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Summary. The Train Dispatching Problem (TDP) is to schedule trains through a network
in a cost optimal way. Due to disturbances during operation existing track allocations often
have to be re-scheduled and integrated into the timetable. This has to be done in seconds and
with minimal timetable changes to guarantee smooth and conflict free operation. We present
an integrated modeling approach for the re-optimization task using Mixed Integer Program-
ming. Finally, we provide computational results for scenarios provided by the INFORMS RAS
Problem Soling Competition 2012.

1 Introduction

The Train Dispatching Problem (TDP) deals with the determination of a railway timetable
by constructing train routes and corresponding arrival and departure times to operate train
requests in a given railway network. Due to the complex operation rules, limited capacity,
which is only upgradeable with massive financial effort, the infrastructure network builds a
natural bottleneck. Thus, it is appreciable to utilize the existing infrastructure in the best way.

The TDP integrates several major requirements like safety system rules, train character-
istics, blocking and headway times, timetable requirements, and infrastructure capacities. A
detailed problem description and a Mixed Integer Programming formulation to solve this prob-
lem is described in detail in [5]. In this paper, we report on a Re-optimization or Re-scheduling
approach for the TDP in a real time setting using a state-of-the-art MIP solver.

A general concept of re-optimization for any optimization problem is illustrated in Fig-
ure 1. The authors of [2] introduced this approach in the context of rolling stock rotation
planning problems. In case of the TDP, we adapted it as follows: At some point in time a
railway undertaking has to agree on a timetable, ideally, utilizing an optimization algorithm
or by manual planning, see on the left hand side the box Original Problem and the box Refer-
ence Solution. Later in time this problem or aspects changes that much, such that the reference
solution, in case of the TDP the timetable, becomes infeasible. Thus, a modified problem has
to be solved. In contrast to the first process leading to the reference timetable the time lim-
itations are in the second stage rather strict. Since an operator has only minutes or seconds
for his decisions, the re-optimization algorithm has to calculate solutions within a real time
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Fig. 1. Generalizing the concept of Re-optimization from [2].

management system. Another major goal is to change as few as possible in comparison to
the original timetable. This should minimize the disturbance of the ongoing timetable because
fewer changes are easier to communicate, easier to apply, and hence more reliable. Moreover,
it is impossible for an operator to change many routes at the same time, because the running
and blocking times highly depend on the routes and interaction between the trains. Changing a
lot of routes and switching the orders of trains is very likely to result in an impractical timetable
due to a significant amount of incertitude. In case of the timetable construction this is evaluated
in detail by microscopic simulation which is not applicable in a real time setting. Therefore,
the reference solution highly influences the objective function. The discussed re-optimization
task occurs very often at a railway company. There are various causes that can lead to a sit-
uation where the implemented timetable becomes unexpectedly infeasible. Predictable and
unpredictable construction sites and breakdowns that block a track must be integrated shortly
into a timetable. In addition, delayed trains and modifications of speed limits may require an
adjustment of the timetable. The paper contributes an adaption of the Mixed Integer Program-
ming approaches presented in [5, 7] to re-optimize timetables. We show how to incorporate
re-optimization requirements into the disjunctive graph based formulation, see [1, 6, 4, 3]. An
iterative approach is used by [4] to solve real-time instances of the Dutch railway network.
They use a branch-and-bound algorithm for sequencing train movements and improving the
solution by locally rerouting some trains. The connection between adjacent dispatching ar-
eas is studied by [3]. [6] use a disjunctive graph formulation to model and solve a job-shop
scheduling problem with blocking constraints. This paper is organized as follows. Section 2
defines the considered problem including an overview of the disjunctive based formulation. In
Section 3 we present some real world scenarios, consider common re-optimization use cases
for the TDP, and presents computational results. This indicates that the model and algorithmic
approach produces high quality solutions in a very short time and is able to tackle the real time
re-optimization setting.

2 A Re-Optimization Model for the TDP

Consider the following problem setting for the TDP. We model the infrastructure network
by a directed graph G = (V,A). The arcs correspond to track segments with fixed running
times τr

(v,w) for each train r that is able to operate on track segment (v,w) ∈ A. For each track

segment (v,w) and train pair r,r′ exists a headway time hr,r′

(v,w) which is defined as the minimal
time between two consecutive trains r and r′ that use the same track segment (v,w), see details
in [9]. The set of scheduled train requests is denoted by R. Each train r ∈ R is associated with
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Fig. 2. Microscopic network of the RAS instances. The boxes (orange) show the disturbed
areas.

an initial route p∗ ∈ Pr, where Pr is the set of possible routes for request r. Additionally,
there are essential stops Sr ⊂ V for each train r ∈ R. Each stop s ∈ Sr of train r have to be
fulfilled during the time period [αr

s,αr
s]. A time unit of deviance from the scheduled departure

of train r, denoted by αr
s , is penalized by cr

s if the actual departure time is before αr
s , and cr

s
if the actual departure time is after αr

s . Furthermore, we denote by δ r
p the cost that occur from

re-routing train r on route p instead of its initial route p∗ with cost δ r
p∗ = 0. By γr ∈ R− we

denote a (negative) profit value for not routing train r. Usually, this value should ensure that a
maximal number of trains is scheduled. If meaningful data is available this could also be used
to give the algorithm a priority estimation for each train depending on the demand. The set
B⊆ A is the set of arcs (v,w) where some kind of disturbance takes place during the period of
[β

(v,w),β (v,w)].
A solution of the TDP has to associate each scheduled train r ∈ R at most one route p∈ Pr

with departure times for each node v ∈ p under consideration of the headway constraints. The
task of the model is to select a path for each train and to determine departure times tr

v for each
node v that is visited by train r on its path. For this, we enforce relations between different
departure times w. r. t. the chosen paths and the order in which different trains traverse the
same arc. In particular, we will make use of the following three types of decisions:

1. r uses (v,w), which is satisfied if and only if the selected path for r contains arc (v,w),
2. r ≺(v,w) r′, which is satisfied if and only if r traverses (v,w) before r′,
3. r ≺ b(v,w) and r � b(v,w), which are satisfied if and only if r uses (v,w) before or after the

disruption, respectively.

Depending on these conditions, we can formulate the following constraints for the departure
times:

running times: r uses (v,w)⇒ tr
v + τr

(v,w) ≤ tr
w, (1)

headway times: r ≺(v,w) r′⇒ tr
v +hr,r′

(v,w) ≤ tr′
v , (2)

disruption times: r ≺ b(v,w)⇒ tr
w ≤ β

(v,w), and r � b(v,w)⇒ tr
v ≥ β (v,w). (3)

Note that using disjunctive constraints can easily be formulated using linear big-M constraints.
In particular, using the following binary variables

1. zr
p = 1 ⇐⇒ r runs on p ∈ Pr,
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2. xr,r′

(v,w) = 1 ⇐⇒ r runs before r′ on (v,w),
3. br

(v,w) = 1 ⇐⇒ r runs before disruption on (v,w),

a headway constraint (2) can, e. g., be written as

tr
v +hr,r′

(v,w) ≤ tr′
v +M · (1− xr,r′

(v,w)) (4)

With this notation the TDP can be stated as a mixed integer program as follows:

minimize ∑
v∈S

(cr
v∆ r

v + cr
v∆ r

v)+ ∑
r∈R

∑
p∈Pr

δ r
pzr

p + ∑
r∈R

γr ∑
p∈Pr

zr
p (5)

subject to (1), (2), (3), (6)

∑
p∈Pr

zr
p ≤ 1, r ∈ R, (7)

tr
v −∆ r

v ≤ αr
v , r ∈ R,v ∈ Sr, (8)

tr
v +∆ r

v ≥ αr
v , r ∈ R,v ∈ Sr, (9)

tr
v ∈ [αr

v,α
r
v], r ∈ R,v ∈ Sr, (10)

tr
v ,∆

r
v,∆

r
v ≥ 0, r ∈ R,v ∈ Sr, (11)

z,x,b binary (12)

In addition to the three types of binary variables, the continuous variables tr
w model the

departure time of train r at node w. The continuous cost variables ∆ r
w and ∆ r

w measure the
deviation between the departure time of the reference timetable and re-allocated departures
times of train r at node w. The linear objective function (5) minimizes the sum of the total
costs for deviance at stops, costs for alternative routes, and costs for unscheduled trains. The
constraints for the running times (1), the headway times (2) and the disruption times (3) are
formulated as big-M constraints as mentioned above. The inequalities (8) and (9) ensure the
correct values for the time deviation cost variables and constraints (7) ensure that at most one
route is selected for each train. The departure time windows of the stops are modeled by (10).

If the trains have delays the model aims at pushing the trains back to its actual routing and
timing. In some cases this is not desired since the new schedule may lead to a lot of modifica-
tions of the current timetable, which is not realizable. In this case the reference departure times
could be adjusted to keep the delays at the current level. Of course, by setting the variables
cost cr

s,c
r
s and δ r

p to zero for all stops, paths and trains it is possible to calculate a timetable
that is completely independent from the reference timetable.

3 Computational Study

We implemented the proposed re-optimization model in a C++-framework. This implemen-
tation takes use of the commercial mixed integer programming solver CPLEX 12.6. All our
computations were performed on a desktop computer with an Intel(R) Xeon(R) CPU E3-1245
v3 with 3.40 GHz and 32 GB of RAM. The set of instances are scenarios derived from the
INFORMS RAS Problem Solving Competition 2012, see [8].

The RAS instances include a microscopic infrastructure network containing 82 nodes and
184 arcs as shown in Figure 2. There are three different scenarios with increasing complexity,
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Instance |R| disrupted Arcs disrupted Routes Planning Horizon (h:m:s)

RAS_1 12 2 5(41%) 17:58:47
RAS_2 18 2 6(33%) 18:07:47
RAS_3 20 12 18(90%) 16:32:15

Table 1. Key numbers of re-optimization scenarios from RAS.

i. e., in terms of larger number of trains and disturbances. Table 1 shows the corresponding
sizes.

In all cases we chose γr = −103 for the profit value of routing train r. The parameter δ r
p

equals the number of deviating tracks between route p and reference route p∗. The cost pa-
rameters are set in such a way that the optimization goals are weighted in order of importance.
First the number of cancelled trains should be minimal, second the number of route changes
should be minimal and third the departure times should be as close as possible at the reference
timetable. For the MIP solvers we set a time limit of 1800 seconds.

We limited the set of possible routes for each train since otherwise most of the trains
have 192 possible routes which is far too much to handle. In addition, most of those ignored
potential routes cannot be part of an optimal solution. An observation is that the model can be
solved in a few seconds if the number of alternative routes per train is small. Therefore we sort
accordingly to δ r

p the alternative routes for each train and select the first 4, 8 and 16 alternative
routes for each train, respectively. We use the cost parameters δ r

p since there are the only costs
that can be calculated in advance.

The computational results are in Table 2. The second and third column are the used MIP
solver and the number of alternative routes for each train, respectively. It follows the number
trains in the reference time table, the number of trains that are completely blocked by a dis-
ruption, the number of trains that are planned in the solution, the number of trains that are
cancelled in the solution and the number of route changes. The last four columns are the run-
ning time, the final optimality gap, the optimality gap after 20 seconds and the final objective
value of the solver. If the time limit was reached than this is indicated with TL in the running
time column.

From the practical point of view even the restriction to four tours per train is more than
a dispatcher can overlook in a couple of minutes or even seconds. We are able to solve the
first two scenarios to optimality and solve the third with an optimality gap of at most 5.3%. It
turns out that for the RAS instances the first four selected tours are sufficient to provide high
quality solutions. Furthermore the optimality gaps after 20 seconds indicate that we are able
to get good solutions fast.

4 Conclusion

We extended a well known MIP formulation for the TDP to be able to tackle re-optimization
scenarios. Our computational study demonstrates that our re-optimization approach can be
used to produce high quality solutions in reasonable computation time for a real time applica-
tion.
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RAS_1 4 12 0 12 0 0 3.0 0.0 0.0 -11852.72
RAS_1 8 12 0 12 0 0 17.0 0.0 0.0 -11852.72
RAS_1 16 12 0 12 0 1 51.0 0.0 21.3 -11993.00
RAS_2 4 18 0 18 0 2 12.0 0.0 0.0 -17869.33
RAS_2 8 18 0 18 0 2 89.0 0.0 >100.0 -17869.33
RAS_2 16 18 0 18 0 2 1492.0 0.0 >100.0 -17871.33
RAS_3 4 20 0 19 1 1 982.0 0.0 5.3 -18731.33
RAS_3 8 20 0 19 1 1 TL 5.3 11.4 -18731.33
RAS_3 16 20 0 19 1 4 TL 5.4 40.1 -18713.33

Table 2. Solutions of the RAS scenarios with 4, 8 and 16 alternative routes for each train.
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