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Transformations for the Prize-Collecting Steiner Tree

Problem and the Maximum-Weight Connected Subgraph

Problem to SAP

Daniel Rehfeldt∗ · Thorsten Koch

Abstract

Transformations of Steiner tree problem variants have been frequently discussed in the
literature. Besides allowing to easily transfer complexity results, they constitute a cen-
tral pillar of exact state-of-the-art solvers for well-known variants such as the Steiner tree
problem in graphs. In this paper transformations for both the prize-collecting Steiner tree
problem and the maximum-weight connected subgraph problem to the Steiner arborescence
problem are introduced for the first time. Furthermore, we demonstrate the considerable
implications for practical solving approaches, including the computation of strong upper
and lower bounds.

1 Introduction

The classical Steiner tree problem in graphs has been investigated for long time, latest during
the 11th DIMACS Challenge dedicated to the study of Steiner tree problems [1]. In practical
applications, however, the problem usually arises in modified form. As a result, there exist a large
number of problem variants. One of the oldest and most widely known is the prize-collecting
Steiner tree problem [12], while during the last years the, related, maximum-weight connected
subgraph problem has received considerable attention [3, 4, 7].

Many transformations between Steiner problem variants are known, most notably perhaps
the one of the Steiner tree problem in graphs to its directed kinsman, the Steiner arborescence
problem. This transformation is used by state-of-the-art solvers for the Steiner tree problem in
graphs [10, 17] for row generation within branch-and-cut [13, 17] as well as for powerful reduction
techniques [5, 17]. Other well-known transformations include those for the rectilinear Steiner tree
problem and the group Steiner tree problem to the Steiner tree problem in graphs [6, 11]. In
order to apply results that have been achieved for the classical Steiner tree problem in graphs it
is particularly convenient, if possible, to transform the variant at hand to the classical problem,
either in its undirected or its directed form. But while any polynomial transformation is enough
to transfer complexity results, efficient transformations in the size of the transformed problem
can also allow to employ existing advanced solvers for the Steiner tree problem in graphs.

In the following we will present transformations for the (rooted and unrooted) prize-collecting
Steiner tree problem and the maximum-weight connected subgraph problem to the Steiner ar-
borescence problem. These novel transformations allow to use state-of-the-art solvers for the
Steiner tree problem in graphs to solve the problems. Moreover, we demonstrate how to use the
transformations to employ powerful – primal and dual – heuristics to obtain strong upper and
lower bounds within very short time.
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2 Transforming PCSTP to SAP

First, we define the Steiner arborescence problem (SAP), which constitutes the result of all
transformations described in this paper. Given a directed graph D = (V,A), costs c : A→ Q≥0,
a set T ⊆ V of terminals, and a root r ∈ T , a directed tree S = (VS , AS) ⊆ D is required that
first, for all t ∈ T contains exactly one directed path from r to t and second, minimizes

C(S) :=
∑
a∈AS

ca. (1)

Having defined the resulting problem, we now turn towards the other end and introduce
the prize-collecting Steiner tree problem (PCSTP), a variant well-studied both theoretically and
practically [12, 14]. Given an undirected graph G = (V,E), edge weights c : E → Q≥0, and
vertex weights p : V → Q≥0, a tree S = (VS , ES) in G is required such that

P (S) :=
∑
e∈ES

ce +
∑

v∈V \VS

pv (2)

is minimized. Hereinafter it is assumed for ease of presentation that at least one vertex v is of
positive weight (otherwise any vertex constitutes an optimal solution).

To set the stage, we first introduce a transformation for a problem closely related to the
PCSTP, the rooted prize-collecting Steiner tree problem (RPCSTP). This variant incorporates
the additional condition that one distinguished node r, called root, is part of every feasible
solution to the problem.

Transformation 1 (RPCSTP to SAP).
Input: An RPCSTP P = (V,E, p, r)
Output: An SAP P ′ = (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}, r′ := r and c′ : A′ → Q≥0 with
c′a = c{v,w} for a = (v, w) ∈ A′.

2. Denote the set of all v ∈ V with pv > 0 by T = {t1, ..., ts}. For each node ti ∈ T , a new
node t′i and an arc a = (ti, t

′
i) with c′a = 0 is added to V ′ and A′ respectively.

3. Add arcs (r′, t′i) for each i ∈ {1, ..., s}, setting their respective weight to pti .

4. Define the set of terminals T ′ := {t′1, ..., t′s} ∪ {r}.

5. Return (V ′, A′, T ′, c′, r′).

Lemma 1 (RPCSTP to SAP). Let P ′ = (V ′, A′, T ′, c′) be an SAP obtained from an RPCSTP
P = (V,E, c, p) by applying Transformation 1. Each solution S′ = (V ′S′ , A′S′) to P ′ can be mapped
to a solution S = (VS , ES) to P defined by:

VS := {v ∈ V | v ∈ V ′S′}, (3)

ES := {{v, w} ∈ E | (v, w) ∈ A′S′ or (w, v) ∈ A′S′}. (4)

If S′ is an optimal solution to P ′, then S is an optimal solution to P and their objective values
are equal.

3



r

p=2.5

p=7

1.2
2.3

1.6

1 1.3

1.5

(a) RPCSTP instance

r
1.2

2.3

1.6

1 1.3

1.5

2.5

7

0

0

(b) Transformed SAP instance (modi-
fications in bold)

Figure 1: Illustration of an RPCSTP instance with root r (left) and the equivalent SAP obtained
by Transformation 1 (right). Terminals are drawn as squares and Steiner vertices as circles (with
those of positive weight enlarged).

Proof. Preliminarily, define the set of all arcs of P ′ corresponding to edges of P as A := {(v, w) ∈
A′ : {v, w} ∈ E} and accordingly AS′ := A′S′ ∩ A. Furthermore, let T = {t1, ..., ts} and
T ′ = {t′1, ..., t′s}∪{r′} as defined in Transformation 1. To acknowledge that (3) and (4) constitute
a mapping S ′ → S, it can be observed that first the root node is conserved and second that the
set AS′ (of all arcs of S′ that correspond to edges in the original graph (V,E)) forms a tree, so
ES forms a tree as well.

Next, assume that S′ is an optimal solution to S, which implies that ti ∈ V ′S′ ⇒ (ti, t
′
i) ∈ A′S′ .

Since moreover ti /∈ V ′S′ ⇒ (r′, t′i) ∈ A′S′ holds, it follows that

∑
a∈A′

S′

c′a =
∑

a∈AS′

c′a +
∑

a∈A′
S′\AS′

c′a =
∑
e∈ES

ce +
∑

v∈V \VS

pv,

so the costs of S′ and S are equal.
It remains to be shown that S is optimal as well. Assume that it is not, i.e. that there is an

S̃ ∈ S such that P (S) < P (S̃). We build a solution S̃′ = (V ′
S̃′ , A

′
S̃′) to the SAP P ′ as follows:

First, define A′
S̃′ as the set of all arcs obtained by traversing all forward arcs (v, w) such that

{v, w} ∈ ES̃ starting from r′. Second, we add for each ti ∈ T reachable by arcs in A′
S̃′ the

arc (ti, t
′
i) to A′

S̃′ . For all other ti ∈ T we add (r′, t′i) to A′
S̃′ . Consequently, all t′i ∈ T ′ are

reachable from r′ through forwards arcs and, being cycle-free and connected, S̃′ is a solution to
P ′. Moreover, we can infer that:

C(S̃′) = P (S̃) < P (S) = C(S′) (5)
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Figure 2: Illustration of a solution to the RPCSTP instance of Figure 1 (left) and an equivalent
solution to the corresponding SAP (right).
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which contradicts the assumption of S′ being optimal. Thus S is an optimal solution to P .

Likewise, the PCSTP can be transformed to an SAP. In [15] a transformation of the PCSTP
to an SAP was introduced and formed the base of an exact solving approach. However, this SAP
contains arcs of negative weight and is therefore not consistent with the common definition of
an SAP (and cannot be used for the SAP derived solving approaches described in Section 4).
To the best of our knowledge, the following transformation allows for the first time to solve a
PCSTP as a pure SAP:

Transformation 2 (PCSTP to SAP).
Input: A PCSTP P = (V,E, p)
Output: An SAP P ′ = (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}, and c′ : A′ → Q≥0 with c′a = c{v,w}
for a = (v, w) ∈ A′.

2. Add two vertices r′ and v′0 to V ′.

3. Denote the set of all v ∈ V with pv > 0 by T = {t1, ..., ts} and define M :=
∑

t∈T pt.

4. For each i ∈ {1, ..., s}:

(a) Add an arc (r′, ti) of weight M to A′.

(b) Add a new node t′i to V ′.

(c) Add arcs (ti, v
′
0) and (ti, t

′
i) to A′, both being of weight 0.

(d) Add an arc (v′0, t
′
i) of weight pti to A′.

5. Define the set of terminals T ′ := {t′1, ..., t′s} ∪ {r′}.

6. Return (V ′, A′, T ′, c′, r′).
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bold)

Figure 3: Illustration of a PCSTP instance (left) and the equivalent SAP obtained by Transfor-
mation 2 (right). Terminals are drawn as squares and Steiner vertices as circles (with those of
positive weight enlarged).
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Figure 4: Illustration of the (single-vertex) optimal solution to the PCSTP instance depicted in
Figure 3 (left) and the equivalent solution to the corresponding SAP (right).

Lemma 2 (PCSTP to SAP). Let P = (V,E, c, p) be a PCSTP and P ′ = (V ′, A′, T ′, c′, r′)
the corresponding SAP obtained by applying Transformation 2. Denote by S and S ′ the sets of
solutions to P and P ′ respectively. There exists a function HPC : S ′ → S such that for each
optimal solution S′ = (V ′S′ , A′S′) to S ′ also S := (VS , ES) := HPC(S′) is optimal (with respect to
S) and:

VS = {v ∈ V : v ∈ V ′S′}, (6)

ES = {{v, w} ∈ E : (v, w) ∈ A′S′ or (w, v) ∈ A′S′}. (7)

Furthermore, if S′ is optimal, it holds that C(S′)−M = P (S).

Proof. Consider an arbitrary S′ = (V ′S′ , A′S′) ∈ S ′ and define the mapping S′ 7→ HPC(S′) =
(VS , ES) in the following way: Let i0 = min{i ∈ {1, ..., s} : (r′, ti) ∈ A′S′} and let (V ′

S̃′ , A
′
S̃′) be

the subtree of S′ consisting of all vertices and arcs reachable from ti0 through forward arcs in A′S′ .
Thereupon, define VS = {v ∈ V : v ∈ V ′

S̃′} and ES = {{v, w} ∈ E : (v, w) ∈ A′
S̃′ or (w, v) ∈ A′

S̃′}.
As S̃′ is cycle free and connected in P ′, so is S in P .

Next, assume that S′ is optimal, which by definition of M implies that exactly one (r′, ti)
is contained in S′. Therefore, HPC(S′) = (VS , ES) corresponds to (6) and (7). To verify that
C(S′) −M = P (S) holds, let A := {(v, w) ∈ A′ : {v, w} ∈ E} and AS′ := A ∩ A′S′ . Since S′ is
optimal we can infer ti /∈ V ′S′ ⇐⇒ (r′, t′i) ∈ A′S′ and thereupon:

∑
a∈A′

S′

c′a =
∑

a∈AS′

c′a +
∑

a∈A′
S′\AS′

c′a

=
∑
e∈ES

ce +
∑

a∈A′
S′\AS′

c′a

=
∑
e∈ES

ce +
∑

v∈V \VS

pv +M,

which implies C(S′)−M = P (S).
Finally, suppose that there is an S ∈ S such that P (S) < P (S). Since we have presupposed

that at least one vertex of V is of positive prize in P , we can find an S̃ = (VS̃ , ES̃) that satisfies

P (S̃) ≤ P (S) and contains at least one u ∈ V with pu > 0. Thereupon, we build a solution
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S̃′ = (VS̃′ , A′S̃′) to the SAP P ′ as follows: First, we define V ′
S̃′ = {r′, u, v′0}, A′S̃′ = {(r′, u), (u, v′0)}

and add to A′
S̃′ all arcs reachable from u through forward arcs (v, w) such that {v, w} ∈ ES̃ .

Concomitantly, we add all vertices corresponding to arcs in A′
S̃′ to V ′

S̃′ . Second, we add for each
ti ∈ T contained in V ′

S̃′ the arc (ti, t
′
i), which is of cost 0, to A′

S̃′ . For all ti ∈ T not connected we
add the arc (v′0, t

′
i), which is of cost pti , to A′

S̃′ . Finally, we add all t′i ∈ T ′ to V ′
S̃′ . Consequently,

all t′i ∈ T ′ are reachable from r′ through forwards arcs and, being cycle-free and connected, S̃′

is a solution to P ′. Furthermore, it holds that:

C(S̃′)−M = P (S̃) < P (S) = C(S′)−M

which contradicts the assumption that S′ is optimal. Therefore, S is an optimal solution to
P .

3 Transforming MWCSP to SAP

The last problem considered in this paper is the maximum-weight connected subgraph problem
(MWCSP), which involves a variety of real-world applications, for instance in computational
biology [4]. Given an undirected graph (V,E) and weights p : V → Q, the objective is to find a
tree S = (VS , ES) that maximizes

W (S) :=
∑
v∈VS

pv. (8)

Once again, it will be assumed for the ease of presentation that at least one vertex v ∈ V is of
positive weight.

In [4] a transformation of the MWCSP to the PCSTP was introduced. Consequently, we
could transform the MWCSP to the SAP by applying Transformation 2 on the resulting PCSTP.
However, in [18] it was shown that the transformation [4] usually results in an PCSTP with a
large number of positive-weight vertices, which not only leads to a considerably larger size of the
final SAP, but also renders the solving approaches described in Section 4 less efficient. Therefore,
we introduce a direct transformation of the MWCSP to the SAP:

Transformation 3 (MWCSP to SAP).
Input: An MWCSP P = (V,E, p)
Output: An SAP P ′′ = (V ′′, A′′, T ′′, c′′, r′′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}.

2. Set c′ : A′ → Q≥0 such that for a = (v, w) ∈ A′:

c′a =

{
−pw, if pw < 0

0, otherwise

3. Set p′ : V ′ → Q≥0 such that for v ∈ V ′:

p′v =

{
pv, if pv > 0
0, otherwise

4. Perform Transformation 2 to (V ′, A′, c′, p′), slightly changed in such a way that in step 1,
instead of constructing a new arc set, A′ is being used. This procedure results in an SAP
P ′′ = (V ′′, A′′, T ′′, c′′, r′′).

5. Return P ′′.

7



Lemma 3 (MWCSP to SAP). Let P = (V,E, p) be an MWCSP and P ′′ = (V ′′, A′′, T ′′, c′′, r′′) an
SAP obtained from P by Transformation 3, with solution sets S and S ′′ respectively. Thereupon,
a function HMW : S ′′ → S exists such that for each solution S′′ = (V ′′S′′ , A′′S′′) ∈ S ′′ that is
optimal, S := (VS , ES) := HPC(S′′) is an optimal solution to the original MWCSP P and:

VS = {v ∈ V : v ∈ V ′′S′′}, (9)

ES = {{v, w} ∈ E : (v, w) ∈ A′′S′′ or (w, v) ∈ A′′S′′}. (10)

Furthermore, if S′′ is optimal, it holds that:

W (S) =
∑

v∈V :pv>0

pv − C(S′′) +M. (11)

Proof. The function HMW can be defined analogously to HPC in the proof to Lemma 2.
To prove (11), let S′′ = (V ′′S′′ , A′′S′′) be an optimal solution to P ′′ and S := (VS , ES) :=

HMW (S′′). Further, define A := {(v, w) ∈ A′′ : {v, w} ∈ E} and AS′′ = A ∩ A′′S′′ . First, one
observes that for each v ∈ VS such that pv ≤ 0 there is exactly one incoming arc a ∈ AS′′ , so:∑

v∈VS :pv≤0

pv = −
∑

a∈AS′′

c′′a. (12)

Second: ∑
v∈VS :pv>0

pv =
∑

v∈V :pv>0

pv −
∑

v∈V \VS :pv>0

pv (13)

=
∑

v∈V :pv>0

pv −
∑

a∈A′′
S′′\AS′′

c′′a +M. (14)

Finally, by combining (12) and (13) the equation:∑
v∈VS

pv =
∑

v∈V :pv>0

pv −
∑

a∈A′′
S′′

c′′a +M (15)

is obtained, which coincides with (11).
Finally, verifying that S is optimal can be done analogeously to the procedure in the proof

to Lemma 2.

4 Practical Implications

When it comes to practical solving, the arguably most natural application of the transformations
described in this paper is to solve the resulting SAPs to optimality. For the rooted prize-collecting
Steiner tree problem this strategy works remarkably well: The Steiner problem solver SCIP-
Jack [10, 18] which uses Transformation 1 to solve an RPCSTP instance as an SAP took first
place in the category exact solving of rooted prize-collecting Steiner tree problems at the 11th
DIMACS Challenge in December 2014. However, for the PCSTP and MWCSP we have found
that a solving approach based on additional model constraints as described in [18] yields better
results than solving the SAPs arising from the transformations described in this paper.

Besides the direct approach, the three transformations introduced in this paper bring in their
wake considerable further advantages for practical (exact) solving: An important point is the
possibility to transfer reductions techniques for the SAP to the respective original problem, as
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has successfully been done for the Steiner tree problem in graphs [5, 17]. Here we want to focus
on two other aspects: The fast computation of strong upper and lower bounds. To this end, we
introduce an IP formulation for the SAP, originally stated in [19]. Given an SAP (V,A, c, r),
we associate with each arc a ∈ A a variable ya indicating whether a is contained in the Steiner
arborescence (ya = 1) or not (ya = 0). These definitions give rise to the directed cut formulation:

min cT y (16)

y(δ−(W )) ≥ 1 for all W ⊂ V, r /∈W,W ∩ T 6= ∅, (17)

ya ∈ {0, 1} for all a ∈ A. (18)

In [19] a dual-ascent algorithm for the SAP was introduced that empirically not only provides
strong lower bounds, but also allows for fast computation. At termination, dual-ascent provides
a dual solution to the LP-relaxation of the directed cut formulation, involving directed paths
along arcs of reduced cost 0 from the root to each additional terminal. With the three new
transformation introduced in this paper at hand we can use the dual-ascent algorithm to obtain
lower bounds for the RPCSTP, the PCSTP, and the MWCSP.

Additionally, the new transformations can be used to obtain upper bounds. To this end, we
have extended the powerful heuristic ascend-and-prune [17] which has so far only been used for
the Steiner tree problem in graphs. Consider an RPCSTP, PCSTP or MWCSP P and the SAP
P ′ resulting from the respective transformation described in this paper. Thereupon, ascend-and-
prune attempts to find a good solution to the subproblem P̃ consisting of the edges, vertices
and terminals of P corresponding to all (directed) root-terminal paths in P ′ that contain only
arcs of reduced cost 0. For this purpose, the reduction-based heuristic prune [17] is used, which
we employ for the RPCSTP, the PCSTP and the MWCSP, using the reduction techniques we
introduced in [18].

We have implemented the primal and dual heuristics described above in C, with the dual-
ascent algorithm implemented according to [16]. In the following we provide results on six
benchmark test sets, all but one from the 11th DIMACS Challenge: The RPCSTP instances
are derived from the design of fiber optic networks [15] and contain up to 20,000 edges. The
PCSTP test set JMP [12] (of which only two instances were part of the DIMACS Challenge)
contains up to the 1500 edges and the E test set [15] (which was not part of the Challenge) up to
62,500. Finally, the MWCSP test set ACTMOD is derived from an application in computational
biology [4], exhibiting almost 100,000 edges for some instances, while the MWCSP test set
JMPALMK [3] comes with up to 20,000 edges. We partitioned the latter set into all instances
that were part of the DIMACS competition (JMPALMK1) and the remainder (JMPALMK2).
The computational setting is the same as for the DIMACS Challenge (Cluster of Intel Xeon
X5672 CPUs with 3.20 GHz and 48 GB RAM).

Testset Problem Instances Solved ∅Gap [%] ∅Time [s] ∅DIMACS Time [s]

Cologne1 RPCSTP 14 13 0.0 0.0 4.0 1

Cologne2 RPCSTP 15 14 0.0 0.0 56.2 1

JMP PCSTP 34 27 0.1 0.0 -
E PCSTP 40 22 0.4 0.8 -
ACTMOD MWCSP 8 3 1.1 0.2 4.1 1

JMPALMK1 MWCSP 30 30 - 0.1 0.4 1

JMPALMK2 MWCSP 42 41 0.8 0.1 -

Table 1: Computational results.

1Best solvers at DIMACS Challenge: SCIP-Jack [18] for RPCSTP; Mozartballs [8] for MWCSP.
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The results are illustrated in Table 1. Columns four to six show the number of optimally
solved instances, the average gap (arithmetic mean), and the average run time (shifted geometric
mean [2] with shift 1) of our heuristics, while the last column lists the average run time of the best
exact solver in the DIMACS Challenge for the respective problem variant. Clearly, the heuristics
run very fast on all test sets, as compared to the respective best exact solver. Furthermore,
more than 80 % of the instances can be solved to optimality and the (arithmetic) average gap
among the unsolved instances is small. Several instances are solved to optimality by us more
than a thousand times faster than by all solvers of the DIMACS Challenge. Also, we could
solve several instances of the E test set that had not been solved without preprocessing before.
Conclusively, the heuristics described in our paper allow to solve many benchmark instances
much faster to proven optimality than exact state-of-the-art solvers and exhibit fairly small gaps
for the remaining problems.

Finally, the techniques described in this paper are not only implemented as stand-alone
heuristics, but have also been added to the exact Steiner tree solver SCIP-Jack and will be
published as part of the next SCIP Optimization Suite [9] release.
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[3] Eduardo Álvarez-Miranda, Ivana Ljubić, and Petra Mutzel. The maximum weight connected
subgraph problem. In Facets of Combinatorial Optimization, pages 245–270. Springer Berlin
Heidelberg, 2013.

[4] Marcus T. Dittrich, Gunnar W. Klau, Andreas Rosenwald, Thomas Dandekar, and Tobias
Müller. Identifying functional modules in protein-protein interaction networks: an integrated
exact approach. In ISMB, pages 223–231, 2008.

[5] C. Duin. Steiner Problems in Graphs. PhD thesis, University of Amsterdam, 1993.

[6] C. W. Duin, A. Volgenant, and S. Voss. Solving group Steiner problems as Steiner problems.
European Journal of Operational Research, 154(1):323–329, 2004.

[7] Mohammed El-Kebir and Gunnar W. Klau. Solving the Maximum-Weight Connected Sub-
graph Problem to Optimality. Computing Research Repository, abs/1409.5308, 2014.

10

http://dimacs11.zib.de/


[8] Matteo Fischetti, Markus Leitner, Ivana Ljubic, Martin Luipersbeck, Michele Monaci, Max
Resch, Domenico Salvagnin, and Markus Sinnl. Thinning out steiner trees: a node-based
model for uniform edge costs. Mathematical Programming Computations, 2015.

[9] Gerald Gamrath, Tobias Fischer, Tristan Gally, Ambros M. Gleixner, Gregor Hendel,
Thorsten Koch, Stephen J. Maher, Matthias Miltenberger, Benjamin Müller, Marc E.
Pfetsch, Christian Puchert, Daniel Rehfeldt, Sebastian Schenker, Robert Schwarz, Felipe
Serrano, Yuji Shinano, Stefan Vigerske, Dieter Weninger, Michael Winkler, Jonas T. Witt,
and Jakob Witzig. The scip optimization suite 3.2. Technical Report 15-60, ZIB, Takustr.7,
14195 Berlin, 2016.

[10] Gerald Gamrath, Thorsten Koch, Stephen Maher, Daniel Rehfeldt, and Yuji Shinano. SCIP-
Jack - A solver for STP and variants with parallelization extensions. Technical Report 15-27,
ZIB, Takustr.7, 14195 Berlin, 2015.

[11] M. Hanan. On Steiner’s problem with rectilinear distance. SIAM Journal of Applied Math-
ematics, 14(2):255–265, 1966.

[12] David S. Johnson, Maria Minkoff, and Steven Phillips. The Prize Collecting Steiner Tree
Problem: Theory and Practice. In Proceedings of the Eleventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’00, pages 760–769, Philadelphia, PA, USA, 2000.
Society for Industrial and Applied Mathematics.

[13] Thorsten Koch and Alexander Martin. Solving Steiner tree problems in graphs to optimality.
Networks, 32:207–232, 1998.

[14] Ivana Ljubic, Ren Weiskircher, Ulrich Pferschy, Gunnar W. Klau, Petra Mutzel, and Matteo
Fischetti. An Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner
Tree Problem. Mathematical Programming, 105(2-3):427–449, 2006.

[15] Ivana Ljubi. Exact and Memetic Algorithms for Two Network Design Problems. PhD thesis,
Vienna University of Technology, 2004.

[16] Thomas Pajor, Eduardo Uchoa, and Renato F. Werneck. A Robust and Scalable Algorithm
for the Steiner Problem in Graphs. Computing Research Repository, 2014.

[17] Tobias Polzin. Algorithms for the Steiner problem in networks. PhD thesis, Saarland Uni-
versity, 2004.

[18] Daniel Rehfeldt. A generic approach to solving the Steiner tree problem and variants.
Master’s thesis, Technische Universität Berlin, 2015.

[19] R.T. Wong. A dual ascent approach for Steiner tree problems on a directed graph. Mathe-
matical Programming, 28:271287, 1984.

11


	Introduction
	Transforming PCSTP to SAP
	Transforming MWCSP to SAP
	Practical Implications
	Acknowledgements

