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Modern MIP solvers employ dozens of auxiliary algorithmic components to sup-
port the branch-and-bound search in finding and improving primal solutions and in
strengthening the dual bound. Typically, all components are tuned to minimize the
average running time to prove optimality. In this article, we take a different look at
the run of a MIP solver. We argue that the solution process consists of three different
phases, namely achieving feasibility, improving the incumbent solution, and proving
optimality. We first show that the entire solving process can be improved by adapting
the search strategy with respect to the phase-specific aims using different control tun-
ings. Afterwards, we provide criteria to predict the transition between the individual
phases and evaluate the performance impact of altering the algorithmic behavior of the
MIP solver SCIP at the predicted phase transition points.

1 Introduction

Mixed-integer programming (MIP) formulations are a valuable modeling tool for many
decision problems from industry and economic areas. One of the reasons is the avail-
ability of powerful, commercial and non-commercial MIP solving software such as
CBC [12], FICO XPRESS [34], GUROBI [17], IBM ILOG CPLEX [15], and Scip [30,
1]. All of them employ an LP-based branch-and-bound [24] that solves a series of LP-
relaxations obtained by branching on the integer variables with fractional LP solution
values. A typical situation for branch-and-bound is that an optimal solution is found
long before the proof of optimality is given and that a first feasible solution is found
long before the optimal solution.

The idea of this paper is to partition the solution process into three solving phases,
which we name after the specific goal which should be achieved during this phase:
First, the solver tries to find a feasible solution during the feasibility phase. During
the subsequent improvement phase, a sequence of solutions with improving objective
is generated until the incumbent solution is eventually optimal. During the remaining
proof phase, the search aims at proving optimality. Two questions must be answered
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to obtain an adaptive solver that dynamically tunes its behavior w.r.t. different solving
phases: How should the solver detect the transition between the improvement and the
proof phase and how should it react on the phase transitions?

We mainly focus on the first question and present heuristic criteria for deciding
whether a given incumbent solution is already optimal. Such criteria cannot be ex-
pected to be exact because the decision problem of proving whether a given solution is
optimal is still .4 Z?-complete in general. Concerning the second question, we build
upon the results of [19] for chosing adequate parameter tunings for each phase. Our
computational results evaluate the impact of altering the solver settings at the predicted
phase transition points.

The paper is organized as follows: In Section 2, we give an overview of previous
work on prediction for search algorithms. In Section 3, we briefly introduce mixed-
integer programs and important components of modern MIP solving software. Further-
more, we give a rough classification of the different components regarding the primal
and dual progress of the solution process. We formalize the solving phases described
above in Section 4 and discuss computational aspects of the different phases. The main
contribution of this paper are heuristic criteria for deciding when the solver should stop
searching for better solutions and concentrate on proving optimality. We present two
such heuristic criteria that take into account global information of the search progress
in Section 5. Finally, we present two computational studies to evaluate the accuracy of
the heuristic criteria and their benefits when used inside an adaptive solver in Section 6.

2 Related work

It has been suggested to use different node selection and branching rules as long as no
feasible solution has been found during a MIP solve, see [27]. In the notation that we
introduce in Section 4, this could be seen as a 2-phase approach, switching branching
parameters at the first phase transition.

The exponential nature of the branch-and-bound procedure has motivated research
on early estimates of final search attributes such as the search tree size, the total amount
of time, or the optimal objective value of the given problem. Most previous contribu-
tions have been made in the area of tree size prediction, mostly for general search
trees. An application inside branch-and-bound is particularly challenging because the
changing primal bound results in occasional pruning of huge parts of the search tree.
Knuth [21] suggested to average the individual predictions of repeated random probes
down the search tree as an unbiased estimate of the search tree size. A generalization
of Knuth’s method by Chen [13] introduced the use of stratifiers in order to reduce
the variance of the estimate. The concept of stratifiers is also referred to as type sys-
tem [25, 26, 35]. Chen’s stratified sampling traverses a partial search tree in breadth-
first order. Both Knuth and Chen discuss an additional difficulty of branch-and-bound
algorithms for tree size prediction: the absence of knowledge about the optimal objec-
tive value of the problem at hand.

Recently, Lelis et al. [25, 26] suggested several extensions to stratified search. The
first, a two-step stratified sampling, constructs a set of stratified search trees in the
manner of Chen’s [13] and then simulates a depth-first search to only visit nodes from



the previously sampled trees. To better cope with a decreasing objective when new
incumbent solutions are found, the authors [25] store additional objective information
in the form of histograms. This is inspired by the use of histograms for tree size pre-
dictions by Burns et al. [11] in the context of iterative deepening in general search
trees. The second approach by Lelis et al. [26] is called retentive stratified sampling.
It uses auxiliary data on solution paths gathered during previous probes to model more
correct pruning behavior of the actual search algorithm. Retentive stratified sampling
produces predictions of similar quality without the exhaustive memory requirements of
the two-step stratified search [25].

The weighted backtrack estimate by Kilby et al. [20] is an online method for binary
search trees explored by depth first search. For each probe down the tree until a leaf
node at depth d is reached, the estimate for the size of the tree considering only this
single probe is 2?1 — 1, while the probability of reaching this particular leaf by ran-
domly choosing whether to go left or right at every depth is 27¢. Kilby et al. combine
this into a weighted mean

2—d(2d+1 _ 1)
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over the multiset of reached branching depths D before the algorithm backtracks.

Cornuéjols et al. [14] present an online method for tree-size prediction that uses
some features of the shape of the partially explored tree to model a shape function for
the whole search tree.

Clearly, every estimate for the final search tree size can be used to extrapolate the
remaining solving time until termination, and vice versa. Hence, previous prediction
methods for the end of the solution process estimate the end of the third phase in
the terminology of Section 4. Estimated solution times or search tree sizes can be
used for ranking different algorithms for the same problem, e.g., by running several
algorithms in parallel for a limited amount of time (a so-called racing ramp-up [31])
and afterwards continuing the search with the algorithm that yielded the smallest tree
size estimate. All methods are based on partial information of a search tree of the
problem and designed to be early available.

The transition heuristics that we propose in Section 5 are different in that they
attempt to recognize the point in time when the incumbent solution is optimal, which
can happen long before the end of the solution process. Another difference is that
transition heuristics are used to adapt the solver behavior directly during the search.

3 Mixed-integer programming and solving components

A mixed-integer program (MIP) is an optimization problem that minimizes a linear
objective function subject to linear constraints over real- and integer-valued variables.
Let n,m € N, [,u € Q" U {—o0,0}" denote lower and upper bounds for the variables.
Let A € Q™" be arational matrix, b € Q™, and ¢ € Q". Let further .# % be a partition
of {1,...,n}. We call € and .¥ the continuous and integer variables, respectively. A



mixed-integer program (MIP) is a minimization problem of the form
P :zinf{ch cx€Q" Ax<b,I<x<u,x;€Z Vje I}

A vector y € Q" is called a (feasible) solution for a MIP P, if it satisfies all linear
constraints, bound requirements, and integrality restrictions of P. A solution y°P! that
satisfies c'y°Pt = ¢°P! is called optimal. A MIP with no integrality restrictions .# = 0 is
called a linear program (LP). The LP-relaxation of a MIP P is defined by dropping the
integrality restrictions. By solving its LP-relaxation to optimality, we obtain a lower
bound on the optimal objective of P.

The idea of branch-and-bound [24] is simple, yet effective: an optimization prob-
lem is recursively split into smaller subproblems, thereby creating a search tree and
implicitly enumerating all potential assignments of the integer variables. The task of
branching is to successively divide the given problem instance into smaller subprob-
lems until the individual subproblems are easy to solve. Each node of the search tree
represents one of the subproblems. The unprocessed subproblems are referred to as the
node frontier [22]. The intention of bounding is to avoid the complete enumeration. If
a subproblem’s dual bound is greater than or equal to the primal bound given by the
best solution found so far (the incumbent), that subproblem can be pruned. For MIPs,
dual bounds are calculated by solving the subproblem’s LP relaxation.

In modern MIP solvers such as SCIP or XPRESS, the basic branch-and-bound
method is enhanced by various auxiliary algorithms with the purpose of improving
the primal or dual convergence of the branch-and-bound method. We call such algo-
rithms solving components. Among the most important types of solving components
are

1. Branching rules: A branching rule represents a scoring mechanism to rank dif-
ferent alternatives how to split the current (sub-)problem further to enforce the
LP-relaxation in the created child nodes. For an overview on MIP branching
rules, see [4].

2. Node selection rules: A node selection rule determines the choice of the next
open node from the search tree. Classical node selection rules include depth-
first, breadth-first, best-bound and best-estimate [6].

3. Presolving: Presolving transforms the given problem instance into an equivalent
instance that is (hopefully) easier to solve. Presolving removes redundant con-
straints or variables and strengthens the LP relaxation by exploiting integrality
information. For more details on presolving, see [16].

4. Cutting plane separation Cutting planes separate the current LP relaxation solu-
tion from the convex hull of the solutions of the MIP. For an overview of com-
putationally useful cutting plane techniques, see [28].

5. Primal heuristics Primal heuristics are auxiliary algorithms aimed at providing
feasible solutions early during search. They can be classified based on the tech-
niques they apply into rounding, propagation, diving and large neighborhood
search heuristics, see [3]. For a recent overview of primal heuristics in MIP and
MINLP solvers, see [8].



The integration and execution of MIP solver components inside of a complete
solver such as SCIP [30] influences the overall solver performance. Clearly, some
of the components mainly affect the primal bound, while others mainly contribute to
the dual bound development. As a consequence, special settings for individual solving
phases should put different emphases on each of the components.

In order to categorize the components’ influence on the primal and dual conver-
gence individually, Hendel [19] conducted an experiment where the solving compo-
nents of SCIP were deativated one at a time or were replaced by a simple default
mechanism (e.g., branching on random variables) on 168 MIP instances from MI-
PLIB 3.0 [10], M1pLIB 2003 [5], and MIPLIB 2010 [23]. The result of this experiment
is visualized in Figure 1 which shows the percentage degradation in the primal and
dual bound development compared with default solver settings. Here, primal and dual
integrals [7] are used to measure the component’s influence on the primal and dual
convergence as follows:

Whenever there is an incumbent solution y, we measure the relative distance be-

tween y and the optimal objective value c°P" in terms of the primal gap
0, if Pt =Ty,
yim 41006 2 i o (o) — sig(cTy)
. max{|cTy‘,|C"P‘|}’ g g y )
100, otherwise.

A primal gap of zero means that the incumbent is an optimal solution, although
this might not be proven so far because the dual bound for P is less than the optimal
objective. Before the first incumbent is found, we define y := 100. With this gap
definition, the primal integral is the integral of the primal gap function Y(t), i.e., the
primal gap as a function of time. We define the dual gap (function) and the dual
integral analogously by replacing the primal bound ¢y with the current dual bound.
The distinction between the primal and the dual gap enables us to analyze solving
components regarding their influence on the primal and dual solver progress separately.

Not surprisingly, primal heuristics mainly affect the primal bound. Its average de-
grades by a factor of almost two when primal heuristics are deactivated, while the
dual integral becomes only 6.5% worse on average. Branching and cutting plane sep-
aration mainly contribute to the development of the dual bound. The impact of node
selection and presolving is mixed, both bounds deteriorate significantly if presolving is
deactivated or a simple depth first search strategy is used for node selection. Notably,
Figure 1 implies that all components have a positive impact on both the dual and the
primal integral.

4 MIP solving phases

The main idea addressed in this paper is a partition of the branch-and-bound solving
process into a set of phases. Figure 2 illustrates a typical primal and dual gap function
for a MIP solving process. We draw the negative of the dual gap function to make
the convergence of the primal and dual bound more intuitive. The feasibility phase is
finished at ¢ with the first feasible solution. After three more solutions, an optimal
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Figure 1: Percentage degradation compared to the SCIP performance with default set-
tings regarding the shifted geometric mean primal and dual integral.

solution is found at ¢, such that the remainder of the solution process is dedicated to
the proof of optimality. We formalize the tripartition of the solving process as follows:

Definition 1. Let P be a feasible MIP with optimal objective value ¢°"* € Q, and let
v, 7" primal and dual gap functions. Denoting the point in time when the first solution
is found by ¢, we define the three solving phases &1, &>, and &3 of § for P as the
following time intervals:

Py = 10,11,
Pyi={t>1t{ : y(t) >0}, and
Py:={t>1; : yt)=0, y*(¢t) > 0}.

Clearly, the phases are disjoint. Furthermore, if T is the total time spent by a solver
for solving P to optimality, the phases are a tripartition of the interval [0,T]. Each of
the phases emphasizes a different goal of the solving process, so that it seems natural
to pursue these goals with different parameter settings, which are tailored to achieve
the phase objective as fast as possible.

The objective during the Feasibility phase &) consists of finding a first feasible
solution; the quality of this solution only plays a minor role. Feasible solutions are
either provided by a node’s LP-relaxation solution or by primal heuristics. The first
feasible solution plays an important role for the solving process: First, it indicates the
feasibility of the model to the user. Second, the bounding procedure of the branch-
and-bound algorithm and some node presolving routines depend on a primal bound.
Furthermore, several primal heuristics require a feasible solution as starting point to
search for improvements.

After an initial feasible solution was found, the search for an optimal solution is
conducted during the Improvement phase &,. During the Improvement phase, a se-
quence of [P-feasible solutions with decreasing objective value is produced until the
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Figure 2: Solving phases of a MIP solution process with phase transition points ¢} and
B

solver eventually finds an optimal solution. For users of MIP solving software, this is
often the most important phase. In many practical applications, MIP models are not re-
quired to be solved to proven optimality, reaching a small optimality gap is considered
sufficient [7]. The reasons for this are threefold: there might be strict running time
limitations, the models often are too large to complete the search and the input data
itself might only be based on estimates.

The remaining time, which we call the Proof phase &3, is spent on proving the
optimality of the incumbent solution. Such a proof requires the full exploration of the
remaining search tree until there are no more open nodes with dual bound lower than
the optimal primal objective value.

It is possible for both the Improvement phase and the Proof phase to be empty. If
the first feasible solution is also an optimal one, then &2, = 0; similarly, if the best
possible dual bound is found before an incumbent with this optimal objective value
is found, then 43 = 0. In the special case that the MIP is a pure feasibility problem
(c = 0), both the Improvement phase and Proof phase are empty. For the test set which
we use for our computational experiments in Section 6, only one of 161 instances is
a pure feasibility problem. Further, 11 instances have an empty Improvement phase
and 34 instances have an empty or almost empty Proof phase, their union being 40
instances. Hence, it applies for a majority of 75 % of our test cases that the solving
process is indeed partitioned into three nonempty phases by Definition 1.

We refer to the two points in time that mark the boundaries between the phases as



phase transitions. More precisely, we call ¢] the first phase transition, and we define
the second phase transition as

5 :=sup P U P,.

The recognition of the second phase transition #; after the Improvement phase requires
knowledge about the optimality of the current incumbent prior to the termination of
the solving process. If &73 # 0, the decision problem of proving that there exists no
solution better than $(¢;) for our input MIP P remains to be solved. This problem is
co-A P-complete in general.

In the next section, we address the problem of how to heuristically estimate the
second phase transition during the solving process.

5 Two phase transition heuristics

If 273 # 0, the detection of #; requires knowledge of the optimal solution value. In this
section, we present two heuristic criteria to estimate the second phase transition point
t5 without knowledge of the optimal solution value. These phase transition heuristics
will be used to switch to settings for the Proof phase when the criteria indicate that the
current incumbent is optimal.

We present two phase transition heuristics based on a property called node estima-
tion [6] of all nodes in the node frontier. The node estimation constitutes an estimate
of the objective value of the best attainable solution of a node.

More formally, let Fp :={j € .# : (Jp); ¢ Z} be the set of fractional variables
of an LP solution §p at node P. For j € Zp, we define f; (j) := (Fr); — L(FpP);]
and f4 (j) := [(Fp);] — (Fp); the down- and up-fractionality, respectively, of j. For a
branching direction * € {4, —}, we denote by P the average gain per unit fraction-
ality over all prior branchings on j in direction *. We estimate the objective gain in
branching direction by the pseudo-costs [6] ¥} - f5(j)-

Apart from their use in the selection of the best candidate for branching, pseudo-
costs can also be applied to estimate the best solution attainable from a node P. There-
fore, we denote by

WEn(j) == min{¥] - £ (), - S ()}
the estimated minimum cost to make variable j € . integer.

Definition 2 (Node estimation [6]). The node estimation for a node P for which the
LP-relaxation has been solved is given by the formula

ep=c'yp+ Y PEN()).
JEFp

The rationale behind Definition 2 is to independently consider an estimate of mak-
ing each fractional variable j € .%p integer. In the following, we will be mainly inter-
ested in node estimations of open nodes, for which no LP relaxation has been solved
so far. In order to determine an estimate of an open node Q, we simply subtract the



contribution of the branching variable and direction that led to the creation of Q. Let O
be the child of another node P after branching upwards on j € .%p. An initial estimate
of O can be calculated via

o =ep =Y () +¥] - f7 (),

thereby extending Definition 2 to open search nodes.

The node estimation does not account for a possible interplay between variables.
This observation makes Cp likely to overestimate the actual integer objective value
coppt of the best attainable solution from the subtree rooted at P. It is, on the other
hand, also possible to underestimate c;pt. Another important aspect concerns a possible
degeneracy of the LP-relaxation: Whenever there exist different optima to the node LP-

relaxation, they might lead to different estimates.

5.1 The best-estimate transition

We call the minimum node estimation among the set of open nodes 2,
&N =min{ép : Q€ 2}

the best-estimate. The best-estimate is used as primary criterion for the default node
selection in SCIP and is one possible estimate of the optimal objective value of a given
MIP, for other possible estimates, we refer to [33]. As our first phase transition heuris-
tic, we propose to switch to the Proof phase when the best-estimate exceeds the incum-
bent objective:

tgstim -— min {l > l‘f : cTy(t) < Egin([)} (1)

Note that by requiring ¢ > #{, we make sure that there is indeed an incumbent solution.

5.2 The rank-1 transition

With an increasing number of explored branch-and-bound nodes, it intuitively becomes
less and less likely to encounter a solution better than the current incumbent. Yet, every
unprocessed node Q € 2 has the potential to contain a better solution in the subtree
underneath.

Definition 3. Let S be the search tree after termination, and define dgp as depth and
cg’t as the (integer) optimal objective value for every node Q € S (or o if there is no
feasible solution for Q). We define the rank rg, of Q as

gy = {0 €S:dy = dQ,cgft < c(épt} +1.

The rank rg, represents the minimum position of node Q in any list P40 that
contains all nodes at depth dyp in nondecreasing order of their optimal solution. The
root node Py trivially has a rank of 1, because it is the only node at depth 0. Indeed, if S
were known in advance, the rank is defined in such a way that an optimal solution can



be found by following a path of nodes of rank 1, starting at the root node. If the solving
process has not uncovered an optimal solution yet, there exists a node of rank 1 among
the open nodes 2. Note, however, that there may even be nodes of rank 1 present in
the node frontier although the current incumbent is already optimal.

The second phase transition heuristic is based on the definition ( 3) of node ranks.
As for the best-estimate transition, we use the node estimation (cf. Definition 2) to cir-
cumvent the absence of true knowledge about best solutions in the unexplored subtrees.
We impose a partial order relation < on the nodes of the search tree S:

0'<0Q & ( wasprocessed before Q dy =dp, VO #QE€S.
With this partial order relation, we define the set of rank-1 nodes
2kl ={0e 2 ¢p<inf{éy:0 €5,0 <0} )

as the set of all open nodes with a node estimation at least as good as the best evaluated
node at the same depth. Note that 2! may become empty much earlier than 2,
i.e., prior to the termination of the search, as soon as a single node with small node
estimation has been processed at every depth of the current tree.

Using the following rank-1 transition, we assume that the current incumbent is
optimal when 2! becomes empty:

A — min{r > ¢} © 291 (1) = 0}, 3)

If there is an open node Q at a depth dp which was not yet explored by the solving
process, it holds that Q € 27! since

2o <inf{éy : @/ €5,0' < Q} = infd = oo.

The main difference between the best-estimate and the rank-1 transitions is that
the rank-1 transition does not directly compare incumbent solution objectives and node
estimations. On the one hand, it is an intuitive restriction to only compare nodes of the
same depth because node estimations can be assumed to gain precision with increasing
depth. Furthermore, it has a computational benefit because our update procedure only
needs to compare newly inserted open nodes with other open nodes at the same depth.

For every depth d, we keep track of the minimum node estimate at this particular
depth so far, including feasible nodes, i.e. subproblems with feasible LP-relaxation
solutions. Every time a node is branched on, its two children are inserted in an array
24 of open nodes at their depth d. 29 is sorted in nondecreasing order of the node
estimations of the nodes. In order to keep the set 2! updated, we store for every
depth the best-estimate over all nodes already processed, which we update every time
anode Q € 21 was selected to be explored next.

6 Computational results
In this section, we first evaluate the potential of the two proposed transitions used with

default settings. Second, we show how the use of the proposed transitions together
with phase-specific solver settings affects the solution process.
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6.1 Accuracy of the proposed phase transitions

In this section, we analyze the accuracy of the proposed phase transition heuristics from
Section 5. We based our implementation on SCIP [1] 3.1.0 together with SoPlex [32]
2.0 as LP-solver. All computations were performed on a cluster of 32 computers. Each
computer runs with a 64bit Intel Xeon X5672 CPUs at 3.20 GHz with 12 MB cache
and 48 GB main memory. The operating system was Ubuntu 14.4. A gcc compiler was
used in version 4.8.2. Hyperthreading and Turboboost were disabled. We ran only one
job per computer in order to minimize the random noise in the measured running time
that might be caused by cache-misses if multiple processes share common resources.

As test library, we use a combined library of MIPLIB 3 [10], MIPLIB 2003 [5],
and MIPLIB 2010 [23] after the removal of three infeasible instances. In addition, we
excluded the four instances for which, by the time of this writing, the optimal objective
value was unknown, so that it is not possible to determine the actual phase transition
t5. On the remaining 161 instances we ran SCIP with default settings and a time limit
of 2h. We record the solving time in seconds after which a transition criterion was
reached for the first time. Before we start checking the transition criteria, we require
the search to explore at least 50 branch-and-bound nodes for the node frontier to be
meaningfully initialized.

It is noteworthy that the node estimations in SCIP are not updated dynamically
together with the pseudo-costs due to running-time considerations, i.e., all nodes keep
their initial estimation during the entire time they are in the node queue, although more
recent pseudo-cost information on the variables might be available.

The goal of this experiment is to compare the proposed transition points with the
actual second phase transition ;. It may happen that 5 > 24, i.e., an optimal solution
is not found within the time limit, or a transition criterion is not met. Therefore, we
first consider instances for which the solver finished the improvement phase within the
time limit and at least one of the transition criteria was met.

We compare the relative difference between the two points in time by means of their
shifted quotient (£5™ + ) /(#; + T) using a shift of T = 10 seconds. The use of a shift
value compensates for very large or small quotients caused by numbers that are close
to one and hence also shifts our attention to harder instances. A shifted quotient larger
than one for an instance means that a phase transition heuristic correctly classifies an
optimal incumbent solution. A quotient smaller than one, however, is encountered for
instances where the transition criterion was met during the Improvement phase.

We present Figure 3 to compare the true second phase transition ¢; and the phase
transition tgri‘ that we recorded for the phase transitions. The histogram uses a bin width
of 0.25 on the logarithm of the shifted quotients. The two bins around one therefore
denote the time span shortly before or after ;. We do not show instances which could
be solved during the root node. Out of the remaining 147 instances, SCIP finds optimal
solutions for 117. The rank-1 and the best-estimate criterion are reached for 91 and
93 of these instances, respectively. Note that the both rank-1 and the best-estimate
transitions are trivially met whenever there is no open node left in the tree, i.e., after
the search was completed.

We see in the figure that the bars for both transitions are centered around one, the
rank-1 transition with 44 instances and the best-estimate transition with 41 instances.

11
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Figure 3: Relative deviation of the proposed transition criteria from the actual second
phase transition 73 on instances where both values are smaller than 7200 seconds in our
test.
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Table 1: Contingency tables that group the 36 time limit instances into four categories
whether the transition criterion was reached, and whether the incumbent at termination
was optimal.

best-estimate transition rank-1 transition
opt. not opt. ‘ Yy opt. not opt. ‘ Yy
reached 5 9|14 reached 4 15| 19
not reached 1 21 | 22 not reached 2 15 | 17
Yy 6 30 ‘ 36 Yy 6 30 ‘ 36

Both distributions slightly tend to take negative values, i.e., they tend to underestimate
the second phase transition. Except for very few outliers, both distributions show a
shifted quotient between é and 8. In 75 out of 91 cases, the rank-1 transition approxi-
mates the actual phase transition by a factor of 5, the best-estimate transition in 81 out
of 93 cases.

Next, we compare the primal-dual gap and the primal gap at the time of transi-
tion. Recall that the primal gap takes the optimal objective value into account so that
it cannot be computed before the solving process finishes. We consider all instances
for which the transition point in time was reached within the time limit. If a transition
criterion is met during the proof phase, the primal gap is zero by definition. The aver-
age primal-dual gap at the rank-1 transition point is 19.26, while the primal-dual gap at
the best-estimate transition point averages to 16.39. The average primal gap regarding
the optimal objective value is 7.01 and 5.71 for the rank-1 and the best-estimate tran-
sition, respectively. This is in line with the previous observation that the best-estimate
transition seems to occur later during the search than the rank-1 transition on average.
It is interesting to note that the rank-1 transition occurs more often on instances where
the primal gap is already small but is not yet proven by the primal-dual gap. More
precisely, the transition point in time occurs on 46 out of 91 instances of our test bed
when the primal gap is already smaller than 1 %, but the primal-dual gap is still larger
than 1 %. The best-estimate transition achieves this on 38 out of 93 instances.

We now focus on instances where the solution process did not finish within our 2h
time limit. For the instance stp-3d, no incumbent solution is found within two hours, so
that neither transition criterion is met by definition. Among the remaining 36 instances
that hit the time limit with an incumbent, there are 6 for which the incumbent is already
optimal. We present in Table 1 two contingency tables grouped into two categories:
whether the transition criterion was reached within the time limit or not and whether
the incumbent solution at termination was already optimal. The entries on the diagonal
represent instances for which the transition gives a correct classification, whereas the
anti-diagonal gives the number of false positives and false negatives. Note that we
measure only if a criterion was met at some point during the search, not if it was met
precisely at termination. For the best-estimate transition, we see that for 5 out of 14
instances for which the transition criterion was reached, SCIP indeed finds an optimal
solution. However, when the transition criterion is not reached within the time limit,
this is in line with a suboptimal incumbent at termination in 21 out of 22 cases. Based
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Figure 4: The primal gap at termination for 36 instances which could not be solved
within the time limit.

on the best-estimate transition, we can classify 26 out of the 36 instances correctly.
The table for the rank-1 transition does not show a similar result. Here, instances with
suboptimal incumbent and with optimal incumbent are spread almost evenly across the
two groups for this criterion.

As a second comparison, we quantify the incumbent quality at termination by the
primal gap. Figure 4 shows the primal gap at termination for both transition criteria.
We show two box plots per transition for the groups of instances for which the criterion
was not reached (left box) and for which it was reached (right box) within the time
limit. The number of instances in each group is shown at the top of the box plot. In
contrast to the primal gap statistics presented before, we focus on the primal gap at
termination, not on the primal gap at the time of the transition. For instances for which
the respective transition criterion was not reached, the median primal gap is 4.7 for the
best-estimate and 5.4 for the rank-1 transition. For both transition criteria, there is a
clear tendency of the right group towards zero, for which the median values are at 0.17
for best-estimate and at 0.92 for rank-1.

6.2 Using phase transitions to control solver behavior

In an experimental study described in [18], promising settings for each of the three
solving phases were determined individually. In this section, we combine those phase
settings and the phase transition heuristics to a phase-based MIP solver.

For the Feasibility phase, we use a two-level node-selection as follows: We ap-
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Table 2: Shifted geometric mean results for ¢ (sec) for the 123 instances solved by all
versions and on the subset of 52 hard instances.

123 instances solved by all 52 hard (maxt > 200)

(# solv.) t (sec) trel p t (sec) trel p
default (124) 90.7 1.000 799.0 1.000 nan
estim (126) 85.0 0.938 0.529 695.2 0.870 0.338
oracle (127) 84.5 0.932 0.004 665.9 0.833 0.000
rank-1 (125) 83.3 0918 0.002 685.0 0.857 0.022

ply uct [29] for the first 31 nodes of the tree and afterwards a depth-first search that
restarts periodically from the node with the best estimation. Furthermore, we altered
the branching rule to branch exclusively on inference information [2]. This setting
constituted the fastest setting in a Feasibility phase experiment that also found feasible
solutions for all instances within the time limit of 1 hour. During the Improvement
phase, we employ a setting that uses the default settings of SCIP except for an altered
node-selection rule (uct) inside Large Neighborhood Search heuristics.

After a transition criterion for the second phase transition is reached, we continue
the node selection of open nodes with a pure depth-first search, which is the fastest
method to traverse the remaining tree if the cutoff bound is optimal (which we simply
assume in this phase). We also disable all primal heuristics for the remainder of the
search, because no further solutions are necessary during the Proof phase. Instead, we
activate the separation of local cutting planes for the remainder of the search, as can
be achieved with an aggressive emphasis on cutting planes in SCIP. With this setting,
separation is performed at lower bound defining nodes at every 10’th level of the tree.
For a detailed description of the methods involved and a comprehensive list of the used
parameters, we refer to [18].

We compare four different versions of our phase-based solver: By default, we
denote the default settings of SCIP used throughout all three phases. The version
estim uses the phase transition heuristic best-estimate and rank—1 the rank-1 tran-
sition. Both switch between the settings described above at the transition points ¢} and
tgmm or téank'l. The version oracle uses the exact phase transition point 5, by re-
ceiving the optimal solution value as input. oracle is used to estimate the potential
improvement of a phase-based solver and serves as a reference for the actual improve-
ments of estim and rank—1 which use heuristic predictions. For all runs, we set a
time limit of two hours. The data for every instance of the test bed can be found in
Table 4-6 in the Appendix.

The first column of Table 2 shows the number of instances that were solved to op-
timality. default could solve 124 instances within the time limit. All other versions
solved between 1 and 3 instances more in total. The best version in this respect is
oracle, which solved 127 instances. In the following, we focus on the subset of 123
instances that were solved by all versions. We restrict ourselves to the subset of solved
instances to better compare results regarding both solving time and nodes.

For those 123 instances and a subset of 52 hard instances, the table shows the
shifted geometric mean solving time, both absolute and relative compared to default.
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Table 3: Shifted geometric mean results for the number of branch-and-bound nodes
n. Results are restricted to 123 instances for which all versions could finish the solve
within two hours, and the subset of 52 hard instances, respectively.

all instances hard (maxt > 200)
n Nrel p n Nrel p
default 2565.5 1.000 17179.8 1.000
estim 2454.6 0.957 0.209 15119.3 0.880 0.059
oracle 2377.3 0.927 0.000 13935.6 0.811 0.000
rank-1 2512.2 0.979 0.221 16577.4 0.965 0.347

An instance is considered hard if at least one solver needed more than 200 sec. We use
a shift of 7 = 10 seconds. The table also shows p-values obtained from a modified two-
sided Wilcoxon signed rank test that uses logarithmic shifted quotients and filtering to
quantify if a version differed significantly from the default, see [9] for more details on
this test methodology.

On the set of all instances, we observe improvements in the shifted geometric mean
solving time for every version compared to default. The oracle version is 6.8 %
faster than default in the shifted geometric mean. The improvement is even higher
for the rank—-1 version, with which we achieve the highest speed-up over default
of 8.2 %. These two improvements are accompanied by small p-values of 0.004 and
0.002, whereas the improvement shown for est im is not significant according to the
Wilcoxon test.

On the hard instances, however, we observe significant improvements of up to
16.7 % with oracle, and still 14.3 % with rank-1. The version est im improves
the shifted geometric mean time by 13.0 % but the corresponding p-value of 0.338 does
not identify this improvement as significant. The reason for this lies in the fact that the
estim version extremely improves the time on a few instances, namely acc-tight5 and
lectsched-4-obj, for which est im achieves speed-up factors of 20 and 3, respectively,
as well as six more instances with speed-ups of at least 2. However, disregarding these
extreme speed-ups, the est im version shows more slow-downs compared to oracle
and rank-1. The latter versions yield fewer extreme but more moderate speed-ups.
The instance acc-tight5 is a pure feasibility instance in the sense that the dual bound
is already provided by the initial LP relaxation and a feasible solution of this objective
needs to be found. Thus, the performance on this instance is greatly affected by our
modifications to the settings of SCIP during the Feasibility phase. The other phase-
transition based settings yield the same speed-up for acc-tight5. Yet, an improvement
of 14 % in the shifted geometric mean with rank—-1 is accompanied by a p-value of
less than 3 %, which indicates that the rank-1 criterion is the better criterion w.r.t. the
solving time.

Table 3 shows the shifted geometric mean results for all versions regarding the
number of branch-and-bound nodes until optimality was proven. As in the previous
table, we restrict the instances for the node comparison to the subset which could be
solved to optimality by all settings within the time limit. The table further shows the
results for the 52 hard instances of this set of instances. For the calculation of the mean,
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we use a shift of 100 nodes. The setting oracle significantly improves the overall
shifted geometric mean of default by 7.3 % and by 18.9 % on the hard instances.
For the criteria estim and rank—-1, the obtained node reductions amount to 4.3 %
and 2.1 %, respectively. In this case, however, the p-column does not indicate either of
the improvements as significant. The split into easy and hard instances attributes the
observed reductions mainly to the hard instances, where e st im shows an improvement
of 12 % compared to default.

Our experiments in the previous section revealed that e st im transitions occur later
during the search than rank-1-transitions which makes est im a more conservative
transition criterion. While it achieves a good performance w.r.t. overall running time,
rank-1 performs even better, in particular when taking the statistic significance of the
results into account. In the previous section, we saw that rank—1 has a tendency to
underestimate the point of phase transition. We interpret our results such that switching
settings shortly before the second phase transition, i.e. when the solver is about to find
the optimal solution, is sufficient, if not preferable, to improve performance. The fact
that only one of the two transition heuristics achieves a significant time speed-up shows
that the speed-up cannot be attributed only to the changes to the Feasibility phase,
during which all three versions that employ phase-based settings have exactly the same
behavior.

Using the rank-1 phase transition, we obtain a solving time improvement that is
similar to the improvement obtained with oracle. Comparing the results for an
oracle-based phase transition and the phase-transition criteria that we introduced, we
conclude that the rank-1 transition is sufficient in practice to achieve a solving-time
performance similar to what can be obtained in principle if we could determine the
phase transition exactly.

7 Conclusion

In this article, we discussed the partition of a MIP solving process into three phases:
feasibility, improvement, and proof. Each of them benefits from different algorithmic
components. We introduced and empirically analyzed two criteria to predict the tran-
sition between the improvement and the proof phase: the best-estimate transition and
the rank-1 transition.

We showed that a phase-based version of the MIP solver SCIP, using the rank-
1 transition, improves SCIP’s mean running time by 8 % on general MIP instances,
and 14 % on hard instances, while simultaneously reducing the number of branch-
and-bound nodes. Hence, our computational experiments provide evidence that those
easy-to-evaluate criteria correlate sufficiently well with the actual, hard-to-detect phase
transition to make use of this approach in practice.
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Table 4: Instancewise results from Section 6.2.

default estim oracle rank-1 default estim oracle rank-1

1 (sec) t (sec) t (sec) t (sec) n n n n

10teams 25.6 35.4 333 333 1272 1612 1552 1612
30n20b8 183.5 151.7 135.6 152.0 14 6 4 6
alclsl 7200.0  7200.0 7200.0 7200.0 718786 626920 640772 1815029
acc-tight5 1436.6 61.7 61.6 62.2 16931 608 608 608
aflow30a 13.9 14.5 133 13.5 2118 2506 1852 1976
aflow40b 912.9 941.0 681.0 1328.9 151103 112411 69617 323752
air03 1.0 1.1 1.0 1.1 1 1 1 1
air04 70.4 64.1 65.6 65.5 213 146 156 156
air05 37.5 393 393 394 181 309 299 365
appl-2 1118.2  1270.6 976.2 964.7 427 429 306 246
arkiOO1 7200.0  7200.0 7200.0 7200.0 1166439 915413 960617 997478
atlanta-ip 7200.0  7200.0 7200.0 7200.0 14375 9861 9852 260171
bab5 7200.0  7200.0 7200.0 7200.0 25819 17781 17837 17728
beasleyC3 7200.0  7200.0 7200.0 7200.0 796130 1106432 1106852 2065757
bell3a 6.1 5.7 4.2 4.5 22487 23064 22579 23083
bell5 0.8 0.5 0.6 0.6 1140 1226 1218 1224
biellal 781.4 578.7 575.2 1395.4 2133 2538 2436 14468
bienst2 297.4 297.8 301.6 291.8 93988 93988 92643 106272
binkar10_1 177.2 158.3 147.8 137.2 138787 120843 119374 120533
blend2 0.9 14 1.4 1.2 412 932 933 634
bley_xI1 430.6 434.6 429.0 431.4 20 20 20 20
bnatt350 1477.1 819.2 818.9 828.6 21343 14092 14092 14092
cap6000 2.7 3.1 2.7 2.8 3788 4064 4080 4561
core2536-691 318.1 321.2 324.1 319.6 218 218 218 481
cov1075 7200.0  7200.0 6923.5 7200.0 1557428 1559145 1635309 1854530
csched010 7200.0  7200.0 7200.0 7200.0 931270 1049236 997781 1128300
danoint 5078.2  4785.0 3836.3 4451.6 1050040 966643 881640 1089980
demulti 1.6 1.2 1.2 1.2 322 316 306 261
dfn-gwin-UUM 139.6 1334 113.9 115.1 66936 61708 63462 60074
disctom 3.6 39 39 3.8 1 1 1 1
ds 7200.0  7200.0 7200.0 7200.0 523 542 546 546
dsbmip 1.2 1.1 1.4 1.3 15 11 11 11
egout 0.5 0.5 0.5 0.5 1 1 1 1
eil33-2 52.8 57.3 78.9 96.7 735 851 1235 1339
eilB101 436.2 477.7 474.1 3233 8028 8283 8357 6776
enigma 0.5 0.6 0.6 0.7 954 2759 2759 2759
enlight13 8.6 16.8 119.5 10.7 13479 30211 270890 23151
ex9 38.2 372 39.5 374 1 1 1 1
fast0507 576.8 574.8 574.8 615.3 1376 1376 1348 1862
fiber 1.6 1.5 34 1.7 8 8 5 8
fixnet6 3.0 33 7.5 33 9 9 8 9
flugpl 0.5 0.5 0.5 0.5 251 115 115 174
gen 0.5 0.5 0.5 0.5 1 1 1 1
gesa2 0.9 1.2 1.1 1.0 2 2 2 2
gesa2-o 1.2 1.3 1.2 1.6 5 5 5 5
gesa3 1.6 1.6 2.4 2.0 7 7 6 7
gesa3_o 1.6 1.8 1.9 1.7 8 8 8 8
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Table 5: Continued instancewise results from Section 6.2.

default estim oracle rank-1 default estim oracle rank-1

t (sec) t (sec) t (sec) t (sec) n n n n

glass4 7200.0  7200.0 7200.0 7200.0 16199130 14938613 14873922 19924545
gmu-35-40 7200.0  7200.0 7200.0 7200.0 13065327 14149261 14168881 22385757
gt2 0.5 0.5 0.5 0.5 1 1 1 1
harp2 3700.6  4479.6 4430.6 7200.0 12630591 11703033 11722399 22409557
iis-100-0-cov 1663.9 17223 1305.2 1358.8 102734 105711 85533 89706
iis-bupa-cov 61429 6512.3 5434.2 5552.2 182534 179812 172416 182329
iis-pima-cov 1383.2  1388.3 1388.6 610.8 20364 20278 20296 7935
khb05250 0.5 0.6 1.0 0.6 3 3 2 3
1152lav 2.5 3.0 3.2 33 49 92 92 92
lectsched-4-obj 399.0 109.6 200.4 200.1 24222 8296 9683 9683
Iseu 0.6 0.8 0.9 0.8 336 606 602 379
m100n500k4r1 7200.0  7200.0 7200.0 7200.0 7184542 6987522 6993419 2046170
macrophage 7200.0  7200.0 7200.0 7200.0 1251604 1233931 1236445 1239753
manna81 0.8 0.5 0.8 0.6 1 1 1 1
mapl8 424.3 433.5 382.6 438.6 393 315 333 305
map20 335.0 3333 333.9 327.6 299 299 319 315
marksharel 7200.0  7200.0 7200.0 7200.0 73327325 76824489 75830406 43086938
markshare2 7200.0  7200.0 7200.0 7200.0 60920471 60781960 60892446 28720432
mas74 565.4 583.8 516.2 440.1 2834519 2767121 2760117 2594501
mas76 66.7 79.2 118.7 56.2 404939 471714 848147 436756
mcsched 211.9 172.9 173.4 159.9 19507 15565 15471 14275
mik-250-1-100-1 365.1 362.7 236.8 278.7 943440 943440 595707 683166
mine-166-5 31.0 30.7 30.7 31.0 2045 2045 1997 2045
mine-90-10 256.3 228.4 232.2 199.4 77784 68094 67313 57851
misc03 1.2 1.1 1.0 1.2 139 123 137 170
misc06 0.7 0.5 0.8 0.5 4 4 6 4
misc07 14.4 13.1 11.2 12.3 21721 20003 15439 17292
mitre 6.0 5.9 6.7 6.0 1 1 1 1
mkc 7200.0  7200.0 7200.0 7200.0 2524672 2989875 2985313 3871184
mod008 0.9 0.7 1.2 1.1 7 7 4 7
mod010 0.8 0.7 0.7 0.7 2 7 7 7
modO011 176.8 180.3 152.0 145.8 1229 1229 1021 1068
modglob 1.4 1.5 1.5 1.3 905 905 739 820
momentum1 7200.0  7200.0 7200.0 7200.0 44070 15148 15305 15331
momentum?2 7200.0  7200.0 7200.0 7200.0 90508 99580 86526 74211
msc98-ip 7200.0  7200.0 7200.0 7200.0 3391 18438 10164 10162
msppl6 2579.3  2841.5 5437.7 2838.0 51 57 47 57
mzzvll 267.9 266.0 258.1 262.7 1999 1999 1908 1975
mzzv42z 340.3 337.7 338.4 316.6 534 534 536 1012
n3div36 7200.0  7200.0 7200.0 7200.0 250934 260655 372168 345004
n3seq24 7200.0  7200.0 7200.0 7200.0 393 392 393 393
n4-3 542.3 564.0 472.5 633.3 32231 33154 29104 44646
neos-1109824 156.1 154.0 103.4 123.3 21927 22678 10652 14781
neos-1337307 7200.0  7200.0 7200.0 7200.0 370421 553458 519383 391710
neos-1396125 766.1 925.5 856.8 778.5 61200 69115 59721 70372
neos-1601936 7200.0  7200.0 7200.0 7200.0 6755 1615 1606 1615
neos-476283 275.9 282.0 279.6 279.8 685 685 667 855
neos-686190 93.8 118.6 110.5 109.8 7264 10378 9405 9445
neos-849702 174.7 558.8 559.6 559.9 6115 48917 48917 48917
neos-916792 406.2 454.3 399.2 593.9 106472 123066 124088 210792
neos-934278 7200.0  7200.0 7200.0 7200.0 889 1133 992 1095
neos13 1514.8 17275 1725.1 1738.6 4422 3230 3230 3209
neos18 32.1 29.8 31.9 31.6 6778 5601 5179 6249
netl2 2532.6  2746.2 3018.6 3473.0 3864 4985 5016 4605
netdiversion 7200.0  6630.7 6581.5 6580.6 72 119 113 113
newdano 3557.7 35735 3704.2 3242.0 2083404 2083404 1993781 2002198
noswot 177.5 180.3 175.1 173.1 829543 829543 436956 455271
ns1208400 1870.2  1279.0 1519.8 1062.9 3118 2777 2785 2772
ns1688347 738.9 275.2 388.7 380.6 6667 2609 3905 4330
ns1758913 7200.0 72000  7200.0 23 7200.0 2 2 2 2
ns1830653 440.3 371.5 382.9 394.2 41218 46638 36114 46887
nsrand-ipx 7200.0  7200.0 7200.0 7200.0 1599798 1763180 1758600 1730377
nw04 24.5 24.4 253 24.9 11 11 6 11
opm2-z7-s2 794.6 789.9 794.6 1220.6 2092 2092 2094 15231

opt1217 0.5 0.5 0.5 0.5 1 1 1 1




Table 6: Continued instancewise results from Section 6.2.

default estim oracle rank-1 default estim oracle rank-1

t (sec)  t(sec) t (sec) t (sec) n n n n

p0033 0.5 0.5 0.5 0.5 1 1 1 1
p0201 1.8 1.7 1.8 1.7 67 67 59 65
p0282 0.5 0.6 0.8 0.6 3 3 1 3
p0548 0.5 0.5 0.5 0.5 1 1 1 1
p2756 1.6 1.2 14 1.2 137 9 9 9
pg5_34 1287.1  1338.1 1297.1 1400.7 291242 291323 273355 305210
pigeon-10 7200.0  7200.0 7200.0 7200.0 17116573 17457654 10565366 17502182
pkl 64.2 65.2 53.8 55.0 284323 284323 281331 281341
pp08a 1.3 1.1 14 1.3 221 225 231 253
pp08aCUTS 1.1 1.4 1.4 1.3 194 165 149 153
protfold 7200.0  7200.0 7200.0 7200.0 10226 11588 11587 11595
pw-myciel4 3542.8  3550.0 2199.1 2629.2 712713 712713 368355 433819
qiu 79.9 81.6 71.8 77.2 12604 12618 12616 12629
qnetl 8.3 4.5 53 4.5 36 7 7 7
gnetl_o 6.6 5.1 53 54 16 6 6 6
rail507 242.4 2399 235.7 239.6 799 799 855 865
ranl6x16 291.3 283.9 231.0 276.4 368022 346094 265832 373581
rd-rplusc-21 7200.0  7200.0 7200.0 7200.0 77078 61764 60360 70998
reblock67 253.3 251.3 172.6 246.5 109664 109664 57072 105846
rentacar 2.7 2.6 3.5 2.8 4 4 4 4
rgn 0.5 0.5 0.5 0.5 1 1 1 1
rmatr100-p10 135.1 135.8 131.0 130.7 851 851 909 909
rmatr100-p5 302.9 304.2 267.6 280.0 420 451 483 439
rmine6 6096.9  2287.9 2246.4 2263.0 2004491 742664 736822 738018
rocll-4-11 463.1 204.7 4339 299.9 40477 11718 30330 17308
rococoC10-001000 1217.3  1011.1 876.6 1274.5 203201 174936 135810 224776
rol13000 7200.0  3082.7 1387.3 5522.8 2781398 1063691 423972 2331855
rout 40.1 32.2 27.9 28.2 26664 20646 18547 18646
satellites1-25 660.2 995.5 765.3 913.5 3064 2648 1588 2212
setlch 0.7 0.8 0.9 0.7 9 9 9 9
seymour 7200.0  7200.0 7200.0 7200.0 150798 146737 146590 146047
sp97ar 7200.0  7200.0 7200.0 7200.0 6289 8065 8101 7619
sp98ic 7200.0  7200.0 7200.0 7200.0 131473 137628 137322 185344
sp98ir 106.6 86.3 81.3 69.2 8210 5379 5375 4630
stein27 1.0 1.1 1.2 0.7 3905 3905 3973 3607
stein45 12.2 13.1 11.3 10.7 47352 47352 50336 46693
stp3d 7200.0  7200.0 7200.0 7200.0 1 1 1 1
swath 7200.0  7200.0 7200.0 7200.0 1231280 1214072 1220123 1672194
tanglegram1 1161.2  1138.7 1138.6 1142.8 37 37 37 37
tanglegram?2 14.9 15.1 14.7 14.7 5 5 5 5
timtab1 390.1 388.1 376.2 377.6 870361 868207 896679 965573
timtab2 7200.0  7200.0 7200.0 7200.0 9144342 14814841 9027482 14855771
tr12-30 1814.6  1521.3 1505.3 1454.0 1471731 1186814 1162158 1306275
triptim1 2791.3 981.7 997.6 981.7 47 4 4 4
unitcal_7 1304.6  1469.5 1230.3 1271.4 23265 27125 19216 19861
vpml 0.5 0.5 0.5 0.5 1 1 1 1
vpm2 1.3 1.2 1.7 14 294 218 224 206
vpphard 7200.0  7200.0 7200.0 7200.0 7476 6321 6292 6321
zib54-UUE 3829.7 53755 2703.8 2625.2 539744 706521 296047 294878
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