
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

STEPHAN SCHWARTZ, RALF BORNDÖRFER, GERALD BARTZ
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The Graph Segmentation Problem

Stephan Schwartz, Ralf Borndörfer, Gerald Bartz

Abstract

We investigate a graph theoretical problem arising in the automatic
billing of a network toll. Given a network and a family of user paths,
we study the graph segmentation problem (GSP) to cover parts of the user
paths by a set of disjoint segments. The GSP is shown to be NP-hard but
for special cases it can be solved in polynomial time. We also show that
the marginal utility of a segment is bounded. Computational results for
real-world instances show that in practice the problem is more amenable
than the theoretic bounds suggest.

1 Introduction

In this paper, we introduce the graph segmentation problem (GSP) to cover as many
parts as possible of a given set of trajectories (paths in a network) by a set of disjoint
segments (which are also paths). The problem has applications in automatic toll billing
where the network users have to pay a certain toll for their journey. In such a billing,
a user cannot be charged for a specific segment, unless he covers the entire segment
during his trip.

An obvious solution to maximize the income is to choose the “atomic” segmentation,
i.e., each arc of the network represents a segment. On the other hand, every segment
requires specific maintenance, e.g., during construction periods or for manual review
of contentious cases. Especially, if we are confronted with a very detailed network but
the vast majority of the traffic passes by a great number of nodes, the savings of having
fewer segments can be significant. The graph segmentation problem thus maximizes
the total income of toll revenues subject to a limited number of segments. Figure 1
depicts optimal solutions of the GSP for the example of the German motorway system.

To the best of our knowledge, no models have been proposed that address this type
of graph segmentation problem. The literature on road tolling is rather focused on
problems of optimal toll pricing. A classical objective would be to determine arc tolls
which will cause minimal congestion in the resulting traffic flow, see e.g. [4, 5] for a
survey.

The GSP can be formulated as a set packing problem (SPP) of exponential size,
see [1] for a survey. In the SPP we have a set U , called the universe, and a family S
of subsets of U together with a weight w(S) for every S ∈ S. The aim is to find a
packing C ⊆ S with pairwise disjoint sets that maximizes the total weight

∑
S∈C w(S).

By choosing S as the set of possible segments and properly defining weights w(S), one
can formulate the GSP as a weighted set packing problem. This formulation allows
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us to apply approximation results for the weighted set packing problem (see e.g. [2])
and it allows column generation approaches for the respective integer program. We
show in this paper that this approach benefits from a graph theoretical study of the
original problem. Structural insight also paves the way for combinatorial algorithms
for special cases.

The article is structured as follows. In Section 2 we give a formal definition of the
graph segmentation problem. The problem is proven to be NP-hard in Section 3
where we give a reduction of the set packing problem to the GSP. In Section 4 we
show that the problem can be solved in polynomial time if the maximum number of
segments is constant. We prove a subpath property of optimal solutions and obtain
tight upper bounds on the marginal utility and on the total profit. In Section 5 a set
packing IP formulation is employed to solve the GSP. Using the subpath property from
the previous section, we can drastically reduce the number of variables. Finally, we
report on computational results for real-world instances in Section 6 where we apply
the graph segmentation problem to the network of German motorways.

2 The Graph Segmentation Problem

The GSP can be formally defined as follows. Let G = (V,A) be a directed graph with
arc weights ca ≥ 0 and let P denote the set of simple paths in G. We extend the weight
function c to paths P ∈ P by setting c(P ) :=

∑
a∈P ca. A segment S ∈ P is a simple

path in G and a set S ⊆ P is called a segmentation if any two elements Si 6= Sj ∈ S
are arc-disjoint. Now let T = {T1, T2, . . . , Tt} ⊆ P be a set of user trajectories in G
with corresponding demands d1, d2, . . . , dt ∈ N. Finally, we define a utility function u
on the set of all segmentations of the following form:

u(S) :=

t∑
i=1

di
∑

S∈S :S⊆Ti

c(S).

The definition of the utility function takes the users’ perspective. Every user of path
T ∈ T has to pay a fee c(S) if he completely covers segment S on his trip. For a given
number k ∈ N, the graph segmentation problem (GSP) asks for a segmentation S with
|S| ≤ k such that u(S) is maximized. Note that segment S ∈ S only yields a non-zero
utility for user paths T ∈ T if S ⊆ T :

S ∈ P, S 6⊆ T ∀T ∈ T =⇒ u({S}) = 0. (1)

Another important observation is that the utility function is additive.

Proposition 1. Let S = {S1, . . . , Sk}, then

u(S) =

k∑
i=1

u
(
{Si}

)
.
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Proof.

u(S) =

t∑
i=1

di
∑

S∈S :S⊆Ti

c(S) =
∑
S∈S

∑
Ti∈T :S⊆Ti

di c(S) =

k∑
i=1

u
(
{Si}

)
.

3 Complexity of the GSP

Theorem 2. The graph segmentation problem is NP-hard.

Proof. The set packing problem (SPP) with unit weights is one of the 21 classical NP-
hard problems presented by Karp [3]. In the following, we give a reduction of the SPP
to the GSP by constructing a graph G = (V,A) with arc weights c and user trajectories
T with demand d. We start with an instance (U ,S) of the SPP and introduce for every
element u ∈ U the nodes us, ut ∈ V and an arc u′ = (us, ut) ∈ A with cu′ = 1. Now
consider an arbitrary set S ∈ S, say S = {u1, . . . ur}. First, we introduce a pair of
nodes Ss, St ∈ V and then we add the arc (Ss, us

1) with costs M −|S| for a sufficiently
large M . We also add the arcs (ut

i, u
s
i+1) for i = 1, . . . , r − 1 and (ut

r, S
t), all with

costs 0. Finally, we define TS := (Ss, us
1, u

t
1, u

s
2, u

t
2, . . . , u

s
r, u

t
r, S

t) and the set of user
trajectories T = {TS : S ∈ S} with d ≡ 1. The given construction can be done in
polynomial time and the following two observations hold:

c(TS) = M ∀ TS ∈ T . (2)

To see this, note that for every set S, the arc (Ss, us
1) has weight M−|S| and for every

element in S we have an arc of unit weight.

∀S, T ∈ S : S ∩ T = ∅ ⇐⇒ TS ∩ TT = ∅. (3)

Indeed, if u ∈ S ∩ T , then by construction (us, ut) ∈ TS and (us, ut) ∈ TT . On the
other hand, us ∈ TS ∩ TT or ut ∈ TS ∩ TT would imply u ∈ S ∩ T by construction of
G. Moreover, with S 6= T we have Ss 6= T s and St 6= T t.

We show that SPP has a packing of size k iff GSP has a segmentation of utility
M k. First, assume that S1, . . . , Sk ∈ S are pairwise disjoint sets. Then, the segments
TS1

, . . . , TSk
are disjoint due to (3) and constitute a feasible segmentation with utility

u({TS1
, . . . , TSk

}) = M k due to (2).
Assume on the other hand, that we find a segmentation {P1, . . . , P`} of utility M k.

Then ` = k for sufficiently large M (≥ |U|+ 1). Taking together (1) and (2), we have

u(Pi) ≤ M and together with
∑k

i=1 u({Pi}) = M k we obtain u(Pi) = M ∀i. This
implies that for every Pi we find a set Si ∈ S such that Ss

i ∈ Pi (since M is sufficiently
large) and for every u ∈ Si we have (us, ut) ∈ Pi since otherwise u({Pi}) < M .
From the fact that the P1, . . . , Pk are disjoint and from (3), we can derive that the
corresponding sets S1, . . . , Sk are pairwise disjoint.
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4 Structural Properties of the GSP

After we have seen that the graph segmentation problem is NP-hard, it is important
to gain more structural insight. The following simple but important result is referred
to as the subpath property and helps to dramatically decrease the number of possible
segments.

Theorem 3 (subpath property). One can always find an optimal segmentation S such
that

∀S ∈ S ∃T ∈ T : S ⊆ T.

Proof. Let S∗ be an optimal segmentation. If S∗ does not have the declared property,
there is a segment S ∈ S∗ such that S 6⊆ T ∀T ∈ T . Due to (1) and Proposition 1 we
can eliminate S from S∗ without a loss of utility. By iterating this process we obtain
an optimal segmentation with the desired property.

Theorem 3 states that we only need to consider subpaths of user trajectories as pos-
sible segments. This has several important consequences. The first is a nice complexity
result if the upper bound k on the number of segments is constant.

Proposition 4. For a fixed number of segments, the graph segmentation problem can
be solved in polynomial time.

Proof. With Theorem 3 we only have to check the subpaths of the user trajectories T =

{T1, . . . , Tt}. This makes at most t ·
(|V |

2

)
possible segments, or respectively,

(t (|V |2 )
k

)
∈

O(t|V |2k) possible segmentations to check, where k is the number of segments. Thus,
for fixed k, this brute-force approach can be executed in polynomial time.

In particular, it is possible to efficiently find a single optimal segment (k = 1) of a
GSP instance. This gives rise to a heuristic greedy approach where in each step an
optimal segment is chosen and the set of feasible remaining segments is adjusted. We
leave out the details of this greedy approach but it can be shown that the resulting
solution can be arbitrarily bad. Namely, consider the instance in Figure 2 with a
single path as network. The above greedy algorithm would choose the full path Tn+1

as single most profitable segment but then, no additional disjoint segment can be
chosen which results in a total profit of n + εn for the greedy approach. On the other
hand, the optimal segmentation is obviously the atomic segmentation yielding a profit
of n · n + (n + εn).

We show next that the marginal utility of an additional segment is bounded.

Proposition 5. Let S∗k denote an optimal segmentation subject to |S∗k | ≤ k. Then

u(S∗k+1) ≤ k + 1

k
u(S∗k).

Proof. Consider the set S∗k+1 and let

Smin ←

arg min
S∈S∗k+1

1 u({S}) , |S∗k+1| = k + 1

∅ , else.
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With u(S∗k+1)
Prop.1

=
∑

S∈S∗k+1
u({S}), we have

u({Smin}) ≤
u(S∗k+1)

k + 1
(4)

and therefore,

u(S∗k) ≥ u(S∗k+1 \ {Smin}) = u(S∗k+1) − u({Smin})
(4)

≥ u(S∗k+1) −
u(S∗k+1)

k + 1
=

k

k + 1
u(S∗k+1).

With the previous result we can immediately derive an upper bound for the optimal
utility in the graph segmentation problem. Using the insight of Proposition 4 we can
compute the single most profitable segment S∗1 in O(t|V |2).

Corollary 6.
u(S∗k) ≤ k · u(S∗1 ).

Note that both of the given bounds are tight. The instance of Figure 2 provides
an example for tight bounds if we omit the user trajectory Tn+1. Then, only atomic
segments yield positive (but identical) profit and thus, u(S∗i+1) = i+1

i u(S∗i ) ∀i and
consequently, u(S∗k) = k · u(S∗1 ).

While Proposition 5 bounds the marginal utility, the utility function is not concave
in general (which would lead to diminishing marginal costs). To see this, consider the
network consisting of a path (1, 2, 3, 4) with arc weights ca ≡ 1. Assume trajectories
T1 = (1, 2, 3, 4) and T2 = (2, 3) with demands d1 = d2 = n. For k = 1 the segment
(1, 2, 3, 4) is optimal yielding a profit of 3n. For k = 2 this is still optimal while for
k = 3, the segmentation {(1, 2), (2, 3), (3, 4)} is optimal with a total profit of 4n.

5 Solving the GSP

In this section, we present a set packing type integer programming (IP) formulation
to solve the graph segmentation problem. We will use a binary variable xS for every
possible segment S ∈ P to decide if S is part of an optimal segmentation. In addition,
we compute the parameters cS = c(S) and we define the incidences

pTS :=

{
1 S ⊆ T,

0 S 6⊆ T,

which indicate whether segment S is included in trajectory T . We can now state the
integer program.
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max
x

∑
S∈P

cS xS

∑
Ti∈T

di p
Ti

S (5a)

s.t.
∑

S∈P : a∈S
xS ≤ 1 ∀a ∈ A (5b)∑

S∈P
xS ≤ k (5c)

xS ∈ {0, 1} ∀S ∈ P (5d)

The objective (5a) of the IP is to maximize the utility of the segmentation. In (5b),
we ensure that the segments are disjoint, while (5c) guarantees that we choose at most
k segments.

The number of parameters and variables in the stated program is potentially huge
as we consider every possible path P ∈ P as a potential segment. With Proposition 3
however, we can reduce the number of variables and parameters to be of polynomial
size. In particular, the number of constraints is in O(|A|) while the number of variables
is in O(t|V |2). It is also interesting to consider variants of the problem by restricting
the set of possible segments. One possibility is to introduce a maximum number L of
arcs per segment. For small L this can lead to a significant reduction in the number
of variables.

6 Computational Study

We applied the model (5) to the network of German motorways. Here, a truck toll for
trucks weighing 7.5 tonnes or more was introduced in 2005. The collection of the fee is
done by the Toll Collect GmbH. It is based on the Global Positioning System (GPS)
for automatic billing and a web application for manual booking. For the automatic
billing, the trucks need to be equipped with an On-Board-Unit which identifies the
used segments and computes the toll to be paid.

The network consists of over 4000 nodes and 8000 arcs. About 370,000 user trajecto-
ries of a special “metering fleet” were considered. We used a standard computer with 4
cores at 2GHz and 8GB RAM, the IP was solved with Gurobi 6.51. The computation
time for all of the instances in Table 1 taken together was less than half a day.

In Table 1, the results of several instances of the graph segmentation problem are
displayed. We consider 4 × 5 instances varying in the number of allowed segments
and for different maximum segment lengths. We are interested in finding a reason-
able compromise between the amount of coverage, computational complexity, and the
complexity of the solution. That is, we would like to cover most of the traffic with a
small number of short segments.

We used the packing IP formulation (5) with different parameters k for the number
of allowed segments. In addition, we introduced an upper bound L on the number
of arcs in a segment in order to reduce the number of possible segments in the IP
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Table 1: Results for the GSP on German motorways. We report the fraction
u(S∗k,L)

u(A)

of the optimal objective value u(S∗k,L) of the respective instance and the
objective value u(A) of the atomic segmentation. The parameter L bounds
the number of arcs in a segment from above, k is the allowed number of
segments.

L
k

10 100 500 1000 4000 |A|

2 3% 18% 52% 72% 98% 100%
3 4% 22% 59% 78% 99% 100%
15 6% 31% 67% 82% 99% 100%
150 6% 32% 67% 82% 99% 100%

formulation. The entries of the matrix describe the objective value of the respective
instance in relation to the maximal possible income with an atomic segmentation.

As expected, the total income increases with the number of allowed segments. Also,
the marginal utility seems to decrease. Thus, the optimal solution is much better
than the theoretic bounds suggest. As we have hoped, we only need 1000 (instead
of |A| > 8000) segments to obtain 82% of the maximal profit. When the number of
segments is reduced from |A| to 4000, the income only decreases by one percent. One
can also observe that reasonable choices for the parameter L do not affect the quality
of the optimal solution. Indeed, segments with at most 15 arcs seem to suffice for
practical purposes. This allows to deal also with larger networks, e.g., the entire street
network of Germany.
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Figure 1: Optimal segmentation on German motorways with k = 40 segments (left)
and k = 100 segments (right).

1 2 3 n n + 1

Figure 2: Exemplary instance of the GSP. Consider the arc weights ca ≡ 1 and trajec-
tories T1 = (1, 2), T2 = (2, 3), . . . , Tn = (n, n+1) and Tn+1 = (1, 2, . . . , n+1)
with demands d1 = d2 = · · · = dn = n and dn+1 = 1 + ε and let k = n.
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