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Abstract. We consider a novel partitioning of the set of non-dominated points for
general multi-objective integer programs with k objectives. The set of non-dominated
points is partitioned into a set of non-dominated points whose efficient solutions are also
efficient for some restricted subproblem with one less objective; the second partition
comprises the non-dominated points whose efficient solutions are inefficient for any of
the restricted subproblems. We show that the first partition has the nice property that
it yields finite rectangular boxes in which the points of the second partition are located.

Mathematics Subject Classification: 90C10, 90C29

1 Introduction
We consider general multi-objective (aka multi-criteria) integer programming problems
where one is given k objectives c1, . . . , ck ∈ Rn and seeks to minimize all objectives ci, for
i = 1, . . . , k, simultaneously over all vectors x ∈ Zn subject to a set of linear inequality
constraints (see Fig. 1). In particular, let M be some finite index set and suppose that
for every i ∈ M we are given an n-dimensional vector ai and a scalar bi. We then
consider the multi-objective problem

min (cT
1 x, . . . , cT

k x)
s.t. aT

i x ≤ bi, i ∈M, (MOP)
x ∈ Zn.

In the following let [k] := {1, ..., k} with k ∈ N. A feasible point y∗ = (cT
1 x∗, . . . , cT

k x∗)
and its corresponding feasible solution x∗ is efficient if there is no other feasible point
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Figure 1: Feasible space of a bi-criteria in-
teger minimization problem.
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Figure 2: Image in objective space with
non-dominated points (red) and
dominated points (blue).

y with yi ≤ y∗i for i = 1, . . . , k and yj < y∗j for at least one j ∈ [k]. For a set of domi-
nated and non-dominated points of a bi-objective integer program see Fig. 2. The chal-
lenge given a multi-objective integer program lies then in computing the set of all non-
dominated points which will be denoted by YN . Efficient solutions and non-dominated
points, respectively, that are optimal for a weighted sum of the original objectives are
called supported. For a more detailed introduction to multi-criteria optimisation we refer
the reader to [4].
In what follows, we also consider the k − 1 objective subproblem of (MOP)

min (cT
1 x, . . . , cT

i−1x, cT
i+1x, . . . , cT

k x)
s.t. aT

i x ≤ bi, i ∈M, (MOP-i)
x ∈ Zn,

for some i ∈ [k].
Determining whether a feasible point is non-dominated is NP-hard [7, 9] and even for

problems with 2 objectives the set of non-dominated points can already be exponential
in the input size [5]. However, the amazing progress in solver technology during the
last decade [1] makes it nowadays possible to solve formerly intractable problems. This
development has sparked a new interest in tackling multi-objective integer programs
[6, 2, 3].

2 Partitioning the set of non-dominated points
A well-known partitioning of the set of non-dominated points is given by the set of sup-
ported non-dominated points and the set of unsupported non-dominated points. For
problems with two objectives neighboring supported non-dominated points yield trian-
gles in which potential unsupported non-dominated points are located. Hence, in the
bi-objective case, a valid and often used approach is to compute the set of supported
non-dominated points in a first phase and the set of unsupported points in a second
phase [8].
It is not clear how to extend this approach to problems with more than two objectives

because, in general, the supported non-dominated points do not give upper bounds on
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the values of unsupported non-dominated points anymore (see Example 2.1).

Example 2.1. The 3-objective integer program

min (
4∑

i=1

4∑
j=1

c1ij xij ,
4∑

i=1

4∑
j=1

c2ij xij ,
4∑

i=1

4∑
j=1

c3ij xij)

s.t.
4∑

i=1
xij = 1 ∀j ∈ [4]

4∑
j=1

xij = 1 ∀i ∈ [4]

4∑
i=1

4∑
j=1

c2ij xij ≤ 15

xij ∈ {0, 1}

with

c1 =


3, 6, 4, 5
2, 3, 5, 4
3, 5, 4, 2
4, 5, 3, 6

 , c2 =


2, 3, 5, 4
5, 3, 4, 3
5, 2, 6, 4
4, 5, 2, 5

 , c3 =


4, 2, 4, 2
4, 2, 4, 6
4, 2, 6, 3
2, 4, 5, 3


has the three supported non-dominated points y1 = [11, 11, 14], y2 = [15, 9, 17], y3 =
[19, 14, 10]. It also has (among others) the unsupported non-dominated point y4 =
[17, 15, 11] whose second coordinate is not bounded from above by any of the second
coordinates of y1, y2, y3 (see also Fig. 3)

Hence, approaches for three (or more) objectives generally do not distinguish/partition
the set of non-dominated points into subsets with different corresponding properties.
They usually compute arbitrary non-dominated points consecutively and discard domi-
nated areas of the solution space until the solution space cannot contain any potential
non-dominated point anymore.
In what follows, we present a novel partitioning of the set of non-dominated points:

the first partition corresponds to the set of non-dominated points of (MOP) whose
corresponding efficient solutions are also efficient for (MOP-i) for some i ∈ [k] and the
second partition comprises the non-dominated points of (MOP) whose corresponding
efficient solutions are inefficient for (MOP-i) for all i ∈ [k]. We will show that the first
set of non-dominated points will bound the objective values of the non-dominated points
in the second partition.

Definition 2.1. Let i ∈ [k]. Then we define N−i ⊆ YN to be the set of non-dominated
points of (MOP) whose corresponding efficient solutions are also efficient for (MOP-i).
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Figure 3: Unsupported non-dominated point that is not inside any potential box given
by supported non-dominated points

Remark 2.1. Equivalently, N−i can be defined to be the set of non-dominated points of
YN which are also non-dominated for the projection of YN onto the 1, . . . , i−i, i+1, . . . , k-
th coordinates.

Note that for i, j ∈ [k] with i 6= j, in general, N−i ∩N−j 6= ∅ holds.

Example 2.2. Let N := {s = [11, 11, 14], t = [13, 16, 11], u = [19, 14, 10], v =
[14, 14, 13]} be the set of all non-dominated points for some 3-objective integer program.
Then N−1 = {s, u}, N−2 = {s, t, u} and N−3 = {s}.

The first partition of non-dominated points will be given by the union of N−i over all
i ∈ [k]. To simplify notation for what follows, we denote it by N :=

⋃k
i=1N−i. We now

define the second partition.

Definition 2.2. Let N̄ = YN \ N be the set of non-dominated points of (MOP) whose
corresponding efficient solutions are inefficient for (MOP-i) for i = 1, . . . , k.

Example 2.3. N̄ = {v} in the previous example with YN := {s = [11, 11, 14], t =
[13, 16, 11], u = [19, 14, 10], v = [14, 14, 13]}.

Theorem 2.1. Let ȳ ∈ N̄ . Then there are y1 ∈ N−1, . . . , yk ∈ N−k such that

max
j∈[k]\{i}

{yj
i } ≤ ȳi < yi

i

for i = 1, . . . , k.
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Proof. Assume ȳ ∈ N̄ and let x̄ be the corresponding efficient solution for (MOP). By
assumption, x̄ is inefficient for (MOP-i) for i = 1, . . . , k. Hence, for i = 1, . . . , k, there
is yi ∈ N−i with yi 6= ȳ such that yi

j ≤ ȳj for j ∈ [k] \ {i}. Since ȳ is a non-dominated
point of (MOP), yi

i > ȳi must hold. Combining these inequalities we get

max{y2
1, . . . , yk

2} ≤ ȳ1 < y1
1

max{y1
2, y3

2, . . . , yk
2} ≤ ȳ2 < y2

2
...

max{y1
k, . . . , yk−1

k } ≤ ȳk < yk
k

Theorem 2.1 basically tells us that the non-dominated points in N give us a lower
bound as well as an upper bound on the objective values of the points in N̄ .

Example 2.4. For v = [14, 14, 13] it holds that

max{t1, s1} ≤ v1 < u1

max{s2, u2} ≤ v2 < t2

max{t3, u3} ≤ v3 < s3

with u = [19, 14, 10] ∈ N−1, t = [13, 16, 11] ∈ N−2 and s = [11, 11, 14] ∈ N−3.

Definition 2.3. Let B(y1, . . . , yk) :=
k∏

i=1
[ max
j∈[k]\{i}

{yj
i }, yi

i) be the k-ary Cartesian product

of half-open intervals given by yi ∈ N−i for i = 1, . . . , k. We will call B(y1, . . . , yk) a
(rectangular) box.

We show next that none of the points in N is contained in any of the rectangular
boxes given by points in N .

Theorem 2.2. Let B(y1, . . . , yk) be a rectangular box given by some (y1 ∈ N−1, . . . , yk ∈
N−k. Then, for all y ∈ N , we have y /∈ B(y1, . . . , yk).

Proof. None of the y1, . . . , yk is contained in B(y1, . . . , yk) since B(y1, . . . , yk) is the
k-ary Cartesian product of half-open intervals excluding the i-th component of yi for
i = 1, . . . , k. Now assume that there is y∗ ∈ N \ {y1, . . . , yk} with y∗ ∈ B(y1, . . . , yk).
Then, for i = 1, . . . , k,

max
j∈[k]\{i}

{yj
i } ≤ y∗i < yi

i

holds. This implies, for i = 1, . . . , k, that

yi
j ≤ y∗j for all j ∈ [k] \ {i}.
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In other words, for i = 1, . . . , k, either yi
j = y∗j for all j ∈ [k] \ {i} or yi

j ≤ y∗j for all
j ∈ [k] \ {i} with a strict inequality for at least one j ∈ [k] \ {i}. Now assume there is
i ∈ [k] such that yi

j = y∗j for all j ∈ [k] \ {i}. Then y∗ dominates yi because we also have
y∗i < yi

i contradicting yi ∈ N−i. On the other hand, assuming that for i = 1, . . . , k there
is j ∈ [k] \ {i} such that yi

j < y∗j in addition to yi
j ≤ y∗j , for all j ∈ [k] \ {i}, implies that

y∗ /∈ N .
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