
Rainer Buhtz 

C GM-Concepts 
and thei r Real izat ions 

Invited talk at the Eurographics Conference, September 8-10, 1982 

University of Manchester 

To appear in: P. Bono, I. Herman (eds.): GKS Theory and Practice 

Springer Verlag 1987 

Preprint SC - 87 - 4 (June 1987) 

Konrad-Zuse-Zentrum für Informationstechnik 
Heilbronner Straße 10, D -1000 Berlin 31 



1 

1) Requirements and Design Concepts 

Common Graphics Manager (CGM) is the name given to the implementa­
tion of GKS, Level 2b, developed at the Free University of Berlin 
(1,6). This paper is a survey over the "early GKS implementation 
phase" 1980-1982. 

Work commenced in February 1980. At the outset some basic 
design decisions were necessary on account of the special scienti­
fic computer environment in Berlin, because the "Berlin GKS" was 
intended to be a common graphical software package for all the 
machines (4). 

- The software package had to be adaptable for different 
machine types with minimal effort. The original host computer 
for CGM is a CDC Cyber 835 (before that a Cyber 172). Further 
installations were planned for at least Siemens 7000-series 
(BS2000) and Harris H 100-series. CGM is now installed on 
many other machine types, for example IBM, Vax and UNIVAC. 
The interfaces to operating system dependent modules had to 
be defined on such a level as to allow installation without a 
deep knowledge of GKS, because many of the satellite com­
puters in the university environment are run by users and in 
general there is no local graphics specialist available. 

- The implementation language had to be FORTRAN. From a modern 
viewpoint, FORTRAN is neither an elegant nor a comfortable 
programming language. In addition the fact that FORTRAN is 
available worldwide is not a decisive argument in its favour, 
for by a similar argument one would drop all GKS activities 
in favour of an existing, well known standard package such as 
Calcomp. Nevertheless it was decided to use FORTRAN because 
interfaces between FORTRAN and higher level languages such as 
ALGOL 68 and Pascal may be provided rather easily, whereas 
the problem of providing interfaces in the reverse direction 
has never been solved satisfactorily. Hence a FORTRAN imple­
mentation covers a larger number of users. Taking this in 
conjunction with the first requirement the language chosen 
was ANSI FORTRAN 66. 
Meanwhile, we migrated to ANSI FORTRAN 77, of course. 

The GKS standard contains some important basic concepts which have 
to be realized by an implementation. GKS uses a set of internal 
tables which are conceptually dynamically allocated, that is they 
may be requested (for example Workstation State List during OPEN 
WORKSTATION) or cancelled (for example Workstation State List 
during CLOSE WORKSTATION). The total number of workstations simul­
taneously open or of segments stored on different- workstations is 
unknown in advance and is conceptually limitless. These 
considerations lead to the conclusion that for the efficient and 
correct realization of GKS some basic software components are 
required for dynamic allocation and deallocation of memory. To 
ensure fast access, and to avoid the storage of redundant informa­
tion, data blocks have to be stored only once and additional 
modules for handling pointers and chained tables had to be 
provided. 

GKS requires output primitives of unrestricted length to be 
handled, for example for transformation, clipping and routing to 
all active workstations; and requires such primitives to be 
accessed in internal segment storage. This leads to further 



2 

dynamic requirements for a GKS implementation. Temporary auxiliary 
arrays of different lengths have to be provided for: 

- copying information (e.g. area clipping; the clipped polygon 
may have more border points than the original, or may even be 
split into disjoint parts); 

- reading information from segment storage (e.g. for picture 
regeneration or INSERT); 

- storage of dynamic attribute changes for the next UPDATE. 

Such software components may be provided very easily in a 
high level language such as ALGOL 68 or Pascal. Algorithms may be 
found in any textbook for such languages (7). 

The decision to implement CGM in ANSI FORTRAN 66 resulted in 
the definition of two smaller software packages: 

- CGM Memory Manager 

- CGM Table Chain Manager 

These are not part of GKS but were necessary to enhance the 
functional capability of ANSI FORTRAN 66 to provide pointers and 
dynamic arrays. There is no loss of portability here for the 
packages themselves are written in ANSI FORTRAN 66. 

In this paper it will be shown how CGM implements GKS. 
Special issues of interest are: 

- portability; 

- efficiency; 

- closeness to the standard. 

2) CGM Memory Manager 

The CGM Memory Manager is a subroutine package for handling 
dynamic memory blocks. It contains two subroutines which provide 
the following basic features: Get Block which allocates a block of 
length N and delivers a start address (relative to a fixed COMMON 
block) to the calling program; Release Block which marks the 
specified block as no longer in use, the block is then available 
for later Get Block calls. These two routines solve all the 
dynamic problems of GKS, for example "how many workstations may be 
opened at the same time?", "how many segments may exist at the 
same time?", "how large can output primitives be on segment 
storage?". These questions are reduced to one question: "how large 
does the dynamic buffer area of the CGM Memory Manager have to 
be?". By choosing a suitable dimension for one unstructured COMMON 
block, all applications can be accomodated. 

The standard buffer limit can be tuned at installation time 
by setting appropriate installation parameters. It is not 
necessary to change the source code. Equally, it is so easy to 
increase the buffer limits that this may be left to the applica­
tion programmer. Most systems allow the length of a common block 
to be increased, for example by using a BLOCK DATA subprogram. The 
user may work with any buffer length (within machine constraints) 
by linking such a module and calling a special routine which 



3 

causes the CGM Memory Manager to rearrange its pointer chains 
appropriately. Thus a computing centre may provide a standard 
buffer length which meets the requirements of the majority of its 
users, without having to consider peak requirements. 

When the CLOSE GKS function is executed, a statistic about 
memory usage is written to the error file. 

The dynamic buffer area is used throughout CGM, using only 
the two routines described above. Thus it is possible to replace 
them by operating system oriented routines as it is being done for 
the CDC machine (2,5). The CDC operating systems provide an inter­
face for requesting new field lengths during lifetime of an appli­
cation program, the so-called Common Memory Manager. The two CGM 
routines can be replaced by calls to the Common Memory Manager, 
delivering the base address of the requested block relative to the 
same COMMON block. Thus from the point of view of the higher CGM 
routines nothing has changed. 

This leads to a basic concept of CGM. Whenever operating 
system oriented optimizations are possible (and useful) they may 
be performed easily by local staff, because an ANSI FORTRAN 
solution is provided which may be used immediately, and the inter­
faces are small and simple, so that special knowledge about the 
internal CGM structure is not necessary. The optimization may be 
performed in due course once the system is running. 

3) CGM Table Chain Manager 

The CGM Table Chain Manager is a subroutine package for handling 
pointers and chained tables. An example is the list of all work­
station state lists for open workstations which may vary in length 
depending on the number of workstations. Every workstation state 
list itself contains further dynamic tables, for example pen 
tables. In practice this means that the workstation state list 
contains a pointer to the first pen table entry which points to 
the next and so on. 

The CGM Table Chain Manager consists of routines for the 
following basic functions: adding new members to an existing (or 
new) chain; taking a member outside a chain and rearranging the 
chain; accessing specific chain members; releasing complete 
chains. For these purposes memory allocation and deallocation is 
necessary. This is performed by the CGM Memory Manager. Hence the 
CGM Table Chain Manager is written in ANSI FORTRAN. Machine 
dependent optimization is unnecessary. The CGM Table Chain Manager 
can be used with every memory handling package that respects the 
Get/Release Block interface. CGM table chains may coexist with un­
structured temporary arrays because the CGM Table Chain Manager is 
only one special user of the CGM Memory Manager. 

The following examples illustrate the cooperation of the 
different CGM table chains. First, as an easy example, consider 
setting a pen representation. If the user defines a new pen, the 
CGM Table Chain Manager requests a new memory block and fits it 
into the workstation pen table (see Fig.l). The specified 
attributes are then entered into the block. Such a pen table can 
only grow during lifetime of a workstation because GKS does not 
provide a "delete all pens" function. The chain is released when 
the workstation is closed. 

As a more complicated example, consider segments. Segments 
(and workstations) can be created and cancelled during the life­
time of an application program. The data blocks (the state lists 
themselves) are held centrally in GKS. The cross-references 



4 

between segments and workstations are performed by pointers or 
chains of pointers (see Fig.2). For example the CLOSE WORKSTATION 
routine should cancel everything in GKS connected with the work­
station, so that after the function is executed it is as if the 
workstation had never been open. This is achieved by first 
accessing the data block of the workstation state list and re­
leasing its subtables, such as the pen table, with the CGM Table 
Chain Manager. The chain of segments stored in the workstation is 
checked. For every segment this subtable contains a pointer to the 
segment state list. The segment state list contains a chain of 
pointers to all workstations where the segment is stored. This 
chain has to be accessed for every segment stored on the actual 
workstation, and the pointer to this workstation has to be 
cancelled. If as a result the segment is not stored on any work­
station, the segment itself is cancelled, its segment state list 
is released and its name is cancelled from the central list of 
segment names in use (inside GKS). 

After this process, the chain of pointers to all these seg­
ments may be released itself, and - last but not least - the data 
block of the workstation state list is cancelled as well as the 
name of the workstation (from the central list of workstation 
identifiers in use). After this, all references to the workstation 
are cancelled. 

"Releasing" chain members is handled cooperatively: the CGM 
Table Chain Manager only rearranges the chain, the single memory 
block is passed to the CGM Memory Manager. If the neighbouring 
blocks to the released block are also unused, they are combined 
together so that the free space is maximized. 

4) CGM's Segment Storage Concept 

Segment storage is an internal workstation in GKS. Segments stored 
in segment storage can be used by the INSERT function. Segment 
storage in CGM has an additional function. Such a file is 
generated internally for simulating picture regeneration on unin­
telligent workstations, even without explicitely opening a segment 
storage workstation. Interactive applications access the segment 
storage frequently, and so efficiency of access is important. ANSI 
FORTRAN 66 does not support direct access files and so it was 
necessary to define an interface (which was kept as simple as 
possible) to machine dependent direct access routines. The inter­
face only supports the transfer of unstructured memory blocks of 
fixed (installation dependent) size. There is a higher level layer 
(ANSI FORTRAN) which handles the decomposition (and reconstruc­
tion) of the GKS data structures at the DI/DD interface (device 
independent/device dependent) into unstructured memory blocks. 

It was known from the outset that it is not easy to generate 
modules to a special interface and localization of errors is 
difficult. A possibly unconventional method was used. In addition 
to defining the interface an ANSI FORTRAN solution was also 
provided by simulating direct access on a sequential binary 
FORTRAN file. Thus there is a reference version of CGM for com­
parison whilst an installation specific solution is developed. The 
full software can be tested immediately. The reference routines 
are not suitable for production use, though they are not so 
inefficient as one might suppose. This surprising fact is due to 
the way CGM used segment storage for picture regeneration. Seg­
ments are in the main read in the same order as they were 
"generated" (i.e. as they were written to segment storage). Conse-



5 

quently in most cases segment storage is read sequentially and in 
such cases direct access cannot be faster than sequential access. 
There are only two cases in which real direct access is needed: 

(1) Use of segment priorities: the user specifies explicitely the 
order in which segments are to be redrawn, i.e. which 
segments are "foreground" (high priority) or "background" 
(low priority). This opens up interesting applications, 
especially on raster devices. If the raster primitives FILL 
AREA and CELL ARRAY are used then automatically hidden 
surface removal is possible. 

(2) Explicit usage of the segment storage workstation (INSERT 
SEGMENT function) . If a segment has to be copied into the 
open segment, direct access to the segment storage file is 
required. 

Benchmarks on a CDC computer have shown that the ANSI FORTRAN 
routines are comparable in speed with assembler direct access 
routines for sequential reading (normal regeneration), whilst for 
real direct access usage (INSERT SEGMENT) there is a factor of 
1:10 in favour of the assembler routines. 

Meanwhile, CGM uses ANSI FORTRAN 77 direct access I/O. Thus, 
no machine dependent routines are required. 

The same direct access interface is used by CGM to handle a 
second internal file, the CGM software text file. 

5) Software Text in CGM 

One of the most interesting applications of GKS is the generation 
of software text using different fonts. The total number of 
available text fonts is implementation dependent. The storage of 
coordinates is carefully optimized in CGM. 

There are now 9 text fonts available in CGM. These include 
standard text and high quality roman, italic and Greek fonts. In 
addition, special symbols for mathematics and natural sciences 
(e.g. integral and differential operators) and centered symbols 
are available. For CGM Version 4.0, which will implement GKS 7.0 
(planned for the end of 1982) it is intended to implement all 21 
of Hershey's character fonts including gothic fonts, Cyrillic 
alphabet and further special symbols. 

For all these fonts, an 8-bit representation for x and y 
coordinates is sufficient and so efficient data packing is 
possible if there is only one font in memory at the same time. CGM 
text fonts are therefore kept on a direct access file in binary 
packed format. This file is accessed through the same interface as 
segment storage. At installation time, this file is generated from 
a coded data file contained in CGM, using a "CGM pre-processor". 
Portability was achieved because the file must be generated afresh 
for each installation. The modules themselves are portable. This 
concept is carried further in CGM. 

6) Pre-processors in CGM 

Despite all portability considerations, two installations of CGM 
on different machines cannot be identical; even a package written 
m ANSI FORTRAN needs adaptation. Care was taken to try to reduce 
"this adaptation work to a minimum. The work is performed using 
pre-processors which are supplied with the CGM code. 



6 

The idea is the following. One or more "files" are required 
for installation of a CGM component. They are contained in the CGM 
code or have to be supplied at installation time. A pre-processor 
operates on these files and generates new files containing the 
component in a form suitable for use on the given computer. Pre­
processors are provided for the following tasks: 

- Source code tuning and setting installation parameters: the 
input files are CGM code and a small data file containing the 
installation parameters (e.g. block lengths, dynamic buffer 
size, computer word length). The pre-processor produces 
several output files containing a configured CGM source. 
Setting parameters by such a mechanism is not only easier 
than by hand, but is also safer. 

- Generating the internal software text file: this pre­
processor was mentioned in the last section. The input file 
is a coded text file (containing the text coordinates), the 
output file is a binary packed direct access file. This pre­
processor can also be tuned through installation parameters 
(because it is a part of the CGM code) and thus it can use a 
machine dependent word length for packing etc. Another 
interesting feature is that the pre-processor is fully 
portable, but a binary WRITE produces different results on 
different computers, so that the resulting binary files are 
different. When this pre-processor is used after the instal­
lation of "real direct access" the software text file will be 
a direct access file. 

- Generating the DI/DD interface: this pre-processor has to be 
used more than once when CGM is in use (every time when a new 
driver has to be installed). It configures CGM for the local 
graphical environment. The input file is a coded file 
containing a data block for every graphical device, the so-
called Workstation Description Tables. Entries include screen 
size, resolution and special features of the given worksta­
tion, for example whether it is able to change colours of 
primitives dynamically. 
These data blocks are easy to maintain. The resulting output 
file contains the source for two subroutines. One subroutine 
is the physical DI/DD interface, in other words it contains 
FORTRAN CALL statements for every driver. The second 
subroutine contains all the workstation description tables in 
fast-access form. Hence, at runtime, no internal file or data 
conversion is required to access such data which is 
frequently used. The first subroutine contains all statements 
for all drivers. This implies that all drivers are linked to 
the application program even if they are not needed. In 
larger configurations this may lead to excessive memory 
requirements. 

Following the CGM principle of allowing machine dependent 
optimizations, calls to dummy routines were provided in the OPEN 
WORKSTATION and CLOSE WORKSTATION routines which may be replaced 
by assembler routines for dynamic loading and unloading of 
drivers. Such modules are now available for CDC and IBM machines. 



7 

7) The Lciyer Structure of CGM 

In conclision, some remarks about the CGM code structure, 
especially with reference to portability, are in order (see 
Fig.3). 

The entire central code, "GKS itself", is located in the 
highest machine and device independent layer. The special GKS 
drivers cor Metafile Output, Metafile Input and Segment Storage 
also be'.ong to this layer. Thus CGM is immediately available on 
every computer, though some modules may be replaced for 
optimi?ation. As soon as real devices are linked to CGM, modules 
must b= device dependent. CGM drivers are structured such that 
some driver components are portable, to facilitate moving drivers 
to other machines and writing new drivers. 

At the highest device driver interface, the central CGM code 
is followed by a device dependent but machine independent layer. 
Here all device dependent operations, for example conversion to 
ASCII-bytes, are performed. Experience has shown that such 
components can be written in ANSI FORTRAN without loss of 
efficiency. Some device independent tasks (for example workstation 
clipping, pick simulation and software text generation) may be 
performed using a set of device independent driver utilities which 
are contained in layer 1. Exporting a drxver together with CGM 
code means that this second layer is included. 

Connecting a file to a terminal and sending ASCII bytes to a 
terminal or plotter requires machine dependent modules, because 
they are impossible to write in ANSI FORTRAN (or at least not 
efficiently enough). 

There are well-defined interfaces to be adhered to, but they 
are simple interfaces and do not require knowledge of the internal 
features of GKS. Only very simple I/O routines have to be provided 
and for terminals they can be provided in a device independent 
manner. Portability is possible in another sense, the same modules 
may be used for a range of drivers. This feature makes the 
installation of new drivers easier. 

Note 

Since this work was first presented in September 1982, the project 
has continued. As of March 1987, the implementation has been 
brought up to GKS Level 2B (as defined in ISO Standard 7942). It 
runs on a wide range of machines from IBM-PC's to the Cray X-MP. 
The system is designed for use in open networks (on top of the 
"Deutsches Forschungsnetz (DFN)") and is in use worldwide in 
universities, research centres and private industry. A further 
account of the system appears in (3). 



F i g . 1 

Workstation 1 

Pen Table 

Pen 1 

Pen 2 

\7 

SSL 



Fig . 2 

9 

Cross References between "Workstations and Segments 

Workstation 1 

Segment l i s t 

M 
Workstation 2 

Segment List 

SL 

Segment 1 stored on Workstation 1 

Segment 2 stored on Workstations 1 and 2 

Segment 3 stored on Workstation 2 



F i g . 3 

10 

CGM Layer S t r u c t u r e 

CGM cen t r a l 

Driver 0 

Driver 1 

Driver 2 

Layer 1 : 

machine independent 
device independent 

Driver Controller 

+ Utili t ies 

Driver 0 

Driver 1 

Driver 2 

Segment Storage 

Metafile 

Driver 3 Driver 4 ... Driver N 

Layer 2: 

machine independent 

device dependent 

Ras te r -

Package 

passive interactive 

Byte Buffering 
Layer 3: 

machine dependent 

I /O - Module device independent 

electrostatic 

Plotter Pen—Plotter Display 



11 

References 

1. J.Bechlars and R.Buhtz, CGM Handbook: Special Design Concepts 
and Installation Guide for COMMON GRAPHICS MANAGER Version 
3.1, Freie Universität Berlin (April 1982). 

2. J.Bechlars, "Experiences with CGM, the Berlin GKS 
Implementation", Conference Proceedings ECODU 33, St. Paul, 
Minnesota (1982). 

3. J.Bechlars and R.Buhtz, GKS in der Praxis, Springer Verlag 
(1986). 

4. R.Buhtz, "Implementation Policy at the Free University of 
Berlin", in : Report on the Workshop on the Implementation of 
GKS at ECMWF, ed. H. Watkins, Reading, Berkshire (UK) (1981). 

5. R.Buhtz, "The Berlin GKS - concepts and their Realization on 
a CYBER", Conference Proceedings ECODU 31, Helsinki (1981). 

6. International standard ISO 7942 
Information processing systems 
Computer Graphics 
Graphical Kernel System (GKS) 
Functional description 
ISO 7942/1985 
(This paper refers to the earlier version 6.4) 


