
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

MARCO BLANCO RALF BORNDÖRFER
NAM DŨNG HOÀNG ANTON KAIER

THOMAS SCHLECHTE SWEN SCHLOBACH

The Shortest Path Problem with
Crossing Costs

Zuse Institute Berlin (ZIB), Takustr. 7, D-14195 Berlin, Germany {blanco,borndoerfer, hoang, schlechte}@zib.de

ZIB Report 16-70 (November 2016)

Zuse Institute Berlin
Takustr. 7
D-14195 Berlin

Telefon: +49 30-84185-0
Telefax: +49 30-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Zuse Institute Berlin
Takustr. 7
D-14195 Berlin

Telefon: +49 30-84185-0
Telefax: +49 30-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

The Shortest Path Problem with Crossing Costs∗

Marco Blanco1, Ralf Borndörfer1, Nam Dũng Hoàng1, Anton Kaier2,
Thomas Schlechte1, and Swen Schlobach2

1Zuse Institute Berlin, Berlin, Germany, {blanco, borndoerfer,
hoang, schlechte}@zib.de

2Lufthansa Systems GmbH & Co. KG, Kelsterbach, Germany, {kaier,
schlobach}@lhsystems.com

November 30, 2016

Abstract

We introduce the shortest path problem with crossing costs (SPPCC),
a shortest path problem in a directed graph, in which the objective
function is the sum of arc weights and crossing costs. The former are
independently paid for each arc used by the path, the latter need to be
paid every time the path intersects certain sets of arcs, which we call
regions. The SPPCC generalizes not only the classical shortest path
problem but also variants such as the resource constrained shortest path
problem and the minimum label path problem. We use the SPPCC to
model the flight trajectory optimization problem with overflight costs.

In this paper, we provide a comprehensive analysis of the problem.
In particular, we identify efficient exact and approximation algorithms
for the cases that are most relevant in practice.

1 Introduction

In this work, we introduce the shortest path problem with crossing costs
(SPPCC), which seeks to find a minimum-cost path between two given nodes
in a directed graph. As opposed to the classical shortest path problem (SPP),
where the objective function is the sum of weights corresponding to the arcs
of the path, we also consider crossing costs. These are associated with regions
in the digraph, which are defined as sets of arcs. Every time the solution path
intersects a region, the corresponding crossing costs are determined using the
region’s cost function, which takes the arcs in the intersection as input.
∗This work was partially supported by the BMBF program “Mathematics for Innovations

in Industry and Services”, under the project “E-Motion” (grant 05M12ZAB).

1

The SPPCC constitutes a generalization of the SPP, for which a large
number of solution methods have been developed, ranging from the famous
Dijkstra algorithm [7] to very sophisticated techniques, based on preprocessing,
which have been largely motivated by applications in road network routing,
see [3]. We refer to [16] for an excellent survey on the theoretical and
practical advances of algorithms for the shortest path problem. The SPPCC
also generalizes variants of the SPP such as the resource constrained shortest
path problem and the minimum label path problem. The first was proven to
be NP-hard in [10], and multiple exact [12] and approximate [14] approaches
have been developed for its solution. The second is also NP-hard in undirected
graphs and, furthermore, cannot be approximated within a polylogarithmic
factor unless P=NP [11]. A simplified version of the minimum label path
problem, the problem of finding a path with the smallest number of different
colors in an arc-colored graph, was studied in [5], where two exact approaches
were suggested. Furthermore, the SPPCC encompasses variants where the
crossing costs can be determined by only the first and the last nodes in each
of the above mentioned intersections. To the best of our knowledge, this last
problem has not yet been studied in the discrete optimization community.

In this paper we present a comprehensive analysis of the SPPCC. In
particular, we make the following contributions:

• For the variant of the problem defined by assuming linear crossing costs
that depend only on the first and last nodes used in each region:

1. The Two-Layer-Dijkstra Algorithm, which solves the special case
of pairwise disjoint regions in polynomial time.

2. A proof that, under certain conditions, the problem obtained by
relaxing the pairwise disjoint property is still solvable in polynomial
time.

3. A proof that allowing arbitrary region intersections makes the
problem NP-hard.

• For the variant of the SPPCC given by constant-cost (flat-rate) regions:

1. A proof of NP-hardness.

2. The ABC-Search Algorithm, an efficient Branch & Bound frame-
work that solves the problem to optimality.

• For the variant of the SPPCC defined by a single non-trivial region
with piecewise-constant crossing costs:

1. A proof of NP-hardness.

2. An algorithmic framework that uses existing methods for solving
the resource constrained shortest path problem and provides both
an FPTAS and an exact approach.

2

Our motivation for studying the SPPCC comes from the real-world
problem of flight trajectory optimization, as described in [13]. Here we have
as input an airway network, origin and destination airports, an aircraft of a
given weight, and countries’ overflight fees functions, among other factors.
The objective is to minimize the trajectory-dependent costs (as opposed to
constant costs such as airport fees), which are usually the sum of fuel costs,
overflight costs, and time costs. Fuel costs and time costs are in general
directly proportional to the length of the trajectory, and can thus, after some
simplifications, be projected down into the airway segments (i.e., the arcs
of our graph representation), essentially reducing the problem to a (time-
dependent) shortest-path problem, which can be solved to optimality by using
a variant of Dijkstra’s algorithm. Overflight fees, however, are determined by
very diverse cost models, many of which make Dijkstra’s algorithm deliver
suboptimal solutions.

Overflight costs, also known as ATC charges, are the means by which
Air Traffic Control authorities finance themselves. For each cost airspace (in
general corresponding to a country) used during a flight, airlines are required
to pay a fee, determined by factors such as the type of aircraft and the way
in which the airspace is overflown. To the best of our knowledge, all currently
used models define the overflight cost on an airspace as a function that takes
three parameters: The distance defined by the flight trajectory in the airspace,
the aircraft’s maximum take-off weight, and the origin-destination pair. Since
the latter two are given as input and are independent of the trajectory, we
will assume from here on that the overflight cost function is solely dependent
on the distance.

There exist two widely used definitions of the distance determined by
the intersection of a flight trajectory and an airspace. The first and most
natural variant is to consider the flown distance (FD), which is the total
ground distance traversed by the aircraft in the airspace. The second variant
uses the great-circle-distance (GCD), defined in this context as the length
of the great circle connecting the coordinates where the aircraft enters and
exits the airspace. If a trajectory intersects an airspace multiple times, the
distance considered is the sum of the distances defined by each intersection.

The cost function itself is always non-decreasing and usually defined as a
linear, constant, or piecewise-constant function. This results in six different
combinations, which encompass nearly all cost models currently in use, and
which lead to problems with varying degrees of difficulty. The only outliers,
as of April 2016, are India, Argentina, Philippines, Democratic Republic
of Congo, and Kenya; where the function used is piecewise-linear or even
non-linear. In the remainder of this paper, we will ignore these cases. In
Table 1 we see some representative airspaces which use the different models.
Notice that when the cost function is constant for an airspace, it is irrelevant
whether the distance type used is GCD or FD. Official overflight cost model
publications can be found for example at [1], [2], or [8].

3

Table 1: Examples of airspaces using different cost models, as of April 2016

Function
Distance GCD FD

Linear European countries,
USA, Thailand

Brazil, Ghana,
Saudi Arabia, Iran

Constant Egypt, Sudan, Myanmar, Japan

Piecewise-constant Ethiopia ASECNA1, Angola,
Vietnam

Other India, D.R. Congo Argentina, Kenya

The problem of flight trajectory optimization under consideration of over-
flight costs is essential for minimizing airlines’ operational expenses. In a case
mentioned in [6], in 2007 an airline could save 884 USD in overflight charges on
a flight from San Francisco to Frankfurt by deviating from the standard, most
direct route; thus reducing Canada’s expensive charges. However, despite its
clear importance, the literature on the problem is scarce. The problem is
presented in [13], but no concrete insight on solution approaches is offered.
The authors in [4] also define the problem and consider the linear/GCD
model, but their optimal control algorithm approximates overflight costs by
using FD instead of GCD. Similarly, [15] introduces the linear/GCD model
as well as the piecewise-constant/FD model, but the solution method used is
heuristic and provides no guarantee of optimality.

In this paper, we study the flight trajectory optimization problem with
overflight costs through the more abstract Shortest Path Problem with Cross-
ing Costs (SPPCC). We present the first formal classification of existing
overflight cost models and an extensive complexity analysis. Furthermore, we
introduce efficient algorithms to handle the problem variants that are most
common in practice.

In Section 2, we formally introduce the SPPCC, which models the problem
of flight trajectory optimization with overflight costs. In Section 3 we present
three efficient algorithms that solve the most important variants of the SPPCC
to optimality or near-optimality. Finally, in Section 4 we give results on
the computational complexity of other variants of the SPPCC which are
interesting either from a practical or a theoretical point of view.

1In this context, ASECNA is a cost airspace encompassing 18 African countries, with
an area of approximately 1.5 times that of Europe.

4

2 Combinatorial Model

Let D = (V,A) be a directed graph, with source and target nodes s and t.
For each a ∈ A, we have a constant cost ϕa > 0, which we refer to as the
weight of arc a. Let d : V × V → [0,∞) be a function that we call distance.
For the special case where (u, v) = a ∈ A, we use the notation da := d(u, v).

Let R = {R1, . . . , Rk} ⊆ 2A be a family of sets of arcs, that we shall call
regions, such that

⋃
R∈RR = A. Furthermore, let RG,RF ⊆ R be a partition

of R. RF represents the regions where every arc belonging to the solution
path is important for computing the costs. For regions in RG, only the nodes
used to enter and exit the region are relevant. Let fR : [0,∞)→ [0,∞) be
a non-decreasing function for every R ∈ R. For a path p in D and a region
R ∈ R, let PpR be the set of all maximal subpaths of p contained in R. The
nodes t(p) and h(p) denote the first and last nodes in a path p, respectively.
Similarly, for an arc a = (u, v), we use the notation t(a) = u, h(a) = v.

Finally, we can define the crossing cost corresponding to R ∈ R and an
(s, t)-path p:

γR(p) =





0 if R ∩ p = ∅

fR


∑

q∈Pp
R

d (t(q), h(q))


 if R ∈ RG and R ∩ p 6= ∅

fR


 ∑

a∈R∩p
da


 if R ∈ RF and R ∩ p 6= ∅

Definition 1 The shortest path problem with crossing costs (SPPCC) is to
compute an (s, t)-path p in D that minimizes the cost function

c(p) =
∑

a∈p
ϕa +

∑

R∈R
γR(p). (1)

Example 1 We illustrate the definition of the SPPCC with the example in
Figure 1. There, we have regions R = {R1, R2, R3, R4, R5, R6}, with the
corresponding crossing cost functions given in Table 2. In this example,
we define the arc costs as ϕa := 2da for each a ∈ A. We also suppose
R2, R4 ∈ RG; R1, R5 ∈ RF . Since fR3 and fR6 are constant, it is irrelevant
whether they belong to RG or RF , but for the sake of completeness let us
say R3, R6 ∈ RF . Given that R2 and R4 belong to RG, we use the distances
between the first and last nodes of the intersecting subpaths to evaluate the
crossing cost functions. The total cost of the example path is thus:

c(p) =
∑

a∈p
ϕa + γR1(p) + γR2(p) + γR3(p) + γR4(p) + γR5(p) + γR6(p)

=88 + fR1(4 + 3 + 2) + fR2(4) + fR3(1 + 2 + 4) + fR4(4 + 6) + fR5(1 + 4 + 5) + 0

=158.

5

s

t

4

3
2

3

1
2

1
2

3 2

4

1

6
1

4

5

4

4

6

R1 R2 R3 R4

R5

R6

Figure 1: Example of an SPPCC instance with six regions. Arcs are labeled
with the distances da between their endpoints, and the (s, t)-path p is repre-
sented by the continuous arrows. Dashed arrows represent distances between
nodes that are not connected by an arc in the path.

Table 2: Crossing cost functions for Example 1
i 1 2 3 4 5 6

fRi(x) 3x 2x 10

{
8 if x ≤ 6
20 if x > 6

{
5 if x ≤ 10
10 if x > 10

15

The problem of flight trajectory optimization with overflight costs, as
described in Section 1, can be modeled using the SPPCC as follows: We use
V to represent waypoints and A to represent airway segments. The nodes s
and t represent the departure and destination airports. An airspace, which is
defined as a geographical region, can be modeled by a set R ∈ R. For each
a ∈ A, the cost ϕa can be seen as the fuel cost corresponding to traversing
airway segment a. Furthermore, the great-circle-distance between two points
u and v is represented by the function d(u, v). RG represents the set of
airspaces that use the GCD-model for measuring distance, RF those that use
FD.

Each of the five important airspace cost models outlined in Section 1
induces a variant of the SPPCC. In each variant, we shall assume that all
airspaces use the same cost model. That is, depending on the problem variant
we require either RF = R and RG = ∅; or RG = R and RF = ∅. Likewise,
we suppose that the function fR has the same form (linear, constant or
piecewise-constant) for all R ∈ R. As before, if fR is constant then the
distinction between RF and RG is irrelevant, which leads to a total of five
cases. We will denote them as listed in Table 3.

3 Algorithms

In this section we present exact and (1 + ε)-approximation algorithms to
handle three of the cases presented before, which are of particular importance

6

Table 3: Problem codes corresponding to types of regions in R and crossing
cost functions fR

∀R, fR is...
R = RG RF

Linear SPPCC/L/G SPPCC/L/F
Constant SPPCC/C/·
Piecewise-constant SPPCC/PC/G SPPCC/PC/F

in our flight trajectory optimization application.

3.1 Two-Layer-Dijkstra Algorithm for SPPCC/L/G with pair-
wise disjoint regions

In the first subsection, we consider the variant of the SPPCC where regions
are pairwise disjoint and, for each region, the crossing cost is given by a linear
function evaluated at the distance between the first and the last nodes used
in that region (or the corresponding sum of distances, in case a region is
intersected multiple times). This corresponds to the overflight cost model used
in all European countries, USA, Canada, and many others. The assumption
that the regions in R are pairwise disjoint is reasonable since usually there is
a one-to-one correspondence between cost airspaces and countries, and the
latter do not overlap.

The idea of the Two-Layer-Dijkstra Algorithm is to define a coarse graph
on a subset of the nodes of the original (fine) graph, where shortest paths
that traverse a region in the fine graph correspond to arcs in the coarse graph.
We run a Dijkstra algorithm on the coarse graph, repeatedly using calls to
Dijkstra on the fine graph to determine arc costs on-the-fly. Finally, from the
optimal path in the coarse graph, the minimum-cost path in the fine graph is
reconstructed.

We remark that, while there exist more general versions of this problem
that do not assume pairwise disjointness of the regions and are also solvable in
polynomial time (see Theorem 3 and Proposition 2), the algorithm can easily
be generalized to handle the more realistic setting in our application where
fuel costs are not constant and need to be computed during the execution of
the algorithm.

Formally, we assume that for all R ∈ R there exists αR > 0 such that for a
path p, whose intersections with R are subpaths pR1 , . . . , pRr , the corresponding
crossing cost is γR(p) = αR ·

(
d(t(pR1), h(pR1)) + · · ·+ d(t(pRr), h(pRr))

)
. Recall

that t(·) and h(·) denote the first and last nodes of a path, or the tail- and
head nodes of an arc.

Some more definitions are necessary before introducing the algorithm.
For R ∈ R, define the sets of nodes that can be used to enter or to exit R as

7

follows:

V entry(R) :=

{
{v ∈ V |δ−(v)\R 6= ∅, δ+(v) ∩R 6= ∅} ∪ {s} if δ+(s) ∩R 6= ∅
{v ∈ V |δ−(v)\R 6= ∅, δ+(v) ∩R 6= ∅} if δ+(s) ∩R = ∅

V exit(R) :=

{
{v ∈ V |δ−(v) ∩R 6= ∅, δ+(v)\R 6= ∅} ∪ {t} if δ−(t) ∩R 6= ∅
{v ∈ V |δ−(v) ∩R 6= ∅, δ+(v)\R 6= ∅} if δ−(t) ∩R = ∅

V entry(R) and V exit(R) will be referred to as the sets of entry and exit nodes of
R, respectively. We assume that for R ∈ R we have V entry(R)∩V exit(R) = ∅.
If this is not the case, we can achieve it through a simple transformation that
duplicates nodes and assigns incident arcs in an appropriate way, which does
not affect the hardness of the problem.

Consider a directed graph D̄ = (V̄ , Ā), where

V̄ :=
⋃

R∈R
(V entry(R) ∪ V exit(R)) and Ā :=

⋃

R∈R
(V entry(R)× V exit(R)).

Given that a node cannot simultaneously be an entry- and an exit node
of the same region, and since we assume that R partitions A, there exists a
unique Rā for each ā ∈ Ā such that the tail node of ā is an entry point of Rā
and its head node an exit point. We define the function ComputeCost(ā)
as follows, for every ā ∈ Ā: First we compute the shortest (t(ā), h(ā))-path
in D|Rā using arc costs ϕ. Here, we use D|Rā to denote the subgraph of D
induced by Rā. Let zā be the corresponding optimal value (or +∞ if no such
path could be found). ComputeCost(ā) then returns zā + fRā(d(u, v)).

Given these definitions, the Two-Layer-Dijkstra Algorithm is very simple.
It runs in two phases, and works as follows:

The first phase is identical to the classical Dijkstra algorithm searching a
shortest (s, t)-path on D̄ except for one detail. Whenever an arc ā is examined
by the algorithm, we do not know its costs a priori. Instead, we compute
them on-the-fly by calling ComputeCost(ā).

In the second phase, each arc ā in the optimal solution is expanded to a
subpath in D by recomputing the shortest (t(ā), h(ā))-path in D|Rā using arc
costs ϕ. Finally, all such subpaths are concatenated to return an (s, t)-path
in D. See Appendix A.1 for a formal description.

Theorem 1 The Two-Layer-Dijkstra Algorithm returns the optimal solution
to SPPCC/L/G if the sets in R are pairwise disjoint.

Proof 1 Analogously to the classical Dijkstra algorithm, a simple inductive
process on the number of visited nodes in D̄ shows that the Two-Layer-Dijkstra
Algorithm finds the optimal solution from s to every v̄ ∈ V̄ ; and in particular
to t.

Since the algorithm consists of O(|V |2) iterations of the Dijkstra algorithm,
it has a total running time of O(n2m+n3 log(n)), where n = |V | andm = |A|.
Thus, we conclude the following result:

8

Corollary 1 If the sets in R are pairwise disjoint, then SPPCC/L/G can
be solved in polynomial time.

3.2 ABC-Search Algorithm for SPPCC/C/·
In this subsection, we work with the assumption that all regions have constant
crossing cost functions. One can imagine this as each region having an opening
cost or flat rate, which once paid allows an unlimited use of its arcs. This
cost model is currently used in approximately 70 countries (mostly in Africa
and Asia).

We propose a Branch & Bound algorithm which we call ABC-Search
Algorithm that runs as follows: At all times, we update a universal upper
bound U on the cost of an optimal path and a corresponding feasible solution
p. Each node of the tree is characterized by three sets A,B, C ⊆ R, which
form a partition of R and represent available, bought, and closed regions
(hence the algorithm’s name1). Furthermore, at each node we compute lower
and upper bounds on the node’s optimal value, L′ > 0 and U ′ > 0, which
we compare to the global upper bound to decide whether to prune the tree
at this point or to update the global upper bound. At each node, we obtain
the local bounds by computing a shortest (s, t)-path using only arcs in the
available and bought regions. After the path is found, we add to its length
the corresponding cost of the bought regions (which at this point we have
committed to purchasing) to obtain the node’s lower bound. Then, the node’s
upper bound (the actual cost of the path) is computed by adding the cost
of the crossed available regions to the previous value. For branching, we
choose one of the available regions used by the path and create two children
by buying or closing this region, respectively.

Formally, we assume that fR is constant and non-negative for all R ∈ R.
As mentioned before, this means that in this case the distinction between RG
and RF is irrelevant. We denote these constant crossing costs by γR ≥ 0 for
R ∈ R. As we show in Proposition 3, the problem SPPCC/C/· is NP-hard
and cannot be approximated within a polylogarithmic factor unless P=NP.
The formal description can be found in Algorithm 1.

Since the algorithm is based on enumeration, it is clear that it finds
the optimal solution. Our experience in the flight trajectory optimization
problem shows that when minimizing the sum of fuel costs and overflight
fees, the latter usually represent between 10% and 50% of the total cost of
the optimal solution. This is important because the lower bounds in the
algorithm sketched above are strongly dependent on the arc weights ϕa, which
represent fuel consumption. In other words, in our application it will often
be the case that the cost saved by flying around a large, expensive airspace
will be offset by the extra fuel costs, thus bringing the search to a swift end.

1No relation to the Artificial Bee Colony algorithm.

9

Algorithm 1 ABC-Search Algorithm for SPPCC/C/·
Input: D, s, t, ϕ, R and {γR}R∈R.
Output: (s, t)-path p in D
1: Initialize U ←∞, p← ∅, Q← {(R, ∅, ∅)}.
2: while Q 6= ∅ do
3: Extract an element (A,B, C) from Q.
4: Compute the shortest path on D|A∪B using arc costs ϕ.
5: if No path could be found then continue. . prune tree if node is

infeasible
6: else Let p′ be the optimal solution.
7: Define L′ ←

∑

a∈p′
ϕa +

∑

R∈B
γR and U ′ ← L′ +

∑

R∈A:R∩p′ 6=∅
γR . local

bounds
8: if U ′ < U then update U ← U ′ and p← p′. . update global upper

bound
9: if L′ ≥ U or R ∩ p = ∅ for every R ∈ A then continue.. prune tree

10: Select some R ∈ A with R ∩ p 6= ∅. . buy/close a used available
region

A1 ← A\{R} A2 ← A\{R}
B1 ← B ∪ {R} B2 ← B
C1 ← C C2 ← C ∪ {R}

11: Q← Q ∪ {(A1,B1, C1), (A2,B2, C2)} . add both new children to the
tree

12: return p

10

3.3 Exact Algorithm and FPTAS for SPPCC/PC/F and a
Single Non-Trivial Region

In this subsection, let us consider a particular case of SPPCC/PC/F,
where there exists exactly one region with non-zero crossing costs, and its
cost function is piecewise constant.

While this seems like a very restricted setting, it is inspired by an impor-
tant real-world case. The above-mentioned airspace ASECNA is formed by
the union of 18 African countries, has a piecewise-constant cost function with
four steps as well as a very large area, and is highly non-convex. Furthermore,
it is routinely crossed by routes from Europe to South America and vice
versa. Due to the non-convexity, it is common for aircraft to enter and exit
the airspace more than once. Combined with the piecewise-constant cost
model, this often leads to Dijkstra-like algorithms delivering solutions of a
very bad quality, since subpaths of optimal paths are not necessarily optimal.
Given the importance of this airspace, it is justified to consider approaches
that assume the existence of a single region with these properties. We give
this restricted problem the code name SPPCC/A (A for ASECNA).

The algorithm we propose is based on the observation that each step in
the cost function can be used to naturally define an instance of the resource-
constrained shortest path problem (RCSPP), which is NP-hard but for which
there exists a Fully Polynomial Time Approximation Scheme (FPTAS), see
[11] or [14]. Given the importance of the RCSPP in column-generation
frameworks, exact algorithms that are efficient in practice have also been
extensively studied in the literature, see [12] for an overview. Our algorithm
solves at most as many RCSPP instances as steps in the cost function,
either exactly or approximately, thus returning an optimal solution or an
ε-approximate solution, respectively.

Formally, we assume that there exist two regions, R = {R0, R}, where
R = RF , fR0 ≡ 0 and fR is a piecewise-constant function with T steps, of
the form

fR(x) =





k1 if x ∈ (t0, t1]
k2 if x ∈ (t1, t2]
...
kT if x ∈ (tT−1, tT),

where 0 ≤ k1 < k2 < · · · < kT and 0 = t0 < t1 < t2 < · · · < tT−1 < tT =∞.
We also assume that for any digraph D = (V,A), s, t ∈ V , ϕ : A→ [0,∞),

d : A → [0,∞), B > 0 and ε ≥ 0 we have access to a black-box algorithm
RCSPPSolver(D, s, t, ϕ, d,B, ε) which returns an (s, t)-path p in D such
that

∑
a∈p da ≤ B and

∑
a∈p ϕa ≤ (1 + ε)z∗. Here, z∗ is the optimal value of

the RCSPP instance. Using the results mentioned above, we can assume that
RCSPPSolver runs in exponential time when ε = 0, but in time polynomial
in 1

ε and in the problem size when ε > 0.

11

Our contribution is Algorithm 2. In the following, we use d(p,R) to
denote

∑
a∈p∩R da.

Algorithm 2 Exact/approximate approach for solving SPPCC/A
Input: D, s, t, ϕ, d, R and fR as described above, ε ≥ 0.
Output: (s, t)-path p in D
1: Define S ← {1, 2, . . . , T}, B1 ←∞, P ← ∅, k ← 1 . initialize

2: Define dR(a)←
{
da if a ∈ R
0 else . define new distance function with

support in R
3: while S 6= ∅ do
4: pk ←RCSPPSolver(D, s, t, ϕ, dR, Bk, ε) . solve RCSPP instance

with bound Bk
5: P ← P ∪ {pk}, k ← k + 1 . add pk to the list of candidate paths
6: Let i s.t. ti < d(p,R) ≤ ti+1, set Bk ← ti . identify corresp. step

function interval
7: for all j ≥ i do
8: S ← S\{j} . discard all steps located on the right of identified

step
9: return p ∈ P that minimizes c(p).

Since RCSPPSolver is called a linear number of times, it is clear that
the running time is polynomial in 1

ε if ε > 0 but exponential if ε = 0. Next,
we prove correctness.

Theorem 2 Algorithm 2 returns a (1 + ε)-approximate solution to SP-
PCC/A for ε ≥ 0.

Proof 2 Suppose the optimal solution p∗ satisfies ti′ < d(p∗, R) ≤ ti′+1

for some i′. Let k such that Bk+1 ≤ ti′ and ti′+1 ≤ Bk. We claim that
c(pk) ≤ (1 + ε)c(p∗). By Line 6 in Algorithm 2, we have that there is some i
with Bk+1 = ti < d(pk, R) ≤ ti+1. Thus, we have d(pk, R) ≤ ti′+1.

Let OPT = OPTϕ + OPT γ be the optimal value corresponding to p∗,
decomposed into arc costs and crossing costs. We can see that p∗ is also the
optimal solution to the RCSPP instance defined by B = ti′+1, and that its
corresponding value is precisely OPTϕ. Indeed, if this were not the case, there
would exist a path p with d(p,R) ≤ ti′+1 and

∑
a∈p ϕa <

∑
a∈p∗ ϕa. Such

a path would have crossing costs at most as high as p∗, thus contradicting
optimality of the latter. Therefore, we have

c(pk) ≤ (1 + ε)OPTϕ +OPT γ ≤ (1 + ε)(OPTϕ +OPT γ) ≤ (1 + ε)OPT.

4 Complexity Analysis

In this section, we give complexity results for different variants of the problem.

12

Proposition 1 SPPCC/L/F can be solved in polynomial time.

Proof 3 Let R ∈ R and p an (s, t)-path. By linearity of fR, for some
constant αR ≥ 0 we have

γR(p) = fR


 ∑

(u,v)∈R∩p
d(u, v)


 = αR·


 ∑

(u,v)∈R∩p
d(u, v)


 =

∑

(u,v)∈R∩p
αR·d(u, v)

Thus, we seek to compute an (s, t)-path p that minimizes

c(p) =
∑

a∈p

(
ϕa + da

∑

R∈R:a∈R
αR

)
,

In other words, all overflight costs can be projected to the arcs, and thus
SPPCC/L/F reduces to the classical shortest path problem.

While the algorithms described in Section 3 tackle problems that are very
important in our application, Theorem 3 and Proposition 2 are concerned
with cases that are interesting rather from a theoretical point of view, and
could have applications in other fields.

Theorem 3 If R is a laminar family, i.e., any two sets in R are either
disjoint or one a subset of the other, then SPPCC/L/G can be solved in
polynomial time.

Proof 4 For a region R, let us define its level `(R) ∈ N as the number
of different regions R′ ∈ R such that R is a proper subset of R′. That is,
`(R) := |{R′ ∈ R|R (R′}|. Let N := max{`(R)|R ∈ R}. We will prove the
result by induction on N .

By Corollary 1, we know that for N = 0 the claim holds. Let us now
assume that it is true for N − 1. Let RN := {R ∈ R|`(R) = N}.

For each R ∈ RN , we consider V entry(R) and V exit(R) as defined in
Subsection 3.1. For each u ∈ V entry(R), v ∈ V exit(R), let z(u, v) be the value
of the shortest (u, v)-path in D|R. If no such path exists, then z(u, v) takes
the value +∞.

We then define a new SPPCC instance as follows:

• D′(V ′, A′), V ′ := V , s′ := s, t′ := t, R′ := R\RN
• A′ := (A\{⋃R∈RN

R}) ∪ {(u, v) ∈ V entry(R)× V exit(R) for some R ∈
RN}

• ϕ′a :=

{
ϕa if a ∈ A
z(u, v) + fR(d(u, v)) else for a ∈ A′.

13

It can now be seen that for each optimal solution of the original instance
there exists a unique optimal solution in the new instance which has the same
objective value, since maximal subpaths contained in some R ∈ RN must be
shortest paths with respect to ϕ. Similarly, for each optimal solution in the
new instance, there exists at least one optimal solution in the original instance
which has the same objective value. Thus, using our induction hypothesis, we
can compute an optimal solution to the new instance in polynomial time, and
from there derive the optimal solution to the original instance.

The following proposition has a technical proof that we do not include
here due to space constraints, see Appendix A.2.

Proposition 2 If the intersection of any three sets in R is empty, then
SPPCC/L/G can be solved in polynomial time.

Theorem 4 SPPCC/L/G is NP-hard, even if D is acyclic.

Proof 5 We do a reduction from the Path Avoiding Forbidden Pairs Problem
(PAFP), which is defined as follows. Given are a directed, acyclic graph
D = (V,A), two nodes s, t ∈ V and a set of pairs of nodes F ⊆ V × V .
The objective is to decide whether there exists a path from s to t that uses at
most one node of each of the pairs in F . The PAFP problem is known to be
NP-complete [9].

Given an instance of the PAFP problem, we label the nodes V = {v1, v2, . . . , vn}
according to the topological ordering of D, so that (vi, vj) ∈ A implies i < j.
We define a distance function d as follows for each u, v ∈ V :

d(u, v) :=

{
0 if {u, v} /∈ F
1 if {u, v} ∈ F .

For each {vi, vj} ∈ F , with i < j, we define Ri,j := {(vk, v`) ∈ A|i ≤ k <

` ≤ j}. Let R :=
⋃

i,j:(vi,vj)∈F
Ri,j. For each such set Ri,j, we define fRi,j as

the identity. We define arc weights ϕa = 0 for each a ∈ A, and consider the
resulting SPPCC instance. See Figure 2 for an example of the construction.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

Figure 2: Example of a PAFP instance, where a feasible (v1, v11)-path is
sought. Here, F = {(v2, v6), (v3, v10), (v4, v8), (v5, v9)}. For each forbidden
pair, we define a region. In the figure, an arc a belongs to a region R if and
only if a is completely contained in R.

14

Given an (s, t)-path p and a forbidden pair {vi, vj} ∈ F , the overflight
cost γRi,j (p) in the SPPCC/L/G instance is positive if and only if both
vi and vj are visited by p. Thus, the optimal value of is 0 if and only if
the PAFP instance has a feasible solution. This means that a polynomial
reduction of PAFP to SPPCC/L/G can be made, completing the proof.

Proposition 3 SPPCC/C/· is NP-hard.

Proof 6 The problem of finding an (s, t)-path using the smallest number of
different colors in a directed graph where each arc has a color was proven to
be NP-hard in [5]. It is easy to see that this corresponds to a restricted version
of SPPCC/C/· in which all arc weights ϕa are set to 0 and all crossing
costs are set to 1, thus implying NP-hardness of SPPCC/C/·. Furthermore,
in [11] the authors show that for undirected graphs, if the colors have non-unit
costs and one seeks to minimize the costs, the problem cannot be approximated
within any polylogarithmic factor unless P=NP. Since this problem is also
a particular case of SPPCC/C/·, the hardness result also applies for the
latter.

The following corollary is a direct consequence of the previous result,
since SPPCC/PC/G and SPPCC/PC/F are both generalizations of SP-
PCC/C/·.

Corollary 2 SPPCC/PC/G and SPPCC/PC/F are NP-hard.

Furthermore, we can prove that even if R consists of a single element
whose cost function is piecewise-constant and has two steps, then the problem
remains NP-hard.

Proposition 4 SPPCC/PC/F is NP-hard, even if R = {R} and fR has
two steps.

Proof 7 We will show that in this case, SPPCC/PC/F generalizes the
resource-constrained shortest path problem (RCSPP), which is well known to
be NP-hard [10]. Indeed, given B > 0, consider the following cost function:

fR(d) =

{
0 if d ≤ B
M if d > B,

where M is a large positive number. If M is large enough, then the algorithm
will try to find a path such that its total distance in R (as defined by d) is at
most B. This corresponds precisely to the RCSPP.

15

5 Conclusions

In this paper, we analyzed the complexity of the most relevant variants of
the SPPCC, and introduced three efficient algorithms for the solution of
cases that are most important in our application to the flight trajectory
optimization problem with overflight costs. An overview of the results and
algorithms presented can be found in Table 4.

Table 4: Overview of results

SPPCC/L/G

• Section 3.1: Poly-time Two-Layer-Dijkstra algorithm
for the case in which regions don’t intersect
• Theorem 3 and Proposition 2: Polynomial if regions
form a laminar family or if any arc belongs to at
most two regions
• Theorem 4: NP-hard for arbitrary region
intersections

SPPCC/L/F • Proposition 1: Polynomial

SPPCC/C/·
• Proposition 3: NP-hard
• Section 3.2: Efficient ABC-Search Branch & Bound
algorithm

SPPCC/PC/G • Corollary 2: NP-hard

SPPCC/PC/F

• Proposition 4: NP-hard even if there exists only one
non-trivial region and its cost function has two steps
• Section 3.3: Efficient exact algorithm and FPTAS if
there exists a single non-trivial region

6 Acknowledgements

We thank Lufthansa Systems GmbH & Co. KG for providing us with the
data that made the overflight cost model classification possible, as well as for
the many fruitful discussions.

References
[1] Federal Aviation Administration, Overflight fees, 2016. [Online; accessed 8-April-2016].

[2] ASECNA, Air navigation services charges, 2016. [Online; accessed 8-April-2016].

[3] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato Werneck, Route planning in
transportation networks, Technical Report MSR-TR-2014-4, 2014.

[4] Pierre Bonami, Alberto Olivares, Manuel Soler, and Ernesto Staffetti, Multiphase
mixed-integer optimal control approach to aircraft trajectory optimization, Journal of
Guidance, Control, and Dynamics 36 (July 2013), no. 5, 1267–1277.

16

[5] Hajo Broersma, Xueliang Li, Gerhard Woeginger, and Shenggui Zhang, Paths and
cycles in colored graphs, Australasian journal of combinatorics 31 (2005), 299–311.

[6] Susan Carey, Calculating costs in the clouds, The Wall Street Journal (2007March).

[7] Edsger W. Dijkstra, A note on two problems in connexion with graphs, Numerische
Mathematik 1 (1959), no. 1, 269–271.

[8] EUROCONTROL, Establishing route charges, 2016. [Online; accessed 8-April-2016].

[9] Harold N. Gabow, Shachindra N. Maheshwari, and Leon J. Osterweil, On two problems
in the generation of program test paths, IEEE Transactions on Software Engineering
SE-2 (1976), no. 3, 227–231.

[10] Michael R. Garey and David S. Johnson, Computers and intractability: A guide to the
theory of np-completeness, W. H. Freeman & Co., New York, NY, USA, 1979.

[11] Refael Hassin, Jérôme Monnot, and Danny Segev, Approximation algorithms and hard-
ness results for labeled connectivity problems, Journal of Combinatorial Optimization
14 (2007), no. 4, 437–453.

[12] Stefan Irnich and Guy Desaulniers, Shortest path problems with resource constraints,
Column generation, 2005, pp. 33–65.

[13] Stefan E. Karisch, Stephen S. Altus, Goran Stojković, and Mirela Stojković, Operations,
Quantitative problem solving methods in the airline industry, 2012, pp. 283–383
(English).

[14] Dean H. Lorenz and Danny Raz, A simple efficient approximation scheme for the
restricted shortest path problem, Oper. Res. Lett. 28 (June 2001), no. 5, 213–219.

[15] Robert L. Schultz, Stephen G. Pratt, and Donald A. Shaner, Four-dimensional route
planner, Google Patents, 2003. WO Patent App. PCT/US2002/029,474.

[16] Christian Sommer, Shortest-path queries in static networks, ACM Comput. Surv. 46
(March 2014), no. 4, 45:1–45:31.

A Appendix

Here, we give a detailed description of the Two-Layer-Dijkstra Algorithm
presented in Subsection 3.1, as well as the proof of Proposition 2.

A.1 The Two-Layer-Dijkstra Algorithm

The complete version of the Two-Layer-Dijkstra Algorithm can be found in
Algorithm 3. We use the same notation as in Section 3.1. In particular, we
make use of the subroutine ComputeCost(ā) defined before. We also define
the subroutine ShortestPath(s, t,D, ϕ), which takes a directed graph, a
pair of nodes in that digraph, and a non-negative real function on the arcs;
and uses Dijkstra’s algorithm to return the shortest path connecting the two
nodes in the digraph.

A.2 Proof of Proposition 2

Proof 8 We will prove that the special case of SPPCC/L/G where each
arc belongs to at most two regions is solvable in polynomial time. In fact,
it is easy to see how our algorithm can be extended to handle more general

17

Algorithm 3 Two-Layer-Dijkstra Algorithm for SPPCC/L/G
Input: D, s, t, ϕ, R and fR for R ∈ R.
Output: (s, t)-path p in D
1: Construct D̄, insert dummy node vnull to V̄ . D̄ as in Section 3.1
2: for all v̄ ∈ V̄ do
3: dist[v̄]←∞ . initialize distances
4: pred[v̄]← vnull . initialize predecessors
5: dist[s]← 0
6: Q← V̄
7: while Q 6= ∅ do
8: ū← argminv̄∈Q(dist[v̄]) . choose node with minimum distance
9: if ū = t then

10: break
11: Q← Q\{v̄}
12: for all v̄ s.t. (ū, v̄) ∈ Ā do
13: `ū,v̄ ← ComputeCost((ū, v̄)) . compute cost corresponding to

arc (ū, v̄)
14: if dist[v̄] > dist[ū] + `ū,v̄ then . if new cost is better
15: dist[v̄]← dist[ū] + `ū,v̄ . update distance
16: pred[v̄]← ū . update predecessor
17: p← ∅, u← t
18: while pred[u] 6= vnull do
19: p← ShortestPath(pred[u], u,D, ϕ) ∪ p . reconstruct path in D

recursively
return p

18

Algorithm 4 Algorithm for SPPCC/L/G with pairwise region intersections
Input: D, s, t, ϕ, R and fR for R ∈ R.
Output: (s, t)-path p in D
1: Q← {{s}}
2: while Q 6= ∅ do
3: p← argminq∈Q(c′(q)) . extract minimum-cost path from queue
4: u← h(p) . define u as the last node of the path
5: if u = t then
6: return p

7: Q← Q\{p}
8: for all v s.t. (u, v) ∈ A do
9: p′ ← p ∪ (u, v) . extend p by appending (u, v) at the end

10: if Q(p) = ∅ then . if no comparable paths exist
11: Q← Q ∪ {p′} . insert path to queue
12: else if p′ dominates q for each q ∈ Q(p) then . see Definition 2
13: Q← Q ∪ {p′}
14: Q← Q\Q(p)

return ∅ . if no path could be found

cases, where each arc belongs to at most N regions, for N ∈ N. However, the
running time increases exponentially in N , and the notation becomes very
difficult. For that reason, we present a polynomial-time algorithm for N = 2.

In this paper, we have defined a path as a set of arcs. For this proof, it is
more convenient to think of a path as a set of both nodes and arcs.

Our algorithm follows the same idea as the standard dynamic programming
algorithms commonly used for the resource constrained shortest path problem,
see [12]. We will keep a set Q of paths that start at s. Initially, this set
contains the single element {s}. In every iteration, we extract from Q the
path p with smallest cost (using the cost function defined below in (2)), and
insert to Q all paths obtained by appending an arc to p at its end node. Then,
we carry out a dominance step, where iteratively we compare paths in Q that
end at the same node, and eliminate a (possibly empty) subset of them. As
opposed to Dijkstra’s algorithm, where after the domination step there exists
at most one path ending at v for every v ∈ V , we will keep O(|V |2)-many
such paths for each v.

Given a path p = (v1, v2, . . . , vk), let Rh(p) := {R ∈ R|(vk−1, vk) ∈
R, vk /∈ V exit(R)}. That is, Rh(p) represents the set of regions in R that p
crossed with its last edge but has not yet exited. By definition of the problem,
we have Rh(p) ≤ 2 for every p. For each R ∈ Rh(p), let g(p,R) represent
the node vi ∈ p such that the (vi, vk)-subpath of p is maximally contained in
R. Furthermore, we define a cost function similar to that defined in (1), and

19

using the same notation:

c′(p) =
∑

a∈p
ϕa +

∑

R∈R
fR


∑

q∈Qp
R

d(t(q), h(q))


 . (2)

Here, QpR := {q ∈ PpR|h(q) ∈ V exit(R)}. That is, QpR is the set of subpaths of
p that are maximally contained in R and such that their last node is an exit
node of R. Thus, the cost function c′ returns the sum of arc weights of a path
plus the crossing costs corresponding to all maximal intersections except for
those containing the last arc in p, if such an intersection could be extended by
adding an arc to p.

Definition 2 Given two paths p1 and p2 starting at s, we say p1 and p2 are
comparable if the following two conditions are satisfied:

1. Rh(p1) = Rh(p2)

2. g(p1, R) = g(p2, R) for every R ∈ Rh(p1)

For a set of paths Q and a path p, let Q(p) be the set of paths in Q that
are comparable to p. Furthermore, we say p1 is dominated by p2 ∈ Q(p1) if
c′(p1) ≥ c′(p2).

In the dominance step, we delete a path p1 from Q only if there exists
another p2 ∈ Q that dominates it. That is, if p2 is a better candidate that
used the same nodes to enter the regions p1 is currently visiting.

A formal description can be found in Algorithm 4. It should be noted
that the approach sketched could be made more efficient, for example by not
storing the complete paths in the priority queue. However, in this proof we
sacrifice efficiency for the sake of clarity.

It is clear that the algorithm runs in polynomial time, since for every
v ∈ V , there are at most O(|V |2) insertions to Q of paths ending at v. We
also know that if a candidate subpath is eliminated, the domination criterion
ensures that we are keeping an alternative that will lead to a solution at least
as good as any containing the deleted subpath. Furthermore, by the way c′ is
defined, and since t is an exit node of any region containing arcs incident to
it, we know that for any (s, t)-path considered during the algorithm, we have
c(p) = c′(p), thus ensuring optimality of the final solution.

20

