3% 3% ++

diff + ≥ 100s 50 0 : 26 0 : 3 0 : 11 2 : 29 453% 1028% 855% +++

diff + solved + ≥ 100s 11 0 : 0 0 : 0 0 : 0 2 : 2 -18% -15% -6%

most infeasible branching 466 0 : 22 0 : 1 0 : 6 4 : 37 19% 32% 29% +++

solved + ≥ 100s 84 0 : 0 0 : 0 0 : 0 2 : 6 -1% 12% 11% +++

diff 109 0 : 22 0 : 1 0 : 6 4 : 37 99% 211% 179% +++

diff + solved 74 0 : 0 0 : 0 0 : 0 4 : 14 0% 25% 25% +++

diff + ≥ 100s 49 0 : 22 0 : 1 0 : 6 2 : 29 309% 968% 731% +++

diff + solved + ≥ 100s 14 0 : 0 0 : 0 0 : 0 2 : 6 -3% 94% 93%

random branching 465 0 : 22 0 : 0 0 : 7 4 : 37 23% 31% 30% +++

solved + ≥ 100s 85 0 : 0 0 : 0 0 : 0 2 : 7 3% 24% 18% +++

diff 104 0 : 22 0 : 0 0 : 7 4 : 37 114% 217% 183% +++

diff + solved 70 0 : 0 0 : 0 0 : 0 4 : 15 11% 44% 36% +++

diff + ≥ 100s 49 0 : 22 0 : 0 0 : 7 2 : 29 324% 892% 672% +++

diff + solved + ≥ 100s 15 0 : 0 0 : 0 0 : 0 2 : 7 17% 231% 152%

3.6 Tree Search

Table 4 summarizes the impact of node selection and branching rules.

Node selection. With setting breadth first, we evaluate the effect of switching the node selection
rule from the default best estimate with plunging rule to selecting nodes in breadth first manner. As
expected, this setting affects the majority of the instances (83%). The numbers show that the default
node selection rule is significantly better than breadth first search with respect to all considered
performance measures. The increase in running time is even larger than the increase in the number
of nodes, because more “jumps” through the tree cause higher node processing times.

Branching. Here we evaluate the effect of switching the rule for selecting a nonlinear variable
during spatial branching to

• inference branching: select a variable that previously lead to many bound tightenings after
reducing its domain [1],

• most infeasible branching: select a variable that appears in a nonconvex term of a most-
violated nonlinear constraint, and

• random branching: select randomly any variable that appears in a nonconvex term of a
violated constraint.
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Table 5: Impact of primal heuristics.

settings better : worse relative difference

subset size solved primal dual time PDI nodes time

all heuristics 464 3 : 21 1 : 15 3 : 8 120 : 81 57% 36% 9% +++

solved + ≥ 100s 91 0 : 0 0 : 0 0 : 0 47 : 30 46% 13% -5%
diff 444 3 : 21 1 : 15 3 : 8 120 : 81 59% 38% 10% +++

diff + solved 411 0 : 0 0 : 0 0 : 0 119 : 60 26% 12% -11% +++

diff + ≥ 100s 124 3 : 21 1 : 15 3 : 8 48 : 51 193% 130% 85%
diff + solved + ≥ 100s 91 0 : 0 0 : 0 0 : 0 47 : 30 46% 13% -5%

LNS heuristics 466 0 : 7 0 : 0 4 : 3 70 : 39 5% 19% 5% +++

solved + ≥ 100s 94 0 : 0 0 : 0 0 : 0 32 : 19 2% 11% 5% +

diff 265 0 : 7 0 : 0 4 : 3 69 : 39 9% 34% 10% +++

diff + solved 246 0 : 0 0 : 0 0 : 0 69 : 32 -6% 11% -5% +++

diff + ≥ 100s 100 0 : 7 0 : 0 4 : 3 32 : 26 45% 85% 54%
diff + solved + ≥ 100s 81 0 : 0 0 : 0 0 : 0 32 : 19 3% 13% 6% +

aggressive heuristics 465 3 : 6 0 : 1 2 : 2 50 : 162 19% -5% 24% +++

solved + ≥ 100s 98 0 : 0 0 : 0 0 : 0 31 : 52 8% -7% 9%
diff 408 3 : 6 0 : 1 2 : 2 50 : 159 20% -6% 25% +++

diff + solved 390 0 : 0 0 : 0 0 : 0 49 : 153 16% -11% 21% +++

diff + ≥ 100s 116 3 : 6 0 : 1 2 : 2 32 : 58 22% 11% 26%
diff + solved + ≥ 100s 98 0 : 0 0 : 0 0 : 0 31 : 52 8% -7% 9%

See Section 2.6 for the default behavior. Note, that we did not alter the branching rule for selecting
an integer variable with fractional solution value in the LP relaxation.

These settings only affect instances where branching on (several) variables in nonconvex terms
is necessary. Apparently, this is the case for less than a quarter of the instance set. With inference
branching, the least number of instances are solved, but on those that are solved it gives on average
the same performance as the default rule, maybe because there are not too many branching candidates
to choose from.

For most infeasible branching and random branching, the degradation in average solving time on
the diff + solved instances is relatively small: 25% and 36%, respectively. However, when taking
unsolved instances into account, then, due to timeouts on 22 instances, the average running time
increases significantly: by almost a factor of three on all affected instances and by about a factor
of eight on hard instances. Finally, we want to note that the most infeasible branching rule is only
slightly faster than random branching.

3.7 Primal Heuristics

Table 5 summarizes the impact of the primal heuristics in SCIP, see also Section 2.7.

All primal heuristics. With setting all heuristics, we evaluate the effect of disabling all primal
heuristics in SCIP. Then feasible solutions are only found when the solution of a node LP relaxation
is feasible for the MINLP.

This setting affects almost all instances. Disabling primal heuristics leads to an increase in the
average PDI and the number of nodes, as feasible solutions are found later and thus less pruning
can be done. On the set diff + solved of affected instances that can be solved with and without
heuristics, disabling primal heuristics reduces the average running time by 11%. However, this
comes at the cost of increasing the average PDI by 26%, and looking at the restricted subset diff +
solved + ≥ 100s this reductions seems to stem from easier instances. Most importantly, 18 instances
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less are solved within the time limit when disabling primal heuristics completely. On hard instances
(diff + ≥ 100s) the average running time is almost doubled.

Large neighborhood search heuristics. With setting LNS heuristics, we evaluate the effect
of disabling all LNS heuristics in SCIP (Crossover, RENS, RINS, and Undercover), see also
Section 2.7.4. That is, only the comparatively cheaper rounding, diving, and sub-NLP heuristics
remain enabled.

This setting affects 57% of the instance set. On hard instances, disabling LNS heuristics leads to
solving 7 instances less and an increase in PDI, average running time, and number of nodes. However,
on easy instances or instances that can be solved without primal heuristics, LNS heuristics seem to
be mostly a waste of computing time. Even the PDI decreases slightly by disabling LNS heuristics,
which indicates that cheaper heuristics can replace LNS heuristics to find sufficiently good solutions
(when averaged over the diff + solved test set). A similar conclusion can be drawn from the numbers
in the column “primal”: On none of the instances, LNS heuristics improve the final primal bound by
more than 10%.

Aggressive primal heuristics. With setting aggressive heuristics, we evaluate the effect of running
the primal heuristics more frequently, e.g., root-only heuristics may now also run during tree search
and heuristics disabled by default are now enabled.

This setting affects 88% of the instances. The numbers indicate that the extra effort spent for
primal heuristics does not pay off for the majority of the instances: three less instances are solved,
computing time and PDI are increased, and the number of nodes is reduced only marginally. The
average increase in computing time is not significant on hard instances, though.

4. Conclusion

This paper described the extensions that were added to the constraint integer programming frame-
work SCIP to allow it to solve (convex and nonconvex) mixed-integer nonlinear programs to global
optimality. These extensions are centered around an expression graph representation of nonlinear
constraints, which allows for bound tightening, detection of convex sub-expressions, and refor-
mulation. The latter is necessary to compute and update a linear outer-approximation based on
convex over- and underestimation of nonconvex functions. Additionally, we discussed SCIP’s
implementations of optimization-based bound tightening (OBBT), branching rules, and primal
heuristics for MINLP.

In a detailed computational study, we analyzed the impact of several SCIP components on the
MINLP solving performance. The results show that disabling any of the investigated components
leads to a decrease in the number of solved instances. Except in few cases, the average running time
increases whenever a component is disabled. This indicates that the default settings are reasonable.

In particular, we saw that the MINLP-specific features with largest performance impact were
the reformulation of the expression graph, the tightening of the outer-approximation on nodes with
fractional integer variables, and pseudo-cost-based branching on nonlinear variables. Also domain
propagation, OBBT, and MIP cutting planes give a clear benefit. However, the extra effort for
OBBT and MIP cutting planes does not necessarily pay off on easy instances. For the selection of a
nonlinear variable during spatial branching, our computational comparison indicates that focusing
on improving the dual bound is more important than trying to minimize constraint violation. This is
parallel to empirical observations made for branching on fractional integer variables in MIP solvers.

The goal of minimizing constraint violations and eventually finding feasible solutions may rather
be assigned to primal heuristics, which very much help to find good feasible solutions early. Here,
“simple” heuristics like finding a feasible solution for the MIP relaxation via rounding or diving and
a subsequent (local) solve of a corresponding NLP seems sufficient for many instances. The more
expensive LNS heuristics are mostly beneficial for difficult instances.

Finally, we wish to note that the computational insights gained are valid specifically for SCIP’s
current implementation and it would be desirable to conduct similar studies for other MINLP solvers.
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SCIP is actively developed and further improvements that have been made after the release of
version 3.1 were not discussed in this paper. In the context of MINLP, these were the addition
of a separator for edge-concave cuts, an extended recognition of second-order cone constraints,
improvements for the separation of convex quadratic constraints, and enhanced ordering strategies
for OBBT, see [42].
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ments in mixed-integer linear programming. Mathematical Programming, 1(1):76–94, 1971.
doi:10.1007/BF01584074.

[16] T. Berthold. Primal heuristics for mixed integer programs. Master’s thesis, Technische
Universität Berlin, 2006. urn:nbn:de:0297-zib-10293.

[17] T. Berthold. Measuring the impact of primal heuristics. Operations Research Letters, 41(6):
611–614, 2013. doi:10.1016/j.orl.2013.08.007.

[18] T. Berthold. Heuristic algorithms in global MINLP solvers. PhD thesis, TU Berlin, 2014.

[19] T. Berthold. RENS – the optimal rounding. Mathematical Programming Computation, 6(1):
33–54, 2014. doi:10.1007/s12532-013-0060-9.

[20] T. Berthold and A. M. Gleixner. Undercover – a primal heuristic for MINLP based on sub-
MIPs generated by set covering. In P. Bonami, L. Liberti, A. J. Miller, and A. Sartenaer,
editors, Proceedings of the European Workshop on Mixed Integer Nonlinear Programming
(EWMINLP), pages 103–112, CIRM Marseille, France, April 2010.

[21] T. Berthold and A. M. Gleixner. Undercover: a primal MINLP heuristic exploring a largest
sub-MIP. Mathematical Programming, 144(1-2):315–346, 2014. doi:10.1007/s10107-013-
0635-2.

[22] T. Berthold, S. Heinz, and M. E. Pfetsch. Nonlinear pseudo-boolean optimization: relaxation
or propagation? In O. Kullmann, editor, Theory and Applications of Satisfiability Testing – SAT
2009, number 5584 in Lecture Notes in Computer Science, pages 441–446. Springer, 2009.
doi:10.1007/978-3-642-02777-2 40.

[23] T. Berthold, S. Heinz, and S. Vigerske. Extending a CIP framework to solve MIQCPs. In Lee
and Leyffer [58], pages 427–444. doi:10.1007/978-1-4614-1927-3 15.
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doi:10.1007/3-7643-7374-1.

[72] I. Nowak and S. Vigerske. LaGO: a (heuristic) branch and cut algorithm for nonconvex MINLPs.
Central European Journal of Operations Research, 16(2):127–138, 2008. doi:10.1007/s10100-
007-0051-x.

[73] T. E. Oliphant. Python for scientific computing. Computing in Science & Engineering, 9(3):
10–20, 2007. doi:10.1109/MCSE.2007.58.

[74] J. D. Pintér, editor. Global Optimization: Scientific and Engineering Case Studies, volume 85
of Nonconvex Optimization and Its Applications. Springer, 2006. doi:10.1007/0-387-30927-6.

28

http://dx.doi.org/10.1007/978-1-4614-1927-3
http://dx.doi.org/10.1023/A:1021924706467
http://dx.doi.org/10.1016/S0098-1354(96)00282-7
http://dx.doi.org/10.1016/S0098-1354(96)00282-7
http://dx.doi.org/10.1007/BF01580665
http://dx.doi.org/10.1109/MCSE.2011.36
http://dx.doi.org/10.1007/s10898-012-9874-7
http://dx.doi.org/10.1007/s10898-014-0166-2
http://dx.doi.org/10.1137/070704186
http://dx.doi.org/10.1137/1.9780898717716
http://www.autodiff.org/ad04/abstracts/Nenov.pdf
http://dx.doi.org/10.1007/3-7643-7374-1
http://dx.doi.org/10.1007/s10100-007-0051-x
http://dx.doi.org/10.1007/s10100-007-0051-x
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1007/0-387-30927-6


[75] J. W. Pratt. Remarks on zeros and ties in the Wilcoxon signed rank procedures. Journal of the
American Statistical Association, 54(287):655–667, 1959. doi:10.2307/2282543.

[76] I. Quesada and I. E. Grossmann. Global optimization algorithm for heat exchanger networks. In-
dustrial & Engineering Chemistry Research, 32(3):487–499, 1993. doi:10.1021/ie00015a012.

[77] I. Quesada and I. E. Grossmann. A global optimization algorithm for linear fractional and
bilinear programs. Journal of Global Optimization, 6:39–76, 1995. doi:10.1007/BF01106605.

[78] E. Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS Journal on Computing, 19(4):534–541, 2007. doi:10.1287/ijoc.1060.0189.

[79] H. S. Ryoo and N. V. Sahinidis. A branch-and-reduce approach to global optimization. Journal
of Global Optimization, 8(2):107–138, 1996. doi:10.1007/BF00138689.

[80] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming
problems. INFORMS Journal on Computing, 6:445–454, 1994. doi:10.1287/ijoc.6.4.445.

[81] H. Schichl and A. Neumaier. Interval analysis on directed acyclic graphs for global optimization.
Journal of Global Optimization, 33(4):541–562, 2005. doi:10.1007/s10898-005-0937-x.

[82] E. M. B. Smith and C. C. Pantelides. A symbolic reformulation/spatial branch-and-bound algo-
rithm for the global optimization of nonconvex MINLPs. Computers & Chemical Engineering,
23(4-5):457–478, 1999. doi:10.1016/S0098-1354(98)00286-5.

[83] M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in Continuous
and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications,
volume 65 of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers,
2002. ISBN 978-1-4020-1031-6.

[84] M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut approach to global optimiza-
tion. Mathematical Programming, 103(2):225–249, 2005. doi:10.1007/s10107-005-0581-8.

[85] S. A. Vavasis. Complexity issues in global optimization: A survey. In Horst and Pardalos [53],
pages 27–41.

[86] S. Vigerske. Decomposition of Multistage Stochastic Programs and a Constraint Integer
Programming Approach to Mixed-Integer Nonlinear Programming. PhD thesis, Humboldt-
Universität zu Berlin, 2013. urn:nbn:de:kobv:11-100208240.

[87] X.-H. Vu, H. Schichl, and D. Sam-Haroud. Interval propagation and search on directed acyclic
graphs for numerical constraint solving. Journal of Global Optimization, 45(4):499–531, 2009.
doi:10.1007/s10898-008-9386-7.
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Supplementary Material

A. Test Set

The following table lists the 475 instances of the MINLP test set (see also Section 3.1). For each
instance, we list the total number of variables (“variables”), the number of binary variables (“binary”),
the number of general integer variables (“integer”), the total number of constraints (“constraints”),
the number of quadratic constraints (“quadratic“), and the number of general nonlinear constraints
(“nonlinear“). The presented numbers are as they are reported from SCIP after reading an instance
from the OSiL input file (and before presolving). Thereby, a constraint is classified as nonlinear if
the OSiL file specifies a nonlinear expression for this constraint and is classified as quadratic if no
nonlinear expression but quadratic terms have been specified. The remaining constraints are linear
(except for instance meanvarxsc, where additionally 12 bound-disjunction constraints are created
by SCIP to represent the semi-continuity condition on 12 of the variables).

As SCIP can handle only linear objective functions, the OSiL reader replaces a nonlinear function
f (x) in the objective by an additional continuous variable z and adds the constraint f (x) ≤ z (if
minimization) or f (x)≥ z (if maximization).

Name variables binary integer constraints quadratic nonlinear

alan 9 4 0 8 1 0
autocorr bern20-03 21 20 0 1 1 0
autocorr bern20-05 21 20 0 1 0 1
autocorr bern20-10 21 20 0 1 0 1
autocorr bern20-15 21 20 0 1 0 1
autocorr bern25-03 26 25 0 1 1 0
autocorr bern25-06 26 25 0 1 0 1
autocorr bern30-04 31 30 0 1 0 1
batch0812 nc 77 36 0 206 96 2
batch0812 101 60 0 218 0 2
batchdes 20 9 0 20 0 2
batch nc 35 12 0 68 30 2
batch 47 24 0 74 0 2
batchs101006m 279 129 0 1020 0 2
batchs121208m 407 203 0 1512 0 2
batchs151208m 446 203 0 1782 0 2
batchs201210m 559 251 0 2328 0 2
blend029 102 36 0 213 12 0
blend480 312 124 0 884 32 0
blend531 272 104 0 736 32 0
blend721 222 87 0 627 24 0
carton7 328 200 56 687 64 0
casctanks 501 40 0 518 157 61
clay0203h 90 18 0 132 0 24
clay0203m 30 18 0 54 24 0
clay0204h 164 32 0 234 0 32
clay0204m 52 32 0 90 32 0
clay0205h 260 50 0 365 0 40
clay0205m 80 50 0 135 40 0

30



Name variables binary integer constraints quadratic nonlinear

clay0303h 99 21 0 150 0 36
clay0303m 33 21 0 66 36 0
clay0304h 176 36 0 258 0 48
clay0304m 56 36 0 106 48 0
clay0305h 275 55 0 395 0 60
clay0305m 85 55 0 155 60 0
contvar 297 88 0 285 0 120
crudeoil lee1 05 535 40 0 1240 160 0
crudeoil lee1 06 642 48 0 1503 192 0
crudeoil lee1 07 749 56 0 1776 224 0
crudeoil lee1 08 856 64 0 2059 256 0
crudeoil lee1 09 963 72 0 2352 288 0
crudeoil lee1 10 1070 80 0 2655 320 0
crudeoil lee2 05 1155 70 0 2581 420 0
crudeoil lee2 06 1386 84 0 3117 504 0
crudeoil lee2 07 1617 98 0 3670 588 0
crudeoil lee2 08 1848 112 0 4240 672 0
crudeoil lee2 09 2079 126 0 4827 756 0
crudeoil lee2 10 2310 140 0 5431 840 0
crudeoil lee3 05 1280 70 0 2786 490 0
crudeoil lee3 06 1536 84 0 3359 588 0
crudeoil lee3 07 1792 98 0 3949 686 0
crudeoil lee3 08 2048 112 0 4556 784 0
crudeoil lee3 09 2304 126 0 5180 882 0
crudeoil lee3 10 2560 140 0 5821 980 0
crudeoil lee4 05 1955 95 0 4241 760 0
crudeoil lee4 06 2346 114 0 5093 912 0
crudeoil lee4 07 2737 133 0 5965 1064 0
crudeoil lee4 08 3128 152 0 6857 1216 0
crudeoil lee4 09 3519 171 0 7769 1368 0
crudeoil lee4 10 3910 190 0 8701 1520 0
crudeoil li06 964 132 0 2436 192 0
csched1a 29 15 0 23 0 1
csched1 77 63 0 23 0 1
du-opt5 22 0 13 10 1 0
du-opt 22 0 13 10 1 0
edgecross10-010 91 90 0 481 1 0
edgecross10-020 91 90 0 481 1 0
edgecross10-030 91 90 0 481 1 0
edgecross10-040 91 90 0 481 1 0
edgecross10-050 91 90 0 481 1 0
edgecross10-060 91 44 0 481 1 0
edgecross10-070 91 90 0 481 1 0
edgecross10-080 91 74 0 481 1 0
edgecross10-090 91 90 0 481 1 0
edgecross14-019 183 182 0 1457 1 0
edgecross14-039 183 80 0 1457 1 0
edgecross14-058 183 182 0 1457 1 0
edgecross14-176 183 182 0 1457 1 0
edgecross20-040 381 380 0 4561 1 0
elf 54 24 0 38 27 0
eniplac 141 24 0 189 0 24
enpro48 154 92 0 215 0 2
enpro48pb 154 92 0 215 0 2
enpro56 128 73 0 192 0 2
enpro56pb 128 73 0 192 0 2
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ex1221 5 3 0 5 1 1
ex1222 5 1 0 4 1 1
ex1223a 9 4 0 10 5 0
ex1223b 8 4 0 10 4 1
ex1223 12 4 0 14 4 1
ex1224 12 8 0 8 0 4
ex1225 8 6 0 10 0 1
ex1226 5 3 0 5 0 1
ex1243 69 16 0 97 0 1
ex1244 96 23 0 130 0 1
ex1252a 25 3 6 35 9 4
ex1263a 24 4 20 35 4 0
ex1263 92 72 0 55 4 0
ex1264a 24 4 20 35 4 0
ex1264 88 68 0 55 4 0
ex1265a 35 5 30 44 5 0
ex1265 130 100 0 74 5 0
ex1266a 48 6 42 53 6 0
ex1266 180 138 0 95 6 0
ex3 33 8 0 31 0 5
ex3pb 33 8 0 31 0 5
ex4 37 25 0 31 26 0
fac1 23 6 0 19 0 1
fac3 67 12 0 34 1 0
feedtray2 88 36 0 284 147 0
fin2bb 588 175 0 618 0 21
flay02h 46 4 0 51 0 2
flay02m 14 4 0 11 0 2
flay03h 122 12 0 144 0 3
flay03m 26 12 0 24 0 3
flay04h 234 24 0 282 0 4
flay04m 42 24 0 42 0 4
flay05h 382 40 0 465 0 5
flay05m 62 40 0 65 0 5
flay06m 86 60 0 93 0 6
fo7 2 114 42 0 211 0 14
fo7 ar2 1 112 0 42 269 0 14
fo7 ar25 1 112 0 42 269 0 14
fo7 ar3 1 112 0 42 269 0 14
fo7 ar4 1 112 0 42 269 0 14
fo7 ar5 1 112 0 42 269 0 14
fo7 114 42 0 211 0 14
fo8 ar2 1 144 0 56 347 0 16
fo8 ar25 1 144 0 56 347 0 16
fo8 ar3 1 144 0 56 347 0 16
fo8 ar4 1 144 0 56 347 0 16
fo8 ar5 1 144 0 56 347 0 16
fo8 146 56 0 273 0 16
fo9 ar2 1 180 0 72 435 0 18
fo9 ar25 1 180 0 72 435 0 18
fo9 ar3 1 180 0 72 435 0 18
fo9 ar4 1 180 0 72 435 0 18
fo9 ar5 1 180 0 72 435 0 18
fo9 182 72 0 343 0 18
fuel 17 3 0 16 4 0
gasprod sarawak01 132 38 0 212 34 0
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gastrans 106 21 0 149 3 21
gbd 5 3 0 5 1 0
gear2 29 24 0 5 0 1
gear3 9 0 4 5 0 1
gear4 6 0 4 1 0 1
gear 5 0 4 1 0 1
genpooling lee1 49 9 0 82 20 0
genpooling lee2 53 9 0 92 30 0
ghg 1veh 30 12 0 38 6 22
gkocis 11 3 0 8 0 2
graphpart 2g-0044-1601 49 48 0 17 1 0
graphpart 2g-0055-0062 76 75 0 26 1 0
graphpart 2g-0066-0066 109 108 0 37 1 0
graphpart 2g-0077-0077 148 147 0 50 1 0
graphpart 2pm-0044-0044 49 48 0 17 1 0
graphpart 2pm-0055-0055 76 75 0 26 1 0
graphpart 2pm-0066-0066 109 108 0 37 1 0
graphpart 3g-0234-0234 73 72 0 25 1 0
graphpart 3g-0244-0244 97 96 0 33 1 0
graphpart 3g-0333-0333 82 81 0 28 1 0
graphpart 3g-0334-0334 109 108 0 37 1 0
graphpart 3g-0344-0344 145 144 0 49 1 0
graphpart 3pm-0234-0234 73 72 0 25 1 0
graphpart 3pm-0244-0244 97 96 0 33 1 0
graphpart 3pm-0333-0333 82 81 0 28 1 0
graphpart 3pm-0334-0334 109 108 0 37 1 0
graphpart clique-20 61 60 0 21 1 0
heatexch spec3 261 60 0 251 0 1
heatexch trigen 291 45 0 262 0 1
hmittelman 17 16 0 8 0 8
hybriddynamic fixed 73 10 0 80 1 0
hybriddynamic var 82 10 0 101 20 1
jit1 26 0 4 33 0 1
johnall 195 190 0 193 0 191
kport20 101 7 33 27 0 20
lip 61 52 0 84 0 1
m3 26 6 0 43 0 6
m6 86 30 0 157 0 12
m7 ar2 1 112 0 42 269 0 14
m7 ar25 1 112 0 42 269 0 14
m7 ar3 1 112 0 42 269 0 14
m7 ar4 1 112 0 42 269 0 14
m7 ar5 1 112 0 42 269 0 14
m7 114 42 0 211 0 14
meanvarx 36 14 0 45 1 0
meanvarxsc 36 14 0 43 1 0
minlphix 85 20 0 93 0 5
multiplants mtg2 230 112 0 307 36 1
multiplants mtg5 191 78 0 309 48 1
netmod dol1 1999 462 0 3138 1 0
netmod dol2 1999 462 0 3081 1 0
netmod kar1 457 136 0 667 1 0
netmod kar2 457 136 0 667 1 0
no7 ar2 1 112 0 42 269 0 14
no7 ar25 1 112 0 42 269 0 14
no7 ar3 1 112 0 42 269 0 14
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no7 ar4 1 112 0 42 269 0 14
no7 ar5 1 112 0 42 269 0 14
nous1 51 2 0 44 29 0
nous2 51 2 0 44 29 0
nvs01 4 0 2 4 0 3
nvs02 10 0 5 4 4 0
nvs03 4 0 2 3 2 0
nvs04 3 0 2 1 0 1
nvs05 9 0 2 10 0 9
nvs06 4 0 2 1 0 1
nvs07 4 0 3 3 1 1
nvs08 5 0 2 4 2 2
nvs09 11 0 10 1 0 1
nvs10 3 0 2 3 3 0
nvs11 4 0 3 4 4 0
nvs12 5 0 4 5 5 0
nvs13 6 0 5 6 6 0
nvs14 10 0 5 4 4 0
nvs15 5 0 3 2 1 0
nvs16 3 0 2 1 0 1
nvs17 8 0 7 8 8 0
nvs18 7 0 6 7 7 0
nvs19 9 0 8 9 9 0
nvs20 17 0 5 9 0 1
nvs21 4 0 2 3 0 3
nvs22 9 0 4 10 0 9
nvs23 10 0 9 10 10 0
nvs24 11 0 10 11 11 0
o7 2 114 42 0 211 0 14
o7 ar2 1 112 0 42 269 0 14
o7 ar25 1 112 0 42 269 0 14
o7 ar3 1 112 0 42 269 0 14
o7 ar4 1 112 0 42 269 0 14
o7 ar5 1 112 0 42 269 0 14
o7 114 42 0 211 0 14
oaer 9 3 0 7 0 2
oil2 936 2 0 926 2 282
oil 1535 19 0 1546 24 394
ortez 87 18 0 74 21 6
parallel 206 25 0 116 0 5
pooling epa1 215 30 0 341 32 18
portfol classical050 1 150 50 0 103 1 0
portfol robust050 34 203 51 0 156 2 0
portfol robust100 09 403 101 0 306 2 0
portfol shortfall050 68 204 51 0 157 2 0
prob02 6 0 6 8 5 0
prob03 2 0 2 1 1 0
procsel 10 3 0 7 0 2
product2 2842 128 0 3125 528 0
product 1553 107 0 1925 132 0
ravem 113 54 0 187 0 2
ravempb 113 54 0 187 0 2
risk2b 464 14 0 581 0 1
risk2bpb 464 14 0 581 0 1
rsyn0805h 308 37 0 429 0 3
rsyn0805m02h 700 148 0 1045 0 6
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rsyn0805m02m 360 148 0 769 0 6
rsyn0805m03h 1050 222 0 1698 0 9
rsyn0805m03m 540 222 0 1284 0 9
rsyn0805m04h 1400 296 0 2438 0 12
rsyn0805m04m 720 296 0 1886 0 12
rsyn0805m 170 69 0 286 0 3
rsyn0810h 343 42 0 483 0 6
rsyn0810m02h 790 168 0 1188 0 12
rsyn0810m02m 410 168 0 866 0 12
rsyn0810m03h 1185 252 0 1935 0 18
rsyn0810m03m 615 252 0 1452 0 18
rsyn0810m04h 1580 336 0 2784 0 24
rsyn0810m04m 820 336 0 2140 0 24
rsyn0810m 185 74 0 312 0 6
rsyn0815h 387 47 0 552 0 11
rsyn0815m02h 898 188 0 1361 0 22
rsyn0815m02m 470 188 0 981 0 22
rsyn0815m03h 1347 282 0 2217 0 33
rsyn0815m03m 705 282 0 1647 0 33
rsyn0815m04m 940 376 0 2430 0 44
rsyn0815m 205 79 0 347 0 11
rsyn0820h 417 52 0 604 0 14
rsyn0820m02h 978 208 0 1500 0 28
rsyn0820m02m 510 208 0 1074 0 28
rsyn0820m03m 765 312 0 1809 0 42
rsyn0820m 215 84 0 371 0 14
rsyn0830h 494 62 0 716 0 20
rsyn0830m02h 1172 248 0 1794 0 40
rsyn0830m02m 620 248 0 1272 0 40
rsyn0830m03h 1758 372 0 2934 0 60
rsyn0830m 250 94 0 425 0 20
rsyn0840h 568 72 0 837 0 28
rsyn0840m02h 1360 288 0 2106 0 56
rsyn0840m02m 720 288 0 1480 0 56
rsyn0840m 280 104 0 484 0 28
sep1 29 2 0 31 6 0
sepasequ convent 641 20 0 1128 81 140
slay04h 142 24 0 175 1 0
slay04m 46 24 0 55 1 0
slay05h 232 40 0 291 1 0
slay05m 72 40 0 91 1 0
slay06h 344 60 0 436 1 0
slay06m 104 60 0 136 1 0
slay07h 478 84 0 610 1 0
slay07m 142 84 0 190 1 0
slay08h 634 112 0 813 1 0
slay08m 186 112 0 253 1 0
slay09h 812 144 0 1045 1 0
slay09m 236 144 0 325 1 0
slay10h 1012 180 0 1306 1 0
slay10m 292 180 0 406 1 0
smallinvDAXr1b010-011 31 0 30 4 1 0
smallinvDAXr1b020-022 31 0 30 4 1 0
smallinvDAXr1b050-055 31 0 30 4 1 0
smallinvDAXr1b100-110 31 0 30 4 1 0
smallinvDAXr1b150-165 31 0 30 4 1 0
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smallinvDAXr1b200-220 31 0 30 4 1 0
smallinvDAXr2b010-011 31 0 30 4 1 0
smallinvDAXr2b020-022 31 0 30 4 1 0
smallinvDAXr2b050-055 31 0 30 4 1 0
smallinvDAXr2b100-110 31 0 30 4 1 0
smallinvDAXr2b150-165 31 0 30 4 1 0
smallinvDAXr2b200-220 31 0 30 4 1 0
smallinvDAXr3b010-011 31 0 30 4 1 0
smallinvDAXr3b020-022 31 0 30 4 1 0
smallinvDAXr3b050-055 31 0 30 4 1 0
smallinvDAXr3b100-110 31 0 30 4 1 0
smallinvDAXr3b150-165 31 0 30 4 1 0
smallinvDAXr4b010-011 31 0 30 4 1 0
smallinvDAXr4b020-022 31 0 30 4 1 0
smallinvDAXr4b050-055 31 0 30 4 1 0
smallinvDAXr4b100-110 31 0 30 4 1 0
smallinvDAXr4b150-165 31 0 30 4 1 0
smallinvDAXr5b010-011 31 0 30 4 1 0
smallinvDAXr5b020-022 31 0 30 4 1 0
smallinvDAXr5b050-055 31 0 30 4 1 0
smallinvDAXr5b100-110 31 0 30 4 1 0
smallinvDAXr5b150-165 31 0 30 4 1 0
smallinvDAXr5b200-220 31 0 30 4 1 0
smallinvSNPr1b010-011 101 0 100 4 1 0
smallinvSNPr1b020-022 101 0 100 4 1 0
smallinvSNPr1b050-055 101 0 100 4 1 0
smallinvSNPr2b010-011 101 0 100 4 1 0
smallinvSNPr2b020-022 101 0 100 4 1 0
smallinvSNPr2b050-055 101 0 100 4 1 0
smallinvSNPr3b010-011 101 0 100 4 1 0
smallinvSNPr3b020-022 101 0 100 4 1 0
smallinvSNPr3b050-055 101 0 100 4 1 0
smallinvSNPr3b100-110 101 0 100 4 1 0
smallinvSNPr4b010-011 101 0 100 4 1 0
smallinvSNPr4b020-022 101 0 100 4 1 0
smallinvSNPr4b050-055 101 0 100 4 1 0
smallinvSNPr4b100-110 101 0 100 4 1 0
smallinvSNPr4b150-165 101 0 100 4 1 0
smallinvSNPr4b200-220 101 0 100 4 1 0
smallinvSNPr5b010-011 101 0 100 4 1 0
smallinvSNPr5b020-022 101 0 100 4 1 0
smallinvSNPr5b050-055 101 0 100 4 1 0
smallinvSNPr5b100-110 101 0 100 4 1 0
smallinvSNPr5b150-165 101 0 100 4 1 0
smallinvSNPr5b200-220 101 0 100 4 1 0
spectra2 69 30 0 72 8 0
sporttournament06 16 15 0 1 1 0
sporttournament08 29 28 0 1 1 0
sporttournament10 46 45 0 1 1 0
sporttournament12 67 66 0 1 1 0
sporttournament16 121 120 0 1 1 0
spring 18 11 1 9 1 5
squfl010-025 261 10 0 276 1 0
squfl010-025persp 510 10 0 525 250 0
squfl010-040persp 810 10 0 840 400 0
squfl010-080persp 1610 10 0 1680 800 0
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squfl015-060persp 1815 15 0 1860 900 0
squfl015-080persp 2415 15 0 2480 1200 0
squfl020-040persp 1620 20 0 1640 800 0
squfl020-050persp 2020 20 0 2050 1000 0
squfl020-150persp 6020 20 0 6150 3000 0
squfl025-025persp 1275 25 0 1275 625 0
squfl025-030persp 1525 25 0 1530 750 0
squfl025-040persp 2025 25 0 2040 1000 0
sssd08-04 60 44 0 40 0 12
sssd08-04persp 60 44 0 40 12 0
st e13 2 1 0 2 1 0
st e14 12 4 0 14 4 1
st e15 5 3 0 5 1 1
st e27 6 2 0 7 1 0
st e29 12 8 0 8 0 4
st e31 112 24 0 135 5 0
st e32 36 1 18 19 2 11
st e35 33 7 0 40 0 1
st e36 3 0 1 3 0 3
st e38 5 0 2 4 0 2
st e40 4 0 3 8 1 3
st miqp1 6 5 0 2 1 0
st miqp2 5 2 2 4 1 0
st miqp3 3 0 2 2 1 0
st miqp4 7 3 0 5 1 0
st miqp5 8 2 0 14 1 0
stockcycle 481 432 0 98 0 1
st test1 6 5 0 2 1 0
st test2 7 5 1 3 1 0
st test3 14 10 3 11 1 0
st test4 7 2 4 6 1 0
st test5 11 10 0 12 1 0
st test6 11 10 0 6 1 0
st test8 25 0 24 21 1 0
st testgr1 11 0 10 6 1 0
st testgr3 21 0 20 21 1 0
st testph4 4 0 3 11 1 0
supplychain 27 3 0 30 6 0
supplychainp1 020306 151 27 0 256 0 1
supplychainp1 022020 2941 460 0 5301 0 1
supplychainp1 030510 446 70 0 836 0 1
supplychainr1 020306 94 27 0 115 0 1
supplychainr1 022020 1441 460 0 1841 0 1
supplychainr1 030510 231 70 0 281 0 1
syn05h 42 5 0 58 0 3
syn05m02h 104 20 0 151 0 6
syn05m02m 60 20 0 101 0 6
syn05m03h 156 30 0 249 0 9
syn05m03m 90 30 0 174 0 9
syn05m04h 208 40 0 362 0 12
syn05m04m 120 40 0 262 0 12
syn05m 20 5 0 28 0 3
syn10h 77 10 0 112 0 6
syn10m02h 194 40 0 294 0 12
syn10m02m 110 40 0 198 0 12
syn10m03h 291 60 0 486 0 18
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syn10m03m 165 60 0 342 0 18
syn10m04h 388 80 0 708 0 24
syn10m04m 220 80 0 516 0 24
syn10m 35 10 0 54 0 6
syn15h 121 15 0 181 0 11
syn15m02h 302 60 0 467 0 22
syn15m02m 170 60 0 313 0 22
syn15m03h 453 90 0 768 0 33
syn15m03m 255 90 0 537 0 33
syn15m04h 604 120 0 1114 0 44
syn15m04m 340 120 0 806 0 44
syn15m 55 15 0 89 0 11
syn20h 151 20 0 233 0 14
syn20m02h 382 80 0 606 0 28
syn20m02m 210 80 0 406 0 28
syn20m03h 573 120 0 999 0 42
syn20m03m 315 120 0 699 0 42
syn20m04h 764 160 0 1452 0 56
syn20m04m 420 160 0 1052 0 56
syn20m 65 20 0 113 0 14
syn30h 228 30 0 345 0 20
syn30m02h 576 120 0 900 0 40
syn30m02m 320 120 0 604 0 40
syn30m03m 480 180 0 1041 0 60
syn30m04h 1152 240 0 2160 0 80
syn30m04m 640 240 0 1568 0 80
syn30m 100 30 0 167 0 20
syn40h 302 40 0 466 0 28
syn40m02h 764 160 0 1212 0 56
syn40m02m 420 160 0 812 0 56
syn40m03m 630 240 0 1398 0 84
syn40m04h 1528 320 0 2904 0 112
syn40m04m 840 320 0 2104 0 112
syn40m 130 40 0 226 0 28
synthes1 8 3 0 7 0 3
synthes2 13 5 0 15 0 4
synthes3 19 8 0 24 0 5
tanksize 47 9 0 74 20 1
tln2 8 2 6 12 2 0
tln4 24 4 20 24 4 0
tln5 35 5 30 30 5 0
tloss 48 6 42 53 6 0
tls12 812 656 12 384 0 12
tls2 37 31 2 24 0 2
tls4 105 85 4 64 0 4
tltr 48 12 36 54 3 0
tspn05 21 10 0 11 5 1
unitcommit1 961 720 0 5330 1 0
util 145 28 0 167 4 0
watercontamination0202 106713 7 0 107210 1 0
watercontamination0202r 196 7 0 284 1 0
waternd1 75 20 0 84 16 1
watertreatnd conc 360 5 0 319 24 5
watertreatnd flow 420 5 0 379 150 5
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