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Zusammenfassung

This paper develops a class of meshless methods that are well-suited to statistical inverse problems
involving partial differential equations (PDEs). The methods discussed in this paper view the forcing
term in the PDE as a random field that induces a probability distribution over the residual error of a
symmetric collocation method. This construction enables the solution of challenging inverse problems
while accounting, in a rigorous way, for the impact of the discretisation of the forward problem. In
particular, this confers robustness to failure of meshless methods, with statistical inferences driven to
be more conservative in the presence of significant solver error. In addition, (i) a principled learning-
theoretic approach to minimise the impact of solver error is developed, and (ii) the challenging
setting of inverse problems with a non-linear forward model is considered. The method is applied to
parameter inference problems in which non-negligible solver error must be accounted for in order to
draw valid statistical conclusions.

1 Introduction

1.1 Inverse Problems and Numerical Computation

Scientific inquiry is driven by mathematical models of physical phenomena. Typically these models
involve finite- or infinite-dimensional unknown parameters. In order to make use of these models for
prediction one must first estimate unknown parameters on the basis of data. The mathematical literature
refers to such problems as “inverse problems”. Several important challenges are raised by the increasing
sophistication of mathematical models built to describe physical phenomena. In particular, numerical
computation associated with inverse problems typically requires repeated simulation from the “forward”
problem, for different values of the unknown parameter.

“Meshless” methods [Fasshauer, 1997, Franke and Schaback, 1998, Hon and Schaback, 2008] are
characterised by their not relying upon construction of a mesh over the solution domain. There is extensive
empirical evidence in support of meshless methods in the solution of PDEs in situations with strong
boundary effects, or when the domain itself is time-dependent, and especially when the evolutionary
rates are large [Li et al., 2010, 2012]. Indeed, meshless methods have proven successful in settings where
application of better-understood approaches based on finite element analysis (FEA) is challenging; for
example, in ballistics problems the domain is time-dependent, so that re-meshing is required at regular
time intervals, owing to the rapid deformation of the material at point of impact. The cost of such
remeshing is noted in Belytschko et al. [2001]; this is not only a compuational burden at run-time, but
also in post-processing and algorithmic complexity.

Compared to FEA, theoretical analysis of meshless methods has been relatively limited, with main
contributions including Behrens and Iske [2002], Lorentz et al. [2003], Wendland [2005], Cialenco et al.
[2012], and Chi et al. [2013]. Behrens and Iske [2002], Chi et al. [2013], and Lorentz et al. [2003] each
focus on application of meshless methods in specific problems; elastodynamics in Chi et al. [2013] and



time-evolving problems in Behrens and Iske [2002] and Lorentz et al. [2003]. In particular there has been
little investigation of the suitability of meshless methods in the context of inverse problems.

1.2 Contribution

The main contribution of this paper is to propose a rigorous mathematical and statistical framework for
the solution of inverse problems based on meshless collocation with radial basis functions [Fasshauer,
1997]. To our knowledge, the only investigation of these methods in the context of inverse problems was
Fasshauer and Ye [2013], though recently an extensive analysis of the forward problem was provided by
Owhadi [2016].

Central to this development is a deep connection between collocation and stochastic PDEs that casts
the latter as a “stochastic relaxation” of the former [Cialenco et al., 2012]. This permits the residual
error of the meshless solution to be quantified by a distribution over an appropriate function space.
The use of a distribution contrasts with conventional asymptotic estimates for numerical error [see the
survey in Verfiirth, 2013]. The approach pursued here is rooted in the Bayesian setting and provides
much needed reassurances for solutions of inverse problems that are based on meshless methods. In
the Bayesian approach to inverse problems, a “prior” distribution is specified over all unknowns and
propagated, via Bayes’ rule, to a “posterior” distribution over variables that accounts for information
contained in data. Further details on the Bayesian perspective to inverse problems can be found in
Kaipio and Somersalo [2006], Stuart [2010], Sullivan [2015]. For the use of such methods in Bayesian
inverse problems, a distributional quantification of error in the forward problem can be propagated into
the posterior distribution of the inverse problem. A complementary, game-theoretic motivation for the
probabilistic representation of solver error comes from the recent work of Owhadi [2016].

To realise this approach, in Sec. 3 we construct probabilistic analogues of PDE solvers that operate
in infinite-dimensional Hilbert spaces. This enables uncertainty due to discretisation error to be reflected
directly in subsequent statistical inferences. The “data-likelihood” here requires evaluation of the solution
of the PDE only at locations where observations of the physical system of interest are obtained. By aiming
to reduce the variance in the solution at these points, one can reduce the computational effort required to
achieve a desired level of accuracy. This leads us to formulate the choice of basis functions as a problem
in optimal experimental design [Pukelsheim, 2006]. A computational approach is developed to obtain
optimal configurations, based on local Gaussian process approximation, the approximate co-ordinate
exchange (ACE) algorithm of Overstall et al. [2015] and Bayesian Optimisation [Mockus et al., 1978].

In Sec. 7 two detailed empirical studies are provided. Firstly, the method is applied to solve an inverse
problem arising in electrical impedance tomography. Secondly, an application is presented to an inverse
problem with a non-linear forward model based on the steady-state Allen-Cahn equation. The latter
is particularly challenging, since for certain values of the parameter the forward problem has multiple
solutions. A fully Bayesian solution is presented for this problem and shown to perform well empirically.
This work therefore provides a route to tackle inverse problems with a non-linear forward model, a setting
rarely examined in the existing literature, and offers the possibility to consider physical phenomena of
contemporary interest that are modelled by non-linear differential equations.

1.3 On the Role of Probability in Deterministic Computation

This work falls within the wider context of a movement toward Probabilistic Numerics (PN), in which
numerical tasks are considered as inference tasks that are amenable to statistical analysis. Diaconis [1988]
traces the foundations of PN back to Poincaré, with other landmark and foundational papers including
Hull and Swenson [1966], Kadane [1985]. Recent developments include probabilistic solvers for linear
systems [Hennig, 2015], differential equations [Calderhead et al., 2009, Dondelinger et al., 2013, Schober
et al., 2014, Barber and Wang, 2014, Conrad et al., 2015, Macdonald et al., 2015, Owhadi, 2016, Kersting
and Hennig, 2016] and probabilistic integrators [O’Hagan, 1991, Briol et al., 2016]. A recent perspective
on PN is provided by Hennig et al. [2015].

A PN method returns not just an approximate solution, but a measure or samples from a measure
over the space of solutions that quantifies epistemic uncertainty resulting from inability to perform
infinitely many numerical calculations. The mathematical foundations of this approach are established
in the Information Complexity literature [Wozniakowski, 2009]. This field studies the approximation
of continuous mathematical objects under the constraints of finite digital hardware. In such situations



information is by its nature partial and potentially contaminated. This is a setting which we find ourselves
in for PDE inverse problems in all but the most trivial cases; we wish to obtain an approximation to
the infinite-dimensional solution of the PDE but can only use a finite-dimensional representation to do
so. Furthermore our observations of the system of interest will typically be contaminated with noise and
suffer from model-mismatch error.

The PN approach to numerical solution of PDEs initially concerned models for rounding error [Hull
and Swenson, 1966] and indeed this is still of interest [Mosbach and Turner, 2009, Hairer et al., 2008].
However, the aim here is to model discretisation error [e.g. following Skilling, 1992]. Of particular rele-
vance is recent work by Conrad et al. [2015], which proposed PN methods for numerical solution of PDEs
by FEA, in addition to differential equations. There a principled construction was proposed for probabi-
lity measures over numerical error, with this additional source of uncertainty propagated into inferences
made on the inverse problem. This provides several advantages: Firstly, the inferential procedure adapts
to reflect the impact of numerical errors, automatically inflating posterior variance in settings where
numerical error is likely to be non-negligible. As such, statistically valid inferences can be made in the
presence of non-negligible numerical error; the posterior mode might still differ from the truth, but our
confidence in the result is reduced as a result of accounting for this error. This could further allow crude,
inexpensive solvers can be employed in situations where a loss in posterior precision can be tolerated,
reducing the overall computational burden. Secondly, often the inferences drawn on PDE parameters
form the basis of further computation, for example to make a prediction on the future behaviour of the
physical system. In such settings PN methods enable numerical uncertainty to be propagated through
subsequent computations, avoiding over-confidence due to successive discretisations. Going further, the
impact of numerical error incurred at each stage in a computational pipeline can be explored using sta-
tistical techniques, such as analysis of variance, in order to better target computational resources. The
focus of the present paper on meshless methods is distinct from Conrad et al. [2015] but, as explained
below, the PN approach delivers these same advantages.

1.4 Outline

The paper proceeds as follows: Sec. 2 establishes the set-up and notation, while Sec. 3 outlines the
proposed “probabilistic” meshless method. Secs. 4 and 5 provide error analysis for, respectively, the
forward and inverse problems. Computational considerations are discussed in Sec. 6. Then, in Sec. 6.3
the approach is extended to a class of non-linear PDEs. Finally Sec. 7 provides empirical results on the
proposed approach, with discussion reserved for Sec. 8.

2 Context and Motivation

Sec. 2.1 formalises the notion of a Bayesian inverse problem. Sec. 2.2 then expands on the statistical
motivation for valid inferences in the presence of numerical error.

2.1 Inverse Problems

The physical models considered here are defined via operator equations. An “inverse problem” arises
when some of these operators depend upon unknown parameters that must be inferred. This can enable
future predictions to be obtained under the model, or provide insight into the physical systems of interest.
The Bayesian approach to inverse problems treats unknown parameters as random variables. The first
step below is to set up a mathematical framework that makes both the parameter dependence and the
randomness explicit.

2.1.1 Set-up and Notation

Consider a regular open, bounded subset D C R? with boundary dD. Here reqular means that D has
a Lipschitz boundary, for Sobolev embedding. Let (€2, F,P) be a probability space and consider (Borel)
measurable operators A : H(D) x Q — H4(D) and B : H(D) x Q — Hg(dD) such that H(D), H4(D)
and Hg(OD) are Hilbert spaces of functions respectively on D and 9D. Consider the stochastic solution



u(-,w) € H(D), w € Q, of operator equations of the form

Alwju(z,w) = g(x) x €D
Blwlu(x,w) = b(x) x € dD (1)

where g € Ha(D) and b € Hg(0D). To emphasise the random nature of the operators A and B, the
notation Aw] and Blw], w € © was used. For concreteness, one can associate A with a PDE to be solved
and B with any initial or boundary conditions. Similarly, g € H4(D) and b € Hg(0D) can be considered
as forcing and boundary terms for the PDE. For notational simplicity we will generally restrict attention
to systems with two operators such as shown above, however it is trivial to extend the algorithm. of this
paper to systems of more than two operators, each potentially restricted to other areas of the domain
than the interior and boundary.

An inverse problem is one in which inferences are to be made for w, on the basis of possibly noisy
observations of the underlying solution u(-,wp), where wy € 2 denotes the “true” value of w. Typically,
in the infinite dimensional setting, both A and B depend on w via a measurable projection (i.e. a random
variable) 6(w) that is of direct physical interest, where 6 : Q — © is a measurable function mapping into
a separable Banach space © with the Borel o-algebra B(©). The true value of 8, written 6y = 6(wy), is
the object of statistical interest.

2.1.2 The Bayesian Approach

The measure P on (2, F) implies a push-forward measure IIy on (0©,28(0)) that is known as the “prior”
in Bayesian statistics. Data, in this paper, is used in the statistical sense and refers to a random variable
y defined on (), B(Y)), where ) is a separable Banach space equipped with the Borel o-algebra 2%()). In
this paper Y C R" and data arise from a distribution II,. The Lebesgue-measurable conditional density

(y|0) o exp(=D(y, 1)), (2)

is called the “data-likelihood”, where ® : Y x © — R is a (measurable) “potential” function. Then an
infinite-dimensional analogue of Bayes’ theorem [Theorem 1.1 of Dashti and Stuart, 2015] implies the
existence of a “posterior” distribution II§ on (©,B(O)) that is absolutely continuous with respect to Ily,
with Radon—Nikodym derivative

diry 1

0 = 7 ep(-0w.0), 2= [ exp(-(y,6)(d0) 3)
dH@ Z ®

whenever Z > 0. In colloquial use, the “Bayesian inverse problem” entails numerical computation of
(derived quantities of) the posterior distribution Hg; these are called “inferences”.

2.2 Statistical Motivation: Valid Inference for PDE Models

Below we expand on the motivation for developing a more expressive quantification of numerical error
in the forward solution, within the context of statistical inverse problems. For illustration, consider the
Gaussian measurement error model, described by the potential function

1
a(y.0) = 5lly - GO,

where G : © — ) is the parameter-to-observable map while data y € ) are collected observations. Here
' defines an appropriate Cameron-Martin space [Dashti and Stuart, 2015, section 7.3].

A distinction is made between “linear” inverse problems, in which G(6) is linear in the parameters
0, and “non-linear” inverse problems, where linearity fails to hold. Note that linearity of G(6) is distinct
from linearity in the governing equations given by .4, B. This case has received relatively little attention;
an exception is Franke and Schaback [1998], which explored a variational Bayesian approach.

Typically an analytic representation for G(#) is unavailable, so that a numerical solver is used to
obtain an approximation G (0). Inference then proceeds based on the approximate potential

B(y.0) = 5y~ GO}



in place of the true potential ®. For PDEs, for example, the difference between d and @ can typically
be driven to negligible values by using FEA methods based on refined meshes and appropriate error
diagnostics, such as Richardson extrapolation or the adaptive methods of Moon et al. [2006] and Moon
et al. [2005]. These techniques combine to produce guarantees on the extent of numerical error and,
hence, lead to statistically valid inference on the parameter 6 [Stuart, 2010]. However, the requirement
to drive error to negligible values can lead to prohibitive computational requirements.

Instead a more flexible approach is pursued, based on collocation methods, in which error in the
numerical solution of the forward problem is captured probabilistically and propagated into the inverse
problem. Capturing this error can permit an overall reduction in computational complexity by avoiding
construction of a mesh and, in some situations, by allowing use of a coarser discretisation while still
permitting valid statistical inferences.

The approach is particularly well-suited to inference for non-linear PDEs, where solution uniqueness is
no longer guaranteed. Then both discretisation error and solution identification are naturally formulated
as sources of epistemic uncertainty. The methods that are developed below enable these uncertainties to
be propagated, in a statistically principled way, into the inverse problem and enable valid inferences to
be obtained.

2.3 Related Literature

The challenge of obtaining inferences based on approximations to the likelihood function has received
considerable attention in the statistics literature. Focusing on PDEs, the use of approximate likelihoods
for inference has been widely explored. Several approaches start by building a smooth approximation to
gradients of the solution and penalising deviation from these gradients; see Campbell [2007], Ramsay et al.
[2007], Dattner and Klaassen [2015], Heinonen and d’Alché Buc [2014] and the references therein. Closer
in spirit to the approach pursued below, Marzouk and Xiu [2009] used polynomial chaos expansions to
approximate the likelihood function, treating the mapping from 6 to y as a black box. A similar approach
was also proposed in Webster et al. [1996] and Ma and Zabaras [2009]. Both Marzouk and Xiu [2009] and
Ma and Zabaras [2009] apply their likelihood approximations to solve inverse problems and Marzouk and
Xiu [2009] establish that the approximate and exact posterior coincide in an appropriate limiting sense.
However, these papers do not take into account the approximation error when making inferences on the
parameter 6, meaning that careful control of error in the forward problem is still required to avoid the
problems of bias and over-confidence that were exposed in Conrad et al. [2015].

The forward problem has been the recent focus of PN methods. When this problem is described
by ODEs, Conrad et al. [2015] constructed a probabilistic method for modelling discretisation error
in numerical integrators, while Schober et al. [2014] revealed the underlying uncertainty model that is
implied by Runge-Kutta methods. [See also the recent contribution by Kersting and Hennig, 2016]. For
PDEs, Kaipio and Somersalo [2007] fitted Gaussian models for PDE errors, and Conrad et al. [2015]
proposed PN methods for FEA [see also Arnold et al., 2013]. Related work by Capistran et al. [2013]
analysed the impact of discretisation error using Bayes factors.

Focusing on meshless methods, several authors have considered estimating the solution of operator
equations as a fundamentally stochastic problem [e.g. Skilling, 1992, Graepel, 2003, Sirkki, 2011, Cia-
lenco et al., 2012, Fasshauer and Ye, 2013]. The present approach is close to these papers in spirit, but
the motivation was to make valid inferences for the inverse problem, which these papers do not consi-
der. Recent work by Barber and Wang [2014] considered the inverse problem and proposed a method
to obtain valid statistical inferences based on a probabilistic model for solver error. A shortcoming of
Barber and Wang [2014] is an absence of theoretical analysis, as well as the restriction of attention to
finite-dimensional parameters. The methods presented below address these shortcomings.

3 Probabilistic Models for the Forward Solution

In this section a “probabilistic” meshless method is formally defined. The starting point is radial basis
function collocation, as studied by e.g. Fasshauer [1997] and more recently by Owhadi [2016]. Initially it
is assumed that the operators A and B are linear; this will be relaxed in Section 6.3.

The method described in this and the following section is over-viewed, for reference, as a graphical
model in Fig. 1.
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Abbildung 1: Graphical model representation. (Shaded nodes are unobserved.) (a) The abstract inverse
problem, where the exact solution u can be obtained from the parameter § and compared to observational
data y. (b) The probabilistic meshless method applied to the inverse problem in (a). In this framework
the solution vector u is no longer a deterministic function of the parameter 6. Instead, a probabilistic
model for discretisation error is integrated into inference. This aims to neutralise the inferential problems
of bias and over-confidence that can result from neglecting discretisation error. The components X, g
are defined in Sec. 3.1.2, b in Sec. 3.2 and z in Sec. 6.3 of the main text.

3.1 Probability Measures for Solutions of PDEs

Let (Q', F', ") be a second probability space and consider a measurable function g : D x ' — R such
that for each w’ € ', g(-,w’) € H4(D). Similarly consider a measurable function b: 9D x ' — R such
that for each w’ € ', b(-,w’) € Hg(dD). The mathematical object that is studied in this section is the
“doubly stochastic” solution u(-,w,w’) € H(D), w € Q, w’" € &, of operator equations of the form

/

y W, W
/

w

g(z,w') xe€D
b(xz,w') =€ dD. (4)

The system in Eqn. 4 is a stochastic relaxation of the original inverse problem in Eqn. 1, in the sense
that the deterministic forcing terms g and b are, for the purposes of this method, formally considered
as random fields. This construction is justified in Owhadi [2015] as a reflection of the uncertainty, from
the perspective of the numerical solver, about the value of the forcing at locations where it has not been
evaluated. This uncertainty is formally modelled by the injected stochasticity.

The doubly stochastic solution w exists as a random variable that takes values (P,P’)- almost surely
in an appropriate function space; this will be made precise in Sec. 5.1. The immediate sections below
focus on the effect of this randomisation and show how it connects at a deep level to collocation methods.

3.1.1 A Natural Reference Measure

To begin, a “reference” probability measure is devised for the unknown, infinite-dimensional solution w,
based on the formal injection of stochasticity into the forcing function. The approach follows Owhadi
[2015], but operates on functional Hilbert spaces rather than spaces of generalised functions.

To begin, the forcing g is formally modelled as a Gaussian stochastic process defined on H 4(D). That
is, g is a stochastic process whose finite dimensional components [g(z1,),...,g(xn, )] are Gaussian in
distribution. Recall that a Gaussian process g : D x £ — R is characterised by its mean function
m : D — R and its covariance function A : D x D — R. The notation II; = N(m, A) will be used to



denote the distribution of g over H 4(D). It will be assumed that there exist fixed linear integro-differential
operators Ay and B, such that

Apg(x)=€&(x) e D
Bag(x) =0 x € 0D. (5)

where £ is the standard white-noise process. Here and below we tend to leave the dependence on w
and w’ implicit to simplify the presentation. A common choice for A, is the fractional Laplacian. A
comprehensive background reference is Berlinet and Thomas-Agnan [2004].

Fundamental to the method is the fact that a covariance function A corresponds to a reproducing
kernel Hilbert space (RKHS), written Ha (D). It will be assumed that Hx (D) C H 4(D). By construction
Hp (D) contains all functions g : D — R for which the norm ||g[|s := [|Aagl|z2(p) is finite. The fractional
Laplacian choice for A, implies that Ha (D) is a standard Sobolev space. An important property of
this characterisation is that the Gaussian measure assigns zero mass to the RKHS, i.e. II;[Hx(D)] = 0
[Berlinet and Thomas-Agnan, 2004]. This leads to an amount of additional technical detail in Sec. 3.2.

Next, randomness is propagated from the forcing term through into the solution of the PDE. Define
the inner product space

Hy(D) :={v € H(D) | AyAv € L*(D), Bv =0 on 9D and By Av =0 on 9D}

with
(u,v), :Z/D[.AA.AU(CB)][AAA’U(w)]d:I:.

Under this definition ||ul|? := (u,u)r = ||g||5. Prop. 1 below establishes that Hy (D) is in fact an RKHS. To
elicit its reproducing kernel, focus initially on the case of a linear operator A and assume non-degeneracy,
so that (v,v)r = 0 if and only if v = 0. Here it will be assumed that the problem is well-posed, meaning
that, for any g € Hx(D), there exists a unique solution u € Hg(D) to the system Au = g. Supposing
that we have a Green’s function G satisfying

AG(z, ') =06(x —x') €D
BG(z,z') =0 x € dD, (6)

we define the “natural kernel” k: D x D — R via
k(z,x') := / / Gz, 2)G(z', 2’ )A(2z,2")dzdz2’. (7)
DJbD

Throughout, the notation AG(z, ') is used when the operator acts on the first argument x, while the
notation AG(x, x’) is used when the operator acts on the second argument x’. The relationship between
Green’s functions and kernels is explored in detail by Fasshauer and Ye [2011].

Proposition 1. Assume that [}, k(x,x)'/?dx < co. Then Hy(D) is a reproducing kernel Hilbert space
and k is its reproducing kernel.

Prop. 1 explains and justifies the Hj (D) notation. The kernel k is indeed natural for this particular
problem, in the sense that Hx (D) is the image under A of Hy(D). In the linear case, a realisation of g
corresponds to a unique realisation of u and the randomness w € €2 implies a “reference” measure 11,
over H(D). Indeed, assuming zero means henceforth, we have the following:

Proposition 2. II, is a centred Gaussian process with kernel A if and only if I1,, is a centered Gaussian
process with kernel k.

In practice one can specify either the form of A or the form of k, since in the linear case each fully
determines the other. All proofs are provided in the Appendix.



3.1.2 A Natural Conditional Measure

Now a distribution is constructed, with respect to the reference measure, that represents epistemic
uncertainty over the solution u after expending a finite amount of computational resource. The route
taken is to condition the reference measure II,, on m 4 observations of the forcing function at distinct
locations Xg' = {wéj 74 C D. Our information on the solution u comes via the interpolation equations

Au(a:éj) = g(a:éj), i=1,...,mua.

Write g for the m 4 x 1 vector with jth element g(méj). Then the conditional process ul|g, denoted by
119, is also Gaussian and characterised by its finite-dimensional marginals, given in Prop. 3.

For sets X = {x;}7_, and X' = {z] ;’/:1 of states, denote by K (X, X’) the n x n/ matrix whose
(4,7)th element is k(z;, 2}). When X = X' we use the more succinct notation K(X) = K (X, X). The
n x n' matrices AK (X, X"), AK(X,X’) and AAK (X, X') have respective (i, j)th entries Ak(x;,x’,),

- - J
Ak(z;, ;) and AAk(x;, x)).
Proposition 3 (Probabilistic meshless method I). Given X = {z;}]_; C D, denote by u the nx1 vector

with jth element u(x;). The posterior distribution 119 is Gaussian with finite dimensional marginals u
given by

ulg ~ N(p, )
where the mean and variance are
p = AKX XgH[AAK (X3 'g (8)
T = K(X)- AKX, X§)AAK (XY AK (X, X). (9)

This result is well-known as a general algebraic identity; see e.g. Siarkka [2011].

This clarifies what constitutes a “probabilistic” solver; rather than returning only an approximation
4 to u, a probabilistic solver returns a full distribution I19 where randomness represents uncertainty over
the true values of u due to finite computational resources. The content of Prop. 3 will be referred to as
a probabilistic meshless method (PMM). In Sec. 4 it is proven that this quantification of uncertainty is
appropriate, giving rise to minimax error bounds.

An explicit “gamblet” basis for the conditional measure II¢ was considered in Owhadi [2016] but will
not be discussed in this paper.

3.2 Connection to Meshless Methods

The presentation above assumes access to a Green’s function for the PDE. In practice we cannot make
this assumption as Green’s functions are not generally available for nontrivial PDE systems. In this
situation we must resort to an alternative choice of covariance function.

Collocation methods [Fasshauer, 1997, Fasshauer and Ye, 2011] begin by positing an RKHS for the
solution u, with a kernel k£ which has favourable computational properties. While the natural kernel k
in Eqn. 7 is unavailable, it is often straightforward to exhibit a kernel & such that H x(D) is embedded
in Hy(D). A Hilbert space H is said to be “embedded” in another Hilbert space H' if H C H'; this
implies the existence of a constant 0 < ¢ < oo such that ||ul|gs < ¢||lul|g for all w € H [Pillai et al.,
2007]. In the notation of Sec. 3, set H(D) = Hj,(D) where the latter is an RKHS with reproducing kernel
k. In this paper k will typically be a kernel whose native space is a Sobolev space (see Assumption 1
below). The order of this space can therefore be chosen by “derivative counting”, to reflect the number
of (weak) derivatives that u is believed to have, based on the maximum differential order of operators in
the system.

Due to the aforementioned technicality that P’ does not place mass on the RKHS, it is necessary to
introduce a third kernel k. It will be required that H; (D) is embedded in H(D) and that k satisfy the
following properties:

(i) The measure II, = N(0, k) satisfies I1,[H(D)] = 1.
(i) The set H; (D) is dense in the space (H(D), || - ||;)-



These conditions enable any function u € Hy(D) C H(D) to be “inferred” from data, under a prior IL,.
One way to achieve both (i) and (ii), is to follow Cialenco et al. [2012] (Lemma 2.2), and consider
the integral-type kernel below:

Proposition 4. The integral-type kernel

satisfies requirements (i) and (ii).

The strategy of taking k to be a generic kernel (e.g. a Sobolev kernel) means that functions u € Hj,
do not automatically satisfy boundary conditions Bu = b of the system. Instead, meshless methods
incorporate boundary conditions by the introduction of additional evaluations Bu(mg j) = b; for a set
XB = {mOBJ— 75 of points on the boundary 0D. Write b for the mp x 1 vector with jth entry b; = b(mgj).
Denote the full meshless design Xy = (X, X5). Define

Introduce the (m4 + mg) X (m4 + mp) matrix

AAK (X3, X8 ABK (X3, XB)

LLK(Xy) = {ABK(XOB,X({‘) BBK(XE, XF)

and also the 1 x (m.4 + mg) vectors

LK(z,Xo)" = [AK (z,X§") BK(z, XP)
LK (z,X0)" = [AK (z, X§") BK(z, Xp)]

—

In each case the hat on K indicates that entries are based on the posited kernel l%, as opposed to the
matrix K which was based on the natural kernel k.

The posterior or “conditional” process u|g, b is also Gaussian; denote its distribution I19:®. This result
is the basis for practical PMMs. Indeed, proceeding as in Prop. 3:

Proposition 5 (Probabilistic meshless method II). Write X = {x;}7_, C D. Denote by u the n x 1
vector with jth element u(z;). Then under I19°° we have

u|lg,b~ N(u,X).

where the mean and variance are

I LK (X, Xo)[LLK (Xo)] '[g" b"]" (10)
Y = K(X)-LK(X,X0)[LLK (X)) 'LK (X0, X). (11)
Here it is convenient to express the pointwise conditional mean and variance as p(x) and o(x)?
respectively; i.e. as defined by Eqns. 10 and 11 with X = {&}. Then the expression presented here for
wu(x) is identical to the meshless method known as “symmetric collocation”, developed by [Fasshauer,
1999]. The probabilistic interpretation of symmetric collocation was previously noted in Cialenco et al.
[2012]. Compared to previous literature, the variance term o?(z) will play a more central role and will
enable formal quantification of numerical error. A
The matrices involved here will be sparse when the kernel k£ has compact support. Thus, by ap-
propriate choice of kernel, the required matrix inversion can be made competitive with efficient FEA
methods. While not investigated here, meshless methods can be extended in several directions, including
to multi-level methods [Fasshauer, 1999].



3.2.1 Illustrative Example: Forward Problem

To illustrate these ideas, we examine the above procedure for a simple linear PDE in one dimension,
namely Poisson’s Equation. Consider the system:

—V2u(z) = g(x) forz € (0,1)
u(z) =0 for x € {0,1}

This system satisfies the conditions in Sec. 3.1.1, in that the solution is known to be zero on the boundary
of the domain. Futhermore the Green’s function for this system is available analytically:

z(z'—1) x>

G(z,a") = { d(x—1) z<a

To proceed, place a Gaussian measure on the forcing term g, using the compactly supported polyno-
mial of Wendland [1995]:

Az, ') = (max(1 — e|z — 2'|,0))

Samples from the prior II; will be continuous, with no continuous derivatives, and has support wherever
|z — 2’| < e~!. Associating operators in the above system with the abstract definitions, we have A :=

V2= j—;, while A = ﬂ%. The natural kernel

k(z,2") = /0 1 /0 Gl )G A (2 2 dd

has a closed-form solution since all three terms are piecewise-polynomial. The full expression is given in
the Supplement. Exploiting properties of Green’s functions we can also find:

1
Ak(x,x'):/ G(2', 2" )A(x,2")dzd2’
0

1
Ak(z,2') = / G(x,2)A(z,2")dzdz’
0
AAk(z,2") = A(z,2")

which are similarly available in closed-form.

Having applied each operator in the system to the natural kernel, we must then select a set of design
points x; and evaluate the vector g = [g(x;)] at each point. For illustration we took m 4 = 39 function
evaluations at evenly spaced points in (0,1). The conditional mean and covariance are given in Eqns. 8
and 9 respectively. In Fig. 2a the conditional mean is plotted for the above PDE with g(z) = — sin(27z),
along with sample paths from the full conditional measure. The covariance A(z,z’) is assigned a support
of € = 2.5. This is contrasted with the closed-form solution u(z) = (27) 2 sin(27x).

Even for this most simple of examples, computation of the natural kernel is challenging. In practice
collocation methods operate using a kernel such as k as given in Sec. 3.2, or even directly positing a
kernel. In Fig. 2b the performance of the natural kernel k is contrasted with that of k, computed from a
higher-order Wendland covariance function:

k(z,2") = (max(1 — elz — 2/[,0))* - (4e|z — 2| + 1)

1
l%(:c,x'):/o k(z,2)k(z, 2")dz

This kernel is chosen to correspond to the required level of smoothness in the solution, as k is twice-
differentiable at the origin. In addition the design is augmented with X = {0,1} so that samples from
the conditional measure satisfy the boundary conditions with probability one.

Convergence of the conditional measures 119 and I19:® based on these two kernels as the number of
design points is increased is shown in Fig. 3. The advantage of using the (typically unavailable) natural
kernel is seen to be a reduction in approximation error.
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Abbildung 2: Probabilistic meshless methods: Comparison of conditional distributions (a) 11¢ based on
the natural kernel k and (b) I19® based on the integrated Wendland kernel k. In (b) two additional

observations are added at + = 0 and z = 1.
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Abbildung 3: Probabilistic meshless methods: Convergence of mean and covariance as the number m of
design points is increased. Values of u and o were computed on a fine grid of 100 points in the domain.
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3.3 The Inverse Problem

For linear PDEs with Gaussian additive noise, the data-likelihood has the closed-form expression
w(ylg.b.6) = [ nlylu)n(ulg.b.6)du (12)

- \/det[Qw(;(H) T {;(y — 1(6))"(3(0) +T) "y — u(f)))} . (13)

where dependence of the conditional distribution over u on the parameter 6 is emphasised. For simplicity
we have assumed the observation noise distribution I, is jointly Gaussian; ylu ~ N(u,T'). In Sec. 5.2 we
prove that as the design set is refined, the mean p(6) converges to the true solution u(6), the covariance
33(0) vanishes and 7 (y|g, b, 8) converges to the (unavailable) abstract data-likelihood 7(y|0).

3.3.1 Illustrative Example: Inverse Problem

Returning to the example of Sec. 3.2.1, we illustrate probabilistic solution of an inverse problem. Consider
the problem of estimating € in:

—V - (0Vu(z)) = g(z) forx € (0,1)
u=0 for x € {0,1}

An interesting observation here is that, while the kernel k is independent of the value of # in this
problem, the natural kernel does have dependence on € through the Green’s function; indeed k(z,z’;0) =
§=2k(z,2';1). This dependence would be easy to remove by simply dividing by @, however we emphasise
it here in light of theoretical considerations which will become apparent in Sec. 5. Essentially Assumption
(A2) later requires that k& does not depend “too strongly” on 6.

We solve this problem with g(x) = — sin(27z) and data-generating parameter § = 1. Data were gene-
rated at the locations z = 0.25 and = = 0.75 by evaluating the explicit solution u(z) = (27) 2 sin(27x).
This is then corrupted with Gaussian noise with covariance I' = 0.00121.

To illustrate the advantage of a probabilistic solution to the PDE, posteriors were computed based on
(a) the standard approach that ignores discretisation error and plugs an estimate g into the measurement
error model m(y|u) in place of u, and (b) the PMM where data-likelihood is given in Eqn. 13. The
parameter 6 was endowed with a standard log-Gaussian prior to ensure positivity. Posteriors are plotted
in Fig. 4a, while convergence with the number of collocation points is shown in Fig. 4b.

This example highlights failure of the standard approach; the posterior variance is constant, inde-
pendent of the number m 4 of collocation basis functions, and posterior credible intervals do not cover
the true value § = 1 when m 4 < 20. In contrast, when using the PMM there is a clear widening in the
posterior for small m 4, and in general the true value of 6 is within a standard deviation of the posterior
mode.

Note also that convergence is faster when using the natural kernel k, compared with the integral
kernel l%; this is to be expected considering the faster convergence exhibited in Sec. 3.2.1.

3.3.2 Calibration of Kernel Parameters

The requirement to posit a kernel & typically introduces nuisance parameters. This issue has so far
received little attention in the literature on meshless methods, but is crucial to this work since the choice
of parameters directly influences the spread of the probability model for numerical error.

The problem of selecting kernel parameters appears regularly in PN methods [Conrad et al., 2015,
Briol et al., 2016, Kersting and Hennig, 2016]. One principled approach to selection of kernel parameters
would simply be to maximise the likelihood of the data, i.e. to maximise Eqn. 13 over all nuisance
parameters. This is known in statistics as “empirical Bayes”, but other approaches are possible, including
marginalisation and cross-validation; see the discussion in Briol et al. [2016]. An alternative approach
is to consider the nuisance parameters of the kernel as additional parameters to be inferred; this allows
marginalisation of those parameters so that inferences do not depend upon point estimates. Both solutions
are explored in the applications in Sec. 7.
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Abbildung 4: Probabilistic meshless methods: Solutions to the inverse problem are contrasted with the
standard approach that plugs a discrete approximation to the exact PDE solution into the data-likelihood,
leading to over-confidence. (a) Posterior distributions II} as a function of the number m 4 of design points.
(b) One standard deviation posterior credible intervals for 0, again as a function of the number m 4 of
design points. In each case the natural kernel k is contrasted with the integral-type kernel l%, as explained
in the main text.

13



4 FError Analysis for the Forward Problem

This section presents error analysis for the forward problem where wy € € is fixed. Denote by uy =
u(+,wp,w() the true solution to the PDE.

Two Hilbert spaces H, H' are said to be “(norm-) equivalent” when each is embedded in the other
and we write H = H’. The results restrict to the following situation:

(A1) Suppose that H(D) is norm-equivalent to the Sobolev space H?(D) of order 3 > d/2, with norm
denoted by || - [[ms(p)-

(A1) can be satisfied by construction since we are free to select the kernel k and H(D) = Hi (D). It is
implicitly assumed that the orders (i.e. number of derivatives) of A and B are O(A),O(B) < 8—d/2, so
that the stochastic processes Au and Bu are well-defined.

The analysis is rooted in a dual relationship between the posterior variance and the worst-case error:

Proposition 6 (Local accuracy). For all x € D we have |pu(x) — uo(x)| < o(x) [|uol|;.-

Prop. 6 shows that minimising o(x) leads to accurate estimates p(x). This reassures us that the
conditional measure I19:® over the solution space is sensible in a local sense. Moreover it reveals a minimax
characterisation, since o(x) is in fact equal to the supremum of |u(x) — u(x)| over all v € H; (D) with
Jully = 1.

To make precise the notion of minimising o(x), define the “fill distance” of the design X, as

h := sup min |z —'|s.
xzeD *'€Xo

The following is Lemma 3.4 of Cialenco et al. [2012]; see also Secs. 11.3 and 16.3 of Wendland [2005]:

Proposition 7. For all x € D and all h > 0 sufficiently small, we have o(x) < ChB=P=4/2 yhere
p=max{O(A),O0(B)} and C denotes a generic constant.

Denote [|[ul|3 = [, u(x)?*dx. Prop. 7 is used below to establish contraction of the conditional measure
119:® over H(D) to the true solution ug as the fill distance tends to zero:

Theorem 8 (Contraction of conditional measure to ug). Fiz € > 0 and consider the limit h — 0. For a
ball Be(ug) == {u € H(D) : ||u— uo||3 < €} centred on the true solution ug of the PDE, we have

H2B—2p—d
1 —T9°[Be(ug)] = O (€> :
A similar result is presented as Lemma 3.5 in Cialenco et al. [2012].

Thm. 8 is an important and reassuring result, showing that the conditional measure I19:® provides
sensible uncertainty quantification in a global sense. However it is not the full story; our ultimate goal
is to make accurate inferences on 6. This introduces several considerations that go well beyond analysis
of the forward problem. For example, given noisy observations y of the solution, it makes sense that
the design points X should also lie “close” to where these data are obtained above. For non-uniform
observation locations, this objective does not coincide with the fill distance objective. The proposed
resolution involves the use of sophisticated techniques from experimental design, that are presented in
Sec. 6.

Furthermore, in the inverse problem setting, the solution v = u(-,w,w’) depends on w € Q. Thus the
term ||u||; in Prop. 6 will be a random variable. In fact, from a broader perspective we must examine
whether, and in what sense, the solution u(-,w,w’) exists as a random object.

These points are addressed in the next sections.

5 Error Analysis for the Inverse Problem
The aim of Sec. 5.1 is to establish the existence of u(-,w,w’) as a random variable. Sec. 5.2 shows that

consistent estimation of @ is possible provided that the fill distance h, that controls the accuracy of the
PMM, decreases at an appropriate rate relative to the number n of observational data.
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5.1 Existence of the Doubly Stochastic Solution

This section makes precise the sense in which the doubly stochastic solution u(-,w,w’) exists as a random
variable. Let E and E’ denote expectations with respect to P and IP’. First recall the notion of a “Hilbert
scale” of spaces.

Since D is not compact we require a generalization of Mercer’s theorem for continuous kernels as
given in Steinwart and Scovel [2012]. Since k is continuous and, by virtue of (A2), below, its RKHS
Hy (D) is embedded in L?(D), there exists an orthonormal basis for Hy (D) such that a generic element
u € Hy(D) can be written as u = > =, ¢;h;, by = /Aje; where Ay > Xy > --- > 0 are eigenvalues and
e; are associated eigenvectors of the integral operator u(-) — [, u(x)k(x, -)dz. The norm for this space
is characterised by [[ul7 = Y272, ¢f. Define the Hilbert scale of spaces H' = {h = 3, c;h; s.t. [[h][} , ==
> A fe? < oo} for t € R [Dashti and Stuart, 2015, Section 7.1.3]. For a generic RKHS H we have that
H°® = H, while H®* O H* whenever s < t. The intuition here is that H?, ¢t < 0, is a relaxation of H. The
integral-type kernel from Sec. 3.2 is constructed such that H};l(D) = H(D).

An assumption is now made on the regularity of the inverse problem, as captured by the regularity
of the natural solution space Hy(D) from Sec. 3.1.1. Recall that Hy(D) is a random space, depending
on w € €) through the value of the parameter 6 € ©. Write /\Ek) for the eigenvalues associated with k.

Similarly write /\Z(.a) for the eigenvalues associated with the Sobolev space H®* (D).

(A2) For some a > f3, all -1 <t < —d/2a and P- almost all w € Q, there exist constants 0 < C,, and
C.,t < oo such that, for all v € Hi(D), i € N,

v, A <

[olEepy s < Cu
and E[C!, Cp1] < oo

This implies, in particular, that H},(D) is embedded in [H(D)]* = HA*TH(D) for - almost all values
of the parameter § € ©. Note that o and § assume distinct roles in the analysis; « captures the regularity
of the unavailable natural solution space Hy (D), while § captures the regularity of the larger space H(D)
in which the numerical solver operates. In general we must have a > 3, although in Prop. 10 below it is
required that o > 26 + d/2.

Theorem 9 (Existence). For all 0 < s < a — d/2, the function u ezists as a random variable in

L3p (2,9 HY (D)) :={v: D x Qx Q — R s.t. EE/||v]

fix(py < o0}
and takes values (P,P')- almost surely in H*(D).

The sense of existence used in Theorem 9 is precisely the same sense in which a Gaussian process
exists, where the covariance function forms a kernel for H* (D) [Dashti and Stuart, 2015, Theorem 2.10].
As an aside, note the following bound on the average-case accuracy of the point estimate u provided by
the meshless method:

Proposition 10. Suppose o > 25 + d/2. Then ||u(-,w,w’) — u(-,w,w")||oe = Opp: (PP~ /?).

Prop. 10 shows that, when both the parameter and the forcing function are drawn at random from
their respective distributions, the error of the point estimate p is controlled by the fill distance. As noted
by Novak [1988], such L, error bounds tend to be inefficient by a factor of \/n, suggesting that a sharper
bound could be obtained.

5.2 Posterior Contraction

Let X = {z;}7_; C D be the locations at which data y ~ N(u,I') are obtained. Define the potential
b, (y,0) = —logm(ylb, g, b) corresponding to the PMM, where we have chosen notation that emphasises
the role of the fill distance h. Note that h does not uniquely define ®; since several different sets X
can give rise to the same fill distance. Then ®p(y,-) : © — R is IIp-measurable. From Bayes’ theorem
[Theorem 1.1 Dashti and Stuart, 2015], the posterior distribution of 8|y, denoted by H’e”h, exists and is
absolutely continuous with respect to Ily, with Radon—Nikodym derivative

" 1

i () = 7 (- 2u(y.0)) (14
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where

Zh ::AQXP(—Qh(y,G))Hg(dG).

Following similar arguments to Dashti and Stuart [2015] (Section 3.4.3), Z; > 0. This requires the
additional assumption that A, B are non-degenerate, so that the conditional covariance 3(f) is finite
and positive-definite for all § € ©.

This section elaborates on the sense in which Hg’h approximates the idealised posterior II} in Eqn.
3 as the fill distance h is decreased to zero.

Firstly we define what it means for the posterior Hg’h to contract. Denote B.(6y) := {# € O :
|0 — 6olle < €}. The posterior Hg’h is said to “contract” to the true value 6y of the parameter if, for any
€ >0, ¢ <1, we have II,, [Hg’h[BE(GO)] > 1] — 1. Some authors also refer to this property as “consistency”
[e.g. Vollmer, 2013], while others use stronger definitions [e.g. Ghosal et al., 2000]. A suitably chosen pair
(Ilg, ®), consisting of prior IIy and potential ®, lead to contraction of the exact posterior IIj under
conditions that are now well-studied, see Vollmer [2013] for a comprehensive review.

The question we now ask how fast h must decrease relative to number n of data in order for the
posterior H?e’”h to be asymptotically equal to the exact posterior II§? [A similar question was asked in a
non-PN context by Xue et al., 2010]. This is interesting because asymptotic equality implies that the
posterior Hg’h contracts under the same conditions that are sufficient for contraction in the idealised
problem. The result is provided in the following:

Theorem 11 (Contraction of posterior measure to ). Suppose that the pair (Ilg, @) is such that the
ezact posterior 1Ty contracts to the true parameter 0y. For simplicity, assume independent errors in the
observation process; T' = v2I. Then, if the fill distance scales as h = o(n='/B=r=4/2)) "the pair (I, ®3,)
is such that the PN posterior Hg"h also contracts to 0.

It is seen that when the true solution v is smooth, 8 can be taken to be large. Then, the rate at which
design points must be added to achieve consistency is slow, and in particular can be orders of magnitude
slower than the rate at which data are obtained. This gives us confidence that it is possible, at least in
principle, to consider tackling regular problems with relatively small sets of design points. Conversely,
when the true solution « is not smooth, 8 — p can be arbitrarily close to d/2. Then the rate at which
design points must be added to achieve consistency can be arbitrarily large. This reflects the intrinsic
complexity associated with such non-smooth function spaces.

6 Implementation Details

Here the practical question of implementation is addressed. In Sec. 6.1 we outline a Markov chain Monte
Carlo (MCMC) scheme that operates in either finite or infinite dimensional parameter spaces © and
targets the posterior Hg’h. In Sec. 6.2 we cast the problem of choosing the locations X, as a problem
of statistical experimental design. Then Sec. 6.3 extends PMMs to operate in the presence of multiple
solutions to the forward problem. The reader may prefer to jump ahead to Sec. 7 and return to Sec. 6
later.

6.1 Infinite Dimensional MCMC

The goal here is to obtain samples from Hg’h. Intractability of Z; motivates the use of MCMC techniques;
these construct a measure-preserving Markov transition kernel over © that can be used to obtain appro-
ximately independent samples from Hg’h. Crucially, MCMC requires knowledge of the Radon—Nikodym
derivative only up to a multiplicative constant, avoiding the need to calculate Zj,.

For infinite-dimensional parameter inference problems we propose to use the preconditioned Crank-
Nicolson (pCN) algorithm [Cotter et al., 2013, Dashti and Stuart, 2015]. This proceeds as follows: Assume
that © is a Hilbert space and a Gaussian prior Il = N(0, C) is assigned over ©. Given potential function
®;,, Algorithm 1 details the pCN method for constructing a Markov chain 6%, ¢ = 1,..., I, that targets
the posterior Hg’h:

Algorithm 1 (pCN Method).
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Pick 0° € ©
Fori=1...1I:

1. Draw &' ~ N(0,0O)
2. Propose §* + /1 — A\20% + )¢

w

. Compute
o 1, ZR D0

exp(—®n(y, 0"))
4. Set 9"+ « 0* with probability o; otherwise set #7+! < ¢
End.

The parameter A governs the trade-off between local and global proposals, and should be tuned to
achieve a reasonable acceptance probability.

6.2 Experimental Design

The inferences drawn with PMMs are valid from a statistical perspective, regardless of the locations X
that are used to implement the method. However the informativeness of the inference will depend upon
choice of X. This section provides a principled approach to selecting X, based on experimental design.

6.2.1 A-Optimal Designs X

The selection of the locations X that define the meshless method is subject to competing considerations.
On one hand, the locations should be close to the locations X where data are obtained, so that uncertainty
in the solution is reduced at these locations. On the other hand, the locations must be sufficiently well
spread in the domain D U @D in order to properly encode the governing equation(s) and the boundary
condition(s). Two additional requirements arise from a practical perspective: Firstly, we require sparsity;
i.e. that |Xp| is not too large. Recall X = Xg' U X§, where Xg' C D contains m4 elements and
XB C 0D contains mp elements. For efficient computer code it is desirable that the numbers m 4 and
mp of locations be determined a priori and then held fixed, so that matrix dimensions do not need to
be varied. Secondly, the method used to select locations must not be computationally intensive.

The approach pursued is to cast the selection of locations as a problem of statistical experimental
design. This is made possible by the probabilistic formulation of the meshless method. Below we write
33(0, Xo) to emphasise that the posterior covariance matrix for the solution vector w depends on both
the parameter 6 and the choice of design X. For different values of the parameter 6, different designs
Xo will in general be required. Indeed, it is natural that Xy should depend on the parameter 6, since
both the governing equation(s) and the boundary condition(s) can depend on 6.

In some sense we want the entries of 3(6, X) to be small; write L[X] for a generic loss function that
is a function of ¥ only. Define an optimal design X (0) for fixed parameter 6 to satisfy:

X;(0) € arg min L[X(0, Xy)]. (15)
XgitcD, xBcoD
|Xg =ma, |X§|=ms

Particular choices of L are suggested from Bayesian decision theory. For example, the standard optimality
criteria “A-optimality” seeks to minimise L[X] = Tr[X], while another standard criteria, “D-optimality”,
takes L(X) = det[X]. Both A- and D-optimality can be motivated from a Hilbert-space perspective
on posterior uncertainty. In particular, the A-optimality criteria above is equivalent to minimising the
trace of the posterior covariance operator [}, o(x)?dz, while D-optimality minimises the volume of the
uncertainty ellipsoid [Alexanderian et al., 2016a].
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6.2.2 Related Literature

In this paper A-optimal experimental designs are pursued, to limit scope. In this case the solution to Eqn.
15 is in general unavailable and numerical minimisation is required. A hybrid strategy, that combines the
Approximate Coordinate Exchange (ACE) algorithm of Overstall et al. [2015] with Bayesian Optimisation
[Mockus et al., 1978] performed well at this task. In particular, the ACE approach elegantly interlaces
with MCMC: For one iteration of the MCMC the difference between #°*! and #° will usually be small.
It is therefore reasonable to expect that X (0%) will be a sensible approximation to X (6**1). The ACE
algorithm. at iteration i of the MCMC, takes a numerical approximation of X (0?) as a starting point and
performs a local search in design space in order to locate an approximate X (0°*!). This approach avoids
the need to repeatedly solve challenging multi-variate optimisation problems de novo at each iteration
of the MCMC. Computational overhead can be further reduced by operating on approximations to the
loss function and employing efficient optimisation routines based on Bayesian Optimisation.

Related work on experimental design in inverse problems is more classical, in the sense that numerical
error is assumed to be negligible and instead one aims to select the locations X of sensors, that will be
used to obtain the data vy, in order to minimise expected posterior uncertainty over the parameter 6.
In this context, recent work includes a series of papers by Alexanderian et al. [2016a, 2014, 2016b]. In
addition, recent work by Gorodetsky and Marzouk [2015] applies these techniques to Gaussian process
regression using the integrated variance criterion to determine optimal sensor locations; this is equivalent
to the A-optimal approach which we pursue here. The method used to attain the optimal design is to
minimise a Monte-Carlo estimate of the objective function using gradient-based optimizers, rather than
ACE.

From the meshless methods literature, Ling et al. [2006] and Ling and Schaback [2008] both consider
the use of greedy algorithm. to select locations X in order to minimise a criterion relating to numerical
error in the forward problem. These papers differ to ours in several respects. Firstly, the context is
asymmetric collocation, rather than symmetric collocation; secondly the formulation is not probabilistic
and does not have the associated interpretation as a problem in experimental design. Finally inverse
problems are not considered.

To conclude this section, note that the direct approach of minimising uncertainty over the parameter
6 appears to be challenging in this framework. The present proposal, to minimise uncertainty over the
solution vector u at each value of the parameter @, provides a practical approach that acts as a proxy
for uncertainty in the parameter.

6.3 Extension to a Class of Semi-linear PDEs

An important motivation for probabilistic numerical solvers comes from inverse problems that involve a
non-linear forward model. At present little is known about the performance of meshless methods in this
setting, and in a wider context such inverse problems are not widely studied. Non-linear problems abound
in the applied sciences and FEA methods for these problems require substantially more computational
effort compared to the linear case. There is thus a strong computational motivation for exploiting mes-
hless methods in many non-linear inverse problems. However, for inferences to be valid a more detailed
characterisation of numerical error is required than is currently available in the literature. In this section
the framework of PMM is extended to the case when case when the underlying PDE model is non-
linear. To limit scope, the focus here is on a particular class of non-linear PDEs, known as “semi-linear”
PDEs, that are rich enough to exhibit canonical non-linear behaviour (e.g. multiple solutions), whilst
also permitting tractable computation.

6.3.1 A Latent Variables Approach For Semi-Linear PDEs

Previous sections considered the case where the operator A is linear. Here we generalise to operators
of the form A = A; + - + A,,, where each of the A; is either (i) a linear differential operator, or (ii)
a (possibly non-linear) monotonic operator. This class is motivated by the observation that monotonic
operators are invertible. Below this invertibility is exploited to reduce the system to a linear system, to
which above methods can be applied.

The approach is best described by example; Consider the steady-state Allen-Cahn equation, which
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has been extensively used to model the boundaries between phases in alloys.
—OV2%u(z) + 0 (u(x)® — u(x)) = g(x).

This is a semi-linear PDE with linear differential operator A;u = —0V2u—60~'u and monotonic operator
Aqu = 6~ 3.

In the case of m = 2 we have A = A; + A, and the indirect, non-linear observations Au(z;) = g(x;)
can be decomposed into direct observations by introducing a latent function z(x;) such that Aju(x;) =
z(x;) and Asu(x;) = g(x;) — 2(x;). As a concrete example, for the Allen-Cahn system,

—0V2u(z;) — 0 u(z;) = 2(x;)
0 tu(z;)? = g(x;) — 2(x:).

The final equation can be inverted to produce u(z) = (A(g(x;) — 2(x;)))"/?, which leads to a system of
equations that is linear in the solution u, depending on the unknown function z, and can be solved using
the methods introduced in previous sections. However, to make inferences on both the actual solution
u in the forward problem, and 6 in the inverse problem, we must be able to efficiently marginalise the
unknown latent function z. The proposed computational approach is discussed in Sec. 6.3.3, but first in
Sec. 6.3.2 the arguments of this section are made formal.

6.3.2 Conditional Measure With Latent Variables

To keep the notation under control, details are presented for the simplest case where A; is a linear
differential operator and Ay is a monotonic function such that A5 !'is known. In this case the previous
notation is extended as follows:

Ay

z:Alu, L= T s EZ[A1 VA B]
B

where Z : H(D) — H(D) is the identity operator. Here we have written z for the m 4 x 1 vector with
jth element z;. To simplify the notation in this section, dependence on the parameter 6 is suppressed;
this will be re-introduced in Sec. 6.3.3. For non-linear A, the marginal probability distribution I19:® will
no longer be Gaussian. However, when z is included, 11?9, representing the conditional distribution of
u|z, g, b, is Gaussian and its finite dimensional distribution at the test points X takes the form

ulz,g,b~ N(p, %)
where
n= LK (X, Xo)[LLK (Xo)| 27 A7 (g — 2)7 b7
Y= K(X)- LK (X, Xo)[LLK (Xo)] ' LK (X, X).
This observation suggests an efficient sampling scheme for I12:9:® can be constructed, with samples from
[19:® appearing as a sample marginal. Details are provided in Sec. 6.3.3 below.

6.3.3 Pseudo-Marginal MCMC

Turning to the inverse problem, we now present an MCMC scheme for sampling the joint distribution of
the solution vector wu, the latent states z and the parameter . Our primary interest is in 6, so a natural
approach is to focus sampling effort on 6 via Pseudo-Marginal MCMC [Andrieu and Roberts, 2009]. For
simplicity we restrict to finite dimensional © C RM . This is to avoid technical issues associated with
infinite-dimensional parameters in Pseudo-Marginal MCMC.

When the forward model is non-linear, the data-likelihood is an intractable integral

7(ylg,b,0) = /w(z\@)/7r(y\u)7r(u|z,g,b79)dudz (16)

()
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where we note that the interior integral (x) is available in closed form as before in Sec. 3.3.2. An improper
uniform measure 7(z|f) = 1 was taken; note that the impropriety of m(z|¢) implies that Eqn. 16 is only
defined up to a multiplicative constant.

To construct an estimate to Eqn. 16, an importance density r(z|y, ) was constructed, defined in
Sec. 6.3.4, and rewrite Eqn. 16 as

n(ylg.b,0) = / m /w(y|u)ﬂ'(u|z,g, b, 6)du (z]y, 0)dz.
Then an explicit, almost-surely positive, unbiased estimator 7 (y|g, b, 8) for the likelihood 7(y|g, b, 0) can
be constructed as follows:
1. z* ~r(zly,0)
2. 7(ylg,b,0) « m [ m(ylu)m(u|z*,g,b,0)du

The Pseudo-Marginal approach constructs a Markov chain 6%, i = 1,..., I, as follows: Specify a position-
dependent proposal density ¢(0*|y, @), for example a random walk.

Algorithm 2 (Pseudo-Marginal MCMC).
Pick #° € © and simulate 7° = #(y|g, b, 6°).
Fori=1,...,I:

1. Propose 0* ~ q(6*|y, 6%)
2. Simulate #* < 7 (ylg, b, 6")

3. Compute

m(6%) ff*,q(f)ily,@*)}
m(0) 7 q(0*]y,0°)

o — min{l,

4. Set 971 «— %, 7! « #* with probability a; else set 8! « 9%, 711 — 7

End.

6.3.4 Multiple Solutions

The performance of Algorithm 2 depends on how close r(z|y,8) can be made to the latent variable
posterior 7(z|y,g,b,0). Our preference is to employ adaptive proposals that automatically take into
account the varying nature of the parameter #. The construction is complicated by the fact that non-
linear PDEs are not guaranteed a unique solution, leading to multiple values of z which are each consistent
with some solution of the PDE. Here details are provided for the choice of importance density.

In this work a known, fixed number of solutions are assumed to exist for the non-linear forward
problem and that these each vary smoothly with 6. Then our strategy is to augment the MCMC procedure
with an additional parameter, i, describing the solution index. A joint proposal over (6, i) then operates in
a Metropolis-within-Gibbs sampler. The proposal distribution for 7 was taken to be uniform for simplicity.
To be specific, consider a semi-linear PDE of the form A = A; + Aj as in Sec. 6.3.2. For fixed (0,1), a
crude approximation 4; to the solution u;, indexed by ¢ of the PDE, was obtained. These approximations
need only be crude, and so for compuational efficiency can be obtained using (e.g.) FEA on a coarse
mesh. In this work the recent “deflation” approach of Farrell et al. [2015] was applied. Finally we take
r(z|y,0,i) = N(A;1,,C) for an appropriate covariance C. We emphasise that these choices affect only
the mixing properties of the MCMC, not the posterior distributions that are the central focus of this
work.

The total computational cost of this method is equivalent to a single application of the deflation
technique, following by the cost of sampling from the importance distribution to obtain an unbiased
estimate of the likelihood. This latter cost is minimal, as the matrices required to compute ul|f, z are
predominantly independent of z; as a result, using many samples from z to approximate the data-
likelihood is computationally inexpensive.
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7 Experiments

This section deploys PMMs to solve two relevant and challenging inverse problems. The first is an
application to Electrical Impedance Tomography (EIT), an infinite-dimensional inverse problem with
linear governing equations. The second is a more challenging application to the steady-state Allen—
Cahn equation, a finite-dimensional inverse problem with non-linear governing equations. These two
applications combine to illustrate the salient properties of the method.

These experiments can be reproduced using the Python library hosted at https://github.com/
jcockayne/bayesian_pdes.

7.1 Application to Electrical Impedance Tomography

EIT is a technique used for medical imaging in which an electrical current is passed through electrodes
attached to a patient. The statistical challenge is to use measurements taken on the exterior to determine
interior conductivity, for example for the purposes of detecting brain tumours. Recent work by Dunlop
and Stuart [2015] shows that EIT is well-posed as a Bayesian inverse problem, while Iglesias [2016]
proposes a fast, derivative-free method for finding the posterior mean for the conductivity field. EIT is
posed as an elliptic PDE which is linear in the solution u(x):

-V - (a(x)Vu(x)) =0 zeD (17)
cz(w)%(w) =c(x) x€dD (18)

The formulation above is the simplified continuum model as originally posed in Calderén [1980]. In this
setting we assume that a continuous stimulating current is applied on 9D. As noted in Dunlop and Stuart
[2015], stimulation patterns must be linearly independent to assist in inferring the true conductivity field;
these patterns are modelled by ¢;(x), i = 1...n. For each of these we measure the value of the voltage
u(x) on the boundary, and label this voltage u;(x), € dD. The inverse problem is to infer a(x) from the
observations (¢;(x),u;(x)), ¢ = 1...n. In practice we discretise the functions ¢;, u; so that observations
of each are made at point electrode locations {%}"5 C dD.

Jdi=
To pose this as a Bayesian inverse problem, consider the unknown parameter of interest to be
O(x) = loga(x) and endow # with a Gaussian prior. The nature of the observations, coupled with

the complexity of the conductivity field a(x), makes sampling from the posterior challenging. The quan-
tification of uncertainty provided by PMMs here is attractive. Indeed, these methods permit a cheap,
coarse discretisation to be used while still providing a rigorous statistical inference for the conductivity
field. Below it is shown that when the conductivity field is recovered using a coarse probabilistic solver
for the forward problem, the posterior variance of the field is appropriately inflated.

Data were generated on the domain D, here a circle with unit radius centered at the origin. The
diffusivity field used as ground truth is shown in Fig. 5, on a fine grid of 316 points. A number n = 31 of
stimulation patterns were generated by applying currents of 0.1 to adjacent electrodes, uniformly spaced
on 0D:

01 ifi=j+1
ci(af) = —01 ifi=j
0 otherwise
The observations obtained by solving this model with the true diffusivity field are then corrupted with

independent Gaussian noise, with covariance I' = 0.0001%1.
The PMM was applied based on the exponentiated quadratic kernel

; |z — 2'|I3
k(x,z';l) = exp (_%Qz : (19)

The length-scale parameter ¢ was set by maximising the data-likelihood rather than sampled from, as
in the previous example; this is for performance reasons as, for fixed ¢, sampling a new 6(x) does not
require costly recomputation of the large matrices involved in the posterior mean and covariance; only
multiplying them by the new values in 6(x).
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Abbildung 5: Application to EIT: True conductivity field ag(x) = log 6y (x) for the simulated data.

An initial design X was created by placing m 4 points at random throughout the domain, in addition
to the boundary points {a:JB };”:Bl The algorithm described in Sec. 6.2 was then applied to approximate
an optimal design. Initial and optimal designs for m 4 = 80 points are depicted in Fig. 6. Note that this
design appears approximately space-filling; we conjecture that this is to some extent an artefact of using
an isotropic kernel rather than the (unavailable) natural kernel.

To sample from the posterior conductivity we apply the pCN algorithm as given in Sec. 6.1, with
A = 0.01. The recovered conductivity field is depicted in Fig. 7. This shows how, as the number of design
points m 4 is increased, the recovered field increasingly resembles the original field from which simulated
data was constructed as error due to discretisation vanishes and converges on the exact Bayesian estimate
(which for this example was a good approximation to the true conductivity field).

A comparison between the posterior variance when using the PMM, compared with using standard
collocation, is shown in Fig. 8. This shows inflated posterior variance when using the probabilistic method,
as expected.

7.2 Application to the steady-state Allen—-Cahn Equation

The second application considered the steady-state Allen—Cahn equation
—OV*u+ 0" (uP —u) =0
[Allen and Cahn, 1979] on D = (0, 1)? with boundary conditions

u=+1 onz; €{0,1}, 0 <z <1
u=-1 onzy€{0,1}, 0 <z <1

The data-generating value § = 0.04 was used for this simulation study. This specific choice is interesting
because it leads to three distinct solutions of the PDE. This set-up was recently considered in Farrell
et al. [2015] where the deflation technique was used to determine all solutions u; (“negative stable”), us
(“unstable”) and us (“positive stable”), which are shown in Figure 9. The existence of multiple solutions
provides strong motivation for the quantitative description of solver error that is provided by PMMs.

Data were generated from the “unstable” solution us to this system; in total n = 16 observations were
taken on a 4 x 4 grid in the interior of the domain and each observation was corrupted with Gaussian
noise with covariance I' = 0.121. For the inverse problem a uniform prior for 8 over (0.02,0.15) was used,
which ensures three distinct solutions to the PDE for each value of 6.
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Initial Design

Optimal Design

Abbildung 6: Application to EIT: Initial vs. optimal design, m4 = 80 points. Black crosses represent
design points, which are allowed to vary, while circles on the boundary represent the fixed design points,
which in this case coincided with the location of the observations.
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Abbildung 7: Application to EIT: Recovered conductivity fields (posterior mean ) for varying number
m4 of design points. (a) m4 = 80, (b) m4 = 160, (c) m4 = 240. Panel (d) plots the error ||u — ug|2
against m 4.
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(a) Probabilistic meshless method (b) Standard meshless method
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Abbildung 8: Application to EIT: Recovered conductivity fields (posterior variance o2) for m 4 = 80. In
(c), blue tinted areas indicate lower variance in the probabilistic meshless method, while red indicates
larger.
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Abbildung 9: Application to Allen-Cahn: Three distinct solutions of the PDE, here shown at the para-
meter value 8 = 0.04.

For the PMM, the reference measure was based on the exponentiated quadratic kernel given in Eqn.
19. The length scale ¢ was assigned a standard half-Cauchy prior and was marginalised out, following
the recommendation of Gelman [2006]. MCMC trace plots for (6, ¢) are shown in Fig. 10.

Experimental designs were computed as discussed in Sec. 6.2. In practice it was sufficient to fix one
design for all 6, in this case based on the the solution at § = 0.04, which was essentially space-filling
and shown in Fig. 11. This highlights an inefficiency in the assumption of isotropic covariance; in the
case of the Allen—Cahn system, it is clear that the three solutions are highly non-uniform throughout
the domain, and that the area of highest variation is distinct for each solution. This suggests that more
efficient methods might be found by use of a non-isotropic covariance.

Posterior distributions, generated using the methodology, are shown in Fig. 12 based on m4 €
{5, 10, 20, 40, 80}. Posteriors generated by using FEA are included for comparsion.

Results showed that both the PMM and the FEA method posess similar bias for smaller numbers
of design points or coarser meshes, respectively. However while the posteriors generated using FEA are
sharply peaked around incorrect values for coarse meshes, a larger, more appropriate variance is reported
by the PMM.

8 Discussion

In this paper the notion of a probabilistic meshless method was introduced. While standard numerical
solvers return a single element from the solution space, a probabilistic solver instead returns a full
distribution over the solution space, with a view to capturing epistemic uncertainty due to discretisation
error. These results provide theoretical support to this approach and demonstrate that the quantification
of numerical error provided by these methods is sensible, ensuring posterior contraction in an appropriate
limit. Moreover, through two applications, the integration of a probabilistic model for numerical error
into the inverse problem was shown to enable valid statistical inferences to be drawn, overcoming the
problems of bias and/or over-confidence that result from the standard approach of simply neglecting
numerical error.

Attention was restricted to strong-form solution of stationary PDEs. In future we seek to relax this
restriction to examine parabolic, time-evolving PDEs. To restrict the presentation we did not consider
combining probabilistic meshless methods with emulation of the data-likelihood [Stuart and Teckentrup,
2016] or reduced-model approached [Cohen and DeVore, 2015] in solution of the inverse problem. This
would provide an obvious and immediate reduction in computational cost in the examples studied in this
paper.

The method proposed here shares similarities with the meshless construction recently presented in
Owhadi [2016]. In that work, Owhadi shows how the meshless approach can be made to operate locally
in space (using a construction called “gamblets”). This is shown to speed up computation and permit
sophisticated multi-level schemes. However improved computational performance requires truncation of
the gamblets to produce a local basis; the fully probabilistic interpretation is of comparable computational
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Abbildung 10: Application to Allen—Cahn: MCMC trace and autocorrelation plots for the unknown
parameter 6§ and the kernel length scale ¢, based on a probabilistic meshless method with m 4 = 20
design points.
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Abbildung 11: Application to Allen—Cahn: Initial vs. optimal design, m4 = 20 points. The heat map
shown is the mean function of the conditional measure I19® for the unstable solution, the accuracy of
which is controlled by the quality of the design. Computation was based on 500 samples of the latent
variable z.
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Abbildung 12: Application to Allen—Cahn: Posterior distributions for 6, computed with (a) a probabilistic
meshless method (PMM), (b) a finite element method (FEM). In (a) the legend denotes the number m 4
of design points, while in (b) the legend denotes the size of the mesh used by the FEM.

complexity to the approach described herein.

A fundamental distinction of the present paper is that uncertainty due to numerical error was pro-
pagated into the inverse problem, whereas Owhadi [2016] does not make use of the probability model
beyond observing its Bayesian interpretation. A second, less fundamental, distinction is that, although
Owhadi’s method is in principle meshless, computations are performed on a grid, so that there is no
analogue of the experimental design approach pursued in this paper. Future work will aim to leverage
the strengths of both approaches.

Appendices
Proof of Prop. 1. First, we claim that A admits the following characterisation:
A ) = / Ga(Z', 2)Gp(z, 2)d2
D

where G is the Green’s function for the system (Ax, Ba) defined in Eqn. 5. Indeed, since the reproducing
kernel must be unique, it suffices to verify that Eqn. 8 is reproducing in Hy(D):

<g,/DGA(-,z)GA(:c,z)dz>A - <.AAg,AA/DGA(-,Z)GA(:E,z)dz>

= (Arg,Ga(=, ")) 2 (py = 9()

L2(D)

where the final line follows from the definition of the Green’s function G and the fact that

AA/DGA(~7Z)GA(:B,z)dz /D[AAGA(-,Z)]GA(:B,z)dz

= [ 8- 2)Ga(@ 2)dx = Gale.)
D
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Second, using the definition of the Green’s functions G and Gj,
(k@) = [ Asdu(@)]AnAk(z, @)}z
D
= / / / [ArAv(2)][Ax AG(2, 2") G(z, 2" )A(Z', 2")]|dzd2'd2"
pJpJp

———
6(z—=2")

:/ /[AAAv(z)][AAA(z,z”)G(:c,z”)]dzdz"
pJp —_—

Ga(z,2")
=/ /[AA.Av(z)]GA(z,z”)de(m,z”)dz” = v(x).
pJD

Av(z")

This proves the reproducing property in Hy (D). We also need to check boundedness of the evaluation
function:

1/2 1/2 1/2
[o(@)] = (v, k(- @)l < (v,0)* k(- @), k(@) = (0,00 *h(, )"/,
which follows from the Cauchy—Schwarz inequality. O
Proof of Prop. 2. This is essentially Prop. 3.1 of Owhadi [2015]. Noting that

:/DG(:n,z)g(z)dz
E[u(w)u(m’)]:E[ /D /D G, 2)g(2)C(@, 2 )g(2')dzdz’

:/D/DG’(m,z)G(:c',z’)IE[g(z)g(z')}dzdz’
:/D/DG(m,z)G(m’,z’)A(z,z/)dzdz’:k(w,m').

we have

Moreover, the stochastic process is well-defined since, from Prop. 1, the covariance function k is positive
definite over D x D. O

Proof of Prop. 4. Since D is open and bounded and k is symmetric positive definite, Mercer’s theorem
[Steinwart and Scovel, 2012] guarantees the existence of a countable set of eigenvalues and eigenvectors
{A\i} and {e;} such that Ay > Ag > --- >0, > A; < 00, {e;} are an orthonormal basis of Ly(D) and

= Z)\iei(az)e (')
HZ cl\/>ez Zc

Then the integral-type kernel k can be checked to have eigenvalues and eigenvectors {A\?} and {e;}.
To see that (i) is satisfied, define a stochastic process S = > & \e; with & ~ N(0,1) independent,
corresponding to a generic sample from IL,. Then S lies in H(D) with probability one since

E(I12) =E (D en) =D A < oo

To see that (ii) is satisfied, given an element ¢ = > ¢;v/Ase; of H(D) we have Y ¢? < oo and so the

Moreover

partial sums ¢(V) = Zf\il civ/Aie; converge to ¢ under the norm || - [|z. Since each ¢¥) also belongs to
H; (D), it follows that the set H; (D) is dense in the space (H(D),|| - ||z)- O
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Proof of Prop. 6. First note that

Z Z wfﬁu(woﬁ )

Le{A,B} j=1
where the weights are

A
B

T

w = LK (z, Xo)[LLK (X)) " (20)

w

Now, from the reproducing property we have
- 3 Sutefuitaty) - (0 3 Sustitaty)
LE{AB) j=1 L£E{A,BY} j=1 i
and hence, using the reproducing property again,
u(a})—,u(zc):< - > Zwﬁc z§ ;) > :
Le{A,B} j=1 i

Finally, using Cauchy—Schwarz produces

Ju(@) — n(@)| < Jully kG 2) = D0 Y wiLk(, a6

LE{AB} j=1 i

Upon substitution of the expression for the weights wj4 provided in Eqn. 20, the second term is recognised
as o(x). Taking u = ug completes the proof. O

Proof of Thm. 8. Suppose u is a random variable with distribution I19:®. Then we have

[ - wolpang® < [ Bang® + [ - o
Q 1944 Q
indep. of u

/ /g u(@) = p(e))*dILf; bd“’+/ (u(z) — ug(a))?da

D
< /a(m)Qdcc—FHuon/ o(z)?de
D D

where the second line uses Fubini’s theorem to interchange the order of integration and the final line
makes use of Prop. 6. Since the domain D is bounded, we have from Prop. 7 that there exists a generic
constant C' for which [, o(x)?de < Ch?*~2¢~% and therefore

[ = wl3ang® < o+ uol
The result follows from Markov’s inequality: For fixed € > 0 we have

_ 2 ng,b (1 + lu 2 hQB—Zp—d
1—Hﬂ’b[36(uo)} < Jllw — uol|3 dITg < ( | 0||k)

€ €

as required. 0

Proof of Thm. 9. The proof below consists of three discrete steps.

Step #1: Fix w € Q and ¢ < 0. Consider an element v in the Hilbert scale of spaces Hf (D). Using the
fact that y/\;e; are an orthonormal basis for Hf (D), we have

lull% . ZA (u, v/ hies)i
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By construction, a generic element g € Ha (D) can be written as g = >~ ¢;g; where g; = Ay/Aje; form
an orthonormal basis {g;}52; for Hx(D) and [|g[|% = Y o, ¢? < co. Thus we have

=1 "1

luli, = D A HAu AVNe)R = D A (Au,gi)i = [lAul} ;-
=1 1=1

Step #2: The stochastic process g(-,w’) with kernel A can be expressed as a Karhunen-Loéve expansion
as g(-,w') = >0, &(w)gi(+), where the & (w’) are independent standard normal random variables under
P’ and the g;(-) = Av/\ei(-) were defined in Step #1. From sub-additivity of measure, we have that

Elg(o)Re = EY A&GW)?
i=1

oo oo
< Z}\i—tE/gi(w/)Q _ Z)\Z—t
i=1 i=1
From (A2) we obtain (recall ¢ < —d/2a < 0)
g, o)k < CLY AT
i=1
Combining this with the result of Step #1 implies that
E'fu(, w0, = EllAu(,w,o)F,
(oo}
= ElgC)IRe < CLY N
i=1

Step #3: Consider the doubly stochastic process u(-,w,w’) and a double expectation EE’ over w and
w’. From (A2) we have

EE[lu(, w, &) Fepye < B Cut Blu,w, o)

The output of Step #2 then implies that
o0
EE'[u(, w0, &)l (pye < BLCYH Cuu ] D N1
— =1
(*)

Under (A2), the term (x) is finite when ¢t < —d/2a. Observe that, since )\ga) = i=2/4 the right hand side
is finite for all values of ¢ < —d/2a. This implies that u € L3y, (2, Q'; [H*(D)]?) for all —1 < t < —d/2a
and hence u € L2y, (Q,Q;H*(D)) for all 0 < s < a — d/2. O

Proof of Prop. 10. The conclusion of Props. 6 and 7 show that, for h sufficiently small,

IN

o(x)||uoll;
CRP=P= 42|y,

() — uo ()|

IN

where C is independent of &, w and w’. Hence
e —uolloe < CRO=P= 2 |Jug]l;.
Squaring both sides and taking a double expectation over wg ~ P, wj ~ P’ leads to
EE'[ln—ul?, < C*R* 2 ~IEE||ull?.
Now (A1) implies that
Hi(D) = [H(D)'
H(D))' = HAYP (D) = HP(D).

Thus, for s := 28 < a —d/2, Thm. 9 shows that EIE’||u||i < oo and hence EE' || — ul|2, = O(h?A=2r=d),
It follows that ||u — pt|leo = Oppr (RP~P~4/2), -
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Proof of Thm. 11. We show that, when the fill distance h (that determines the error of the numerical
solver) is appropriately coupled to the number n of data, Hg’h’ and IIY are asymptotically identical. In
the remainder of the proof wy € Q and w( € €’ are each fixed.

From Thm. 4.9 of Dashti and Stuart [2015], it is sufficient to establish that the two potentials @y
and ® are asymptotically identical. Recall the identity (I — M)~ = Zﬁ:o M™ valid when the largest
eigenvalue A\yax[M] < 1. Assume h is sufficiently small that Apax[2] < v2. Then, using the identity with
M = —y72%, we have

o = (y-w'(E+ D) (y—p)

= - PN y-w+r ) - ()Y - )

m=1
= (y—uw)' (D y—uw)+2y—uw) () (u—p)
()
- (PO =)+ (- (= E) " (y - p)

=1
(+%) m

(k%)
= D+ (%) + (k) + (kx %),

Each of the terms (%), (sx*), (x * %) can be bound using Props. 6 and 7:

(+) © 12y —w)" (1) (u — p) 27 lly — pllzllw — w2
277 [y — ullz + llu — plla] [l — 2

2972 [|ly — ullz+n'"? Ju— plloIn'/? Ju — pfo -
N——

IAN A IA

Op(nl/?) O(hP—r=d/2) O(hP=p=d/2)

Here the first inequality here is Cauchy—Schwarz, the second is the triangle inequality and the third is
the bound || - [|2 < v/n]| - ||co- The notation P is used to reflect randomness in the observation process for
y|u, distinguishing this source of randomness from P and P’. Similarly

(%) = |(w— )" (P N u—p)| = 77 %|u—pl3
< 7% lu—pl%
——
O(h28-20—1)
and also
Gexn) = (V2D (= (=722 —w)| < 772D () Amax[EM(y — ) (y — )
m=1 m=1
= '7_2”?4 - l"”g Z (_7_2)m)‘maX[2]m
m=1
_ Amax 2]
o 2 - 2 max
= 7 ||y H||2 )\max[z} T ’)/2

IN

'Y_ZH'!J - /JH%)‘maX[E}-
A bound Apax[X] < tr[X] then produces

(kx%) < 72y — pll3 tr[X]
< 70 llly —wllz + llw = pllo] x 0 max o(@;)”

LM

< 7y —ulla +n'? Ju - pllc]? x 0 max_o(a;)
—— —— =1,..., n
Op(n'/?) O(hB—p—d/2) —_————
O(h28-2p—4d)
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where Prop. 7 is used to compute the asymptotic order of the final term. Notably the bound Apax[X] <
tr[X] could be further refined by relating the spectral gap to the fill distance.

Combining the bounds for (%), (x*) and (* * %) produces ®, = ® + Op(£2) where £ := nhf—r=/2,
This shows that the two potentials ®;, and ® are asymptotically identical provided £ = o(1); that is,
provided h = o(n~1/(#=,=4/2)) This completes the proof. O
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Supplementary Material

Computation of the Natural Kernel

Here we detail the computations required to find the natural kernel in closed form for the illustrative
example of Sec. 3.2.1. We must solve:

k(z,2") = /01 /01 G(z,2)G(2', 2" )A(z, 2")dzdz’

where

Note that each of G, A is continuous and piecewise polynomial, and that each has a discontinuous
derivative at * = 2’. A(z,2’) has an additional discontinuity in its derivative at * = 2’ — e~ and
x =2’ + e 1. We are aided, however, by the fact that A(z,z’) = 0 wherever |z — 2/| > ¢~ 1. Further note
that, as kernels are symmetric in z and z’, we may without loss of generality assume 2’ > x.

Symbolic integration packages tend to have difficulty with piecewise expressions such as these, so we
are forced to divide the integrals manually before passing to such integrators. That is the purpose of the
derivation below.

Start by dividing the integrals according to the discontinuities in G:

k(z,2") =(xz — 1)(2' — 1) /Ow z/ox/ 2'A(z,2")d7 dz

T 1
+ (z — 1)96’/ z/ (2/ — 1)A(z, 2')d7'dz
0 !

+ala — 1) / o /0 " A )
+m'[(2—1)/;(z C Az, #)dedz

so that
I(z, :/ z/ 2'A(z,2")d7 dz
o Jo
1
Iy(z, :/ Z/ 2 —1)A(z,2")d7'dz
0
1
Ig(x,x'):/ (z—l)/ 2'A(z,2")dz'dz
x 0
1 1
Iy(z, o) :/ (z — 1)/ (' —1)A(z, 2')dz'dz
and

k(z,2") =(x — 1)(2' — 1)1 (z,2") + (z — 1)2' I(z,2)
+ (2 — V)I3(x,2") + za' I1(z, 7).

The only change-points remaining in each integrand are in the A(z, z’) term. Our general strategy for
reducing these integrals to those which can be solved using symbolic integration packages is to compute
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Abbildung 13: A sketch of the procedure for computing I;. We require the region in white, which we
compute by first determining integral a, then subtracting b, ¢ and d.

the integral ignoring the (-)4 term in A, and then subtract off the terms which are outside this support.
A schematic for 7 is included in Fig. 13; the other integrals are analogous. When decomposed as such
we have found that the integrals in the decomposition can be solved by the software.

L(z,a)) = / ’ / T e x’))Zdz'dz
o> e / / 1—e(x—x))2dz’dz

I > € 1)/671 /0 2(1— e(z — 2'))2dzds’

’
x

—I(@ >z +eh) / / 22/ (1 — e(z — 2'))%d2dz’
T 0

+e—t

where I(-) is an indicator function. Similarly:

x

1V(z+e )
L(z,2)=1(z' <z + 6_1)/ / 2(2 = 1)(1 — e(z — 2'))?d2'dz
0

A(z'—e—1)

/ / (z—1)2'(1 — e(z — 2/))%dz'dz
/ / (z—1)2'(1 — e(x — 2))*d2'dz
Az —e~1
e 2
+1(2 — et > ) / / (z—1)2'(1 — e(x — 2'))?d2'dz

I(z <e” / / (z—1)2'(1 — e(x — 2))*d2'dz
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Lz, 2)) = /: /:(z D — D)1 — ez — 2))2dzd?’

1 z—e !

—I(z' <1-— 6_1)/ / (z=1)(¢ =1 = e(x — 2'))?dzd?’

2/ de—1 Jg/

—I(z<1-— 6_1)/ / (z—=1)(Z = 1)1 —e(x — 2))?d2'dz
' Ne+e— L Jax'—e—Ax

I <z — Y /: /m (= 1)(# = 1)(1 — e(x — '))?d=d¥’
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