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ABSTRACT 

An adaptive approach to the numerical solution of the wave propa­
gation in integrated optics devices with ID cross sections is described. 
First, Fresnel's approximation of the exact wave equation resulting 
from Maxwell's equations is considered. A criterion to estimate the — 
validity of this approximation is derived. Fresnel's wave equation be­
ing formally equivalent to Schroedinger's equation uniquely defines an 
initial-boundary-value problem, which is solved numerically by a, step­
wise calculation of the propagating field'. 
Discretization in longitudinal direction first with stepsize control leads 
to a stationary subproblem for the transversal field distribution, which ~ 
is then handled by an adaptive finite element method. Thus full adap-
tivity of the algorithm is realized. ,. 
The numerical examples are concentrated on taper structures playing 
an essential role in integrated optics devices for telecommunication 
systems. 
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1. INTRODUCTION 

The interest in the numerical simulation of the wave propagation in inte­
grated optics devices for optical telecommunication systems is constantly 
growing and much work is being invested to the development of fast and 
reliable algorithms. Starting with the basic publication of FEIT and FLECK 
[6] a large variety of methods have been published until now (see for example 
[15], [7], and [11]). Because we are interested in the handling of complicated 
spatial refractive index geometries, and the progress in the technology forces 
the trend to more sophisticated optical components, the algorithm proposed 
by KOCH [10] using a finite element method for the transversal field descrip­
tion was the starting point to develop a more efficient algorithm. 

All the methods mentioned above are based on a discretization, which is 
fixed in advance, but some of the complicated components, for example the 
taper structures treated in this paper, can no longer be simulated efficiently 
by using an a-priori fixed discretization. 

A successful handling of such devices requires an essential reduction of the 
computational amount of work, which becomes most evidently in the case of 
three space dimensions. An attractive concept of such an amount of work re­
duction is adaptivity, i. e., the automatic nonuniform discretization of every 
transverse cross section and the use of a related step size control in the longi­
tudinal direction. The objective of this paper is to test the idea of adaptivity 
in the field of wave propagation in integrated optics devices. The algorithmic 
proposals concerning the adaptive formulation, whose application to optical 
problems are presented, are mainly due to the work of BORNEMANN [2], [3] 
and they are theoretically grounded there. Because this paper is devoted to 
the principal formulation of wave propagation using adaptive methods, it is, 
for the time being, restricted to problems with ID cross sections. Of course, 
this restriction is understood as a first step. " 
The physical problem we want to solve can be described as follows. Suppose 
two infinite, parallel planes bounding-ihe partol.our component, we are in-
tersted in. A coherent light source emits a beam, which travels through the 
first plane, the input plane and then through the component until it passes 
the second plane, the output plane. We are looking for the field distribution 
between both planes. In the most general case we have to solve the time 
dependent1 Maxwell's equations until a stationary state is reached. But if 
we would restrict ourselves to perfect reflection free structures, we will be 
able to formulate our problem as an initial-boundary-value problem, because 
every field distribution at a given plane parallel to the input plane defines 
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uniquely the field distribution behind this plane. Now, for practical purposes 
it should be enough, if the reflections within our component are sufficiently 
small. To formulate such an initial-boundary-value problem we will use the 
slowly.varying amplitude approximation leading to Fresnel's wave equation, 
which is a standard procedure in optics (see e. g. [10]). But we will take some 
care in looking for an approximation, which is well suited for the adaptive 
numerical formulation. It will turn out, that the adaptive method reacts very 
sensitive to the 'inherent difficulty' of the problem and that therefore a very 
close interdependence between the modeling of the problem, the formulation 
of the algorithm, and the numerical efficiency can be observed. 
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2. T H E PARAXIAL WAVE EQUATIONS 

2.1. T H E VECTOR WAVE EQUATIONS 

It is assumed that the dielectric media is isotropic, nonmagnetic, and source-
less and that the permittivity e depends only on the position. The usual time 
dependence exp(iwi) is understood, where u denotes the optical angular fre­
quency. Maxwell's equations are given by 

(2.1) V x H = ieoCruE 

(2.2) V x E = -inoull 

(2.3) V H = 0 . 

(2.4) V-(e rE) = 0 . 

(H: magnetic field, E: electric field, e0: permittivity in vacuum, e,.: relative 
permittivity, po: permeabihty in vacuum) 

Using these equations, we get the vector wave equation for the electric and 
the magnetic field • ' , 

(2.5) --;-• -V2E + uj2€QeTnoE + V ^ • E ) = 0 , 

(2.6) V2H + w'eo^oH + — x (V x H) = 0 . 

We define the Poynting vector as usual to 

(2.7) S = E x H * . 

where the V indicates the complex conjugate vector. From the equations 
(2.1) and (2.2) follows 

, V - S = V - ( E x I T ) 

(2.8) v = ieoerwEE* - i^owHH* . 

The theorem of Poynting states that the real part of Sis the average power 
flux density [12]. 
We use a x, y, z-Cartesian coordinate system, where every plane z = const 
defines a cross section of our integrated optical component with'the transverse 
coordinates x and y, and the wave should travel almost parallel to the z-axis. 



The integration- of V • S over a cross section and the application of the 
divergence theorem in two dimensions gives 

(2.9) ' / V-Sdn = 4~ I Szdü+ [ StndT , 
K J

 JQ dz Jn Jr 
where D, indicates an area integration in the x, y - plane and T is a line 
integral about this area, Sz is the z-component of the vector S, St the or­
thogonal projection of S to the transverse plane and n is an outward normal 
unit vector from the contour I \ 

Using (2.8) and (2.9), and integrating over the infinite cross section leads 
to 

(2.10) T-Pa(z) = » { / »eoCrwEE* du) 

(2.11) PQ{z) = StU Szd£l\ . 

The line integral at infinity is identically zero because of the vanishing field 
at infinity. Pa indicates the whole power over a cross section, besides a factor 
of two. If the optical media are all loss-free, e is purely real and the right 
hand side of (2.10) is identically zero. In this case it follows that we have 
Pn(z) = const for every cross section of the structure, as it is clear from the 
principle of the conservation of energy. 

2.2. T H E WAVE EQUATIONS FOR STRUCTURES WITH ID CROSS S E C -

: : : : : T I O N S • • • -".. . . : - . : . . . . : - : . • , , . . - . . : : . . - • . . . ...•.:..":"". 

Because we are restricted to problems with ID cross sections e is set.to 
be only a function of x and z. Additionally, the field solutions we look 
for should not change in the y-direction. With these assumptions we get 
the well known, independent TE (Transverse Electric) and TM (Transverse 
Magnetic) solutions of Maxwell's equations (2.1)-(2.4). From (2.5) and (2.2) 
it follows 

(2.12) TE: V 2E y + n 2 ^ E v = 0 
d 

(2.13) H r . = — T j - E , 

(2.14) H z = ^ - | - E , 
[IQU) OX 

Jy 
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and from (2.6)" and (2.1) 

(2.15) TM: V ( ^ V H y ) + fc^H, = 0 

(2.16) ET = - - 1 _ A H , 
CotrU) GZ 

i_d_ 

where we have introduced the refractive index n and the vacuum wave num­
ber fco by 

(2-17) E* = - — - i z & y > 

„2 _ ^ 
n = er 

fco = CQUOPJ2 . 

The z-components of the appropriate Poynting vectors are given by 

TE: ;. S,eM. = - E s x H ; 
i dE* 

(2.18) = - E ^ - e , 

,- ; TM: Szez = Ex x Hy 

(2.19) = ± H ^ , e , ;••••-' 
&jj y oz 

2.3. - T H E PARAXIAL WAVE EQUATIONS : 

As discussed above, we want to investigate a class of problems, which can be 
handled approximately as initial-boundary-value problems. For this purpose 
we use in the following the slowly varying amplitude or Fresnel approxima­
tion. The slowly varying amplitude Ey is introduced by 

(2.20) Ey = Eye-in°koz, . , ' 

where n0 (real, positive) is not fixed so far. 
Replacing Ey in (2.12) with (2.20) yields the transformed wave equation 

This equation is still exact, no approximation has been performed. If we are 
allowed to neglect the second term on the left hand side of (2.21), we get a 
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partial differential equation (PDE) with only a first derivation with respect 
to z. Clearly, this approximated PDE is a well defined initial-boundary-
value problem, because the boundary conditions about the cross section are 
known to be the homogeneous Dirichlet conditions and a given field solution 
at z = ZQ uniquely determines every field distribution at z > ZQ. Due to 
these reasons, the equation we want to solve for the TE-polarization is 

(2.22) TE: —^ + (n2 - n2,) k2
0Ey = 2in0k0^ . . _ • 

The same argumentation holds for the equation (2.15) describing the TM-
polarizätion, but in addition it is assumed for the moment that the refractive 
index is only a function of the transverse coordinate x. This leads to the 
approximated TM-equation 

(2.23) TM: °li?*L + ±^l&,-*i*L°& . 
x ' oxn2 ox n2 n2 az 
In practice equation (2.23) is used for slowly varying z-dependent refractive 
index changes too. This approximation is not examined here. 
In the following the paraxial equations (2.22) and (2.23) are analyzed. To 
make this as easy as possible, the whole structure is assumed to be loss-free, 
i. e., the refractive index is purely real. The general idea is, that the power 
over a complete cross section (eq. (2.11)) remains constant throughout-the 
structure.- This follows from equation (2.10) and is a direct consequence from 
Maxwell's equations. But Maxwell's equations are violated by the paraxial 
wave equations (2.12) and (2.15), consequently the power calculated on the 
basis of the paraxial equations no longer remains constant. Therefore we can 
conclude two things: : . : : • - . : : -

• the deviation of the calculated power based on the paraxial wave equa-; 
tions from a constant value can be seen as a physical measure of the 
validity of these equations, and ~ 

• the free parameter n0 should be chosen so that this deviation is as small 
as possible. 

If the Poynting vector formulation equations (2.18) and (2.19) are rewritten 
in terms of the slowly varying amplitudes one gets 

(2.24) " TE: : Sz = — i - E y ^ + ^EyE*y 
UflQ OZ UJJ.Q V 
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(2.25) TM: Sz~ = _ L _ £ ; 2 3 L + ̂ SJ? 

The case of the TE-polarization is considered first. To abbreviate the nota­
tion the usual Z^-scalar product of two complex functions fi(x) and f2{x) is 
introduced by 

(2.26) (/i,/2)= [fi(x)-fZ(x)dx . 

The equations (2.11), (2.21), and (2*24) lead to a formula for the power PQ 
over a cross section, which is still exact: 

TE: * = dÄ {- (§• f ) + « • (*• <»' - • * * ) + 

(2.27) Mvtm\^[&yA) . 
Ö22 J J WJJo 

If we step over to the paraxial approximation, the third power term on the, 
right hand side of equation (2.27), containing the second z-derivative is ne­
glected and Pn becomes inexact. To make one of the consequences clear, 
we assume for the moment that a z-independent waveguide is given. As it 
was shown in [8], the field distribution in every transverse plane of such a 
waveguide can be written as modal expansion of all transverse eigenfunctions 

(2.28) Ey = J2aj(*)e-ißjZ > 
i ' • • • • • • 

where forward and backward traveling waves are included. Therefore we have 
in the loss-free case (real ßj) 

"(2.29) |A,,^)<0V 7 r 

independently from the direction of propagation. Thus, the calculated power 
based on the paraxial approximation is always larger than the true one, and 
we cannot decide if the power deviation is due to reflected waves or tcrthe 
approximation of the forward propagating wave. 
In order to keep Pa as accurate as possible, the neglected power term has to 
be much smaller than the other terms. As n0 is the only parameter we have 
to influence the quality of our approximation, we require, that the power 
difference has to be a minimum in dependence of no. 
Rewriting equation (2.27) leads to 
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A P • wfj.Q = 

(2.30) = ui*QPQ--^-T1-^T7 , 
v 2n0A;o 2 

where 2\ and T2 indicate the following n0-independent terms 

T2 = \Ey,Ey) . 

For a local extremum we require 

dAP(n0) = _J_T _ fc 
dn0 2nlk0 2 

= 0 , 

ending up with 

Tlr, = 
Ti 

(2.31) 
*:0

2 ( ^ n 8 ^ , ) - ( 9E9 dEy 
dx ' 3x 

kl(Ey,Ey) 

This result is the same as proposed by SPLETT [13] to enlarge the applica­
bility of Fresnel's wave equation. As we are looking only for positive n0 and 
because T2 is always positive too, T\ has to be positive. Due to this fact, the 
second derivation of A P with respect to no is always negative, i. e., a local 
maximum of the power difference A P was found. In Fig. 1 the qualitative 
dependence of the power difference on the refractive index n0 is given. 

If we use the original Helmholtz equation (2.12), we get a further interpre­
tation of equation (2.31). Assuming a modal expansion for the original field 
of a z-uniform waveguide 

(2.32) Ey(x,z)=Y,aj(x)e-i^ ,' 
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no 

AP 

minimal deviation 

FIG. 1. Power deviation in dependence of the reference index 

with a modal power Pj (see (2.18)) 

(2.33) 

leads to 

«2 — " 
nn — — k*(Ey,Ey) __.;..,•. 

_ yffi (gi>ai) 
^kl(Ey,Ey) • -

From this equation it is seen, that n0 can be considered as the arithmetical 
mean of all propagation constants,.weighted with their modal power, i. e., 
we take the first power weighted'mö'mentum of all propagation constants_of 
the traveling wave group. ' 
In summary, we can state the following properties of the paraxial wave equa­
tion (TE): ' ' " ' " . . . v 

• there is an optimized approximation of the paraxial wave equation 
(2.22) to the original equation (2.21), if we compare them using the 
power difference equation (2.30) 

• the reference index n0 is given by equation (2.31). It is the same equa­
tion as holds for the propagation constant-and the related field distri-
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TABLE I. Normalization. 

TE TM 
X knX k0x 
z k0z knZ 

u Ey Hy 

b 1 l 
7l2 

9 n2 — n\ 
V-2 

c linn 2ino 
„2 

p upoPn weo-Pn 

bution of a single eigensolution of a z-uniform waveguide. 

• Suppose, the field distribution over a cross section of a z-uniform, loss-
free structure is given. Then the power calculated using the paraxial 
approximation is always larger than the true power, except the case, 
where the field is given by a single eigensolution. In this special case 
the power difference vanishes. 

The same argumentation as above given in detail for the TE-polarization 
holds for the paraxial TM-equation (2.23). In complete analogy we get 

(2.34) Tin — 

k0 (Hy,Hy) - \^2-äf,-d^j 

kl(^Hy,Hy) 

2.4. „NORMALIZATION ,,••:.•:.>. j i ^ , . ' , ^ . - .'.''..'.:'. ~ : . J ^ 

In order to simplify the notation, to avoid physical units and to handle both 
polarizations with the same equation, the normalization given in Table I is 
introduced. 

In the following the notation of the left column of Tab. I is used. 

Now the equation to solve is 

(2.35) 

n0 is given by 

3 , 8 d 
—b—u + g-u = c-—u 
ox ox oz 
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(2-36) n ° - (i^5 • 
and the power transmitted in the direction of propagation is 

(2-3?) p=M{3u'u)'{^)}+Mbu'u) • 
2.5. T H E W E A K FORMULATION * 

In order to get an equivalent variational equation to (2.35) we use the stan­
dard procedure (see e. g. ZlENKIEWICZ [16]). Equation (2.35) is multiplied 
with a function u*,u (E HQ and integrated over the cross section fi 

(2-38) j[(;|^+«-«-e-J;«)-''*M*-0 • 
If the partial integration is performed, we get -

(2.39) a(u,v)= (c~,t; 

where the bilinear form a(u, v) is defined as 

Equation (2.39) is to solve for the weak solution u € HQ for all functions 
v € HQ and the homogeneous Dirichlet conditions u = 0 at T. 
Using the bilinear form equation (2.40), the equations (2.36) and (2.37) can 
be rewritten as — 

(OAU ' _2 _ a{u,u)+nl{bu,u) 
( } ^ 0 _ ( M 
a n d • • • • - - . 

(2.42) P(u) = -—a(u,u)+n0(buiu) , 
2no 

• where n0 indicates the refractive index according'to equation (2.36). In 
general, no and n0 will be differ, because the solution of the paraxial wave 
equation or the equivalent variational formulation depends on the original 
chosen refractive index n0. But, comparing equation (2.36) to minimize the 
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power deviation and the definition of the bilinear form (2.40) it is found that 
the minimization condition is equivalently fulfilled, if 

(2.43) a ( u , u ) = 0 . 

In this case we have n0 = no and additionally 

(2.44) P(u) = n0(bu,u) 

(2.45) ( c | , u ) . = 0 . 

Both equations are essential for the numerical algorithm. The first natu­
rally leads one to use of the implicit midpoint rule as integration scheme, the 
second influences the performance of the longitudinal stepsize control. 
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3. THE NUMERICAL ALGORITHM 

3.1. T H E DISCRETIZATION IN THE DIRECTION^ OF PROPAGATION 

In order to get a fully discrete approximation of our basic equation (2.39), 
we follow BORNEMANN [2]-[3] and discretize in the z-direction first. It is 
assumed that we start the simulation at z = 0 with a given u(x,o) = u0 

and look for the solution u(x, Az) = UA*I where Az is the increment in the 
z-direction. Application of the midpoint rule to equation (2.39) leads to the 
stationary subproblem: 

(3-1) a¥(—2~'üJ = lc-Ä7~'uJ¥ ' 
where the subscript ^ means that all z-dependent coefficients have to be 
taken at z = ^ . If the linear* form f{v) and the bilinear form b(u,v) are 
introduced by 

(3.) M*((c + $..)„)M-±fe^ . 
and 

^;.^').?(rT ,«)"8 , ') .v+Tl iÄ ,& / 
equation (3.1) can be rewritten as 

.3.2. : THE COMPLETE DISCRETIZATION 

The subproblem (3.4/is solved in the usual finite element manner.,A space.., 

:V/i G HQ is defined as 

Vh = span{vi,...,vN} . 

It is looked for an solution Uh € V/i, which obeys ' 

- • b(uh,vh) = f{vh) • .,._ 

'" •• for aJl v& € Vfc.. • 
The whole cross section is divided into N + 1 finite intervals as shown in Fig. 
2. ' 

2 
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1 --

XQ X\ XNxN+l 

FlG. 2. Linear basis functions t>,-

The functions u,- are given by 

(3.5) 

where 

Vi = < 

A-l h~;(x-Xi-i) , . x,-_i <x<x{ 

= Yi (x»'+i ~ z ) » xf<x< xi+1 

• , elsewhere 

(3.6) hi.= xi+1 -xt . 

Every solution «>,, given by 

N 

defines a vector u as 

« 2 
U 

Now we can state the fully discrete problem as the solution of the Hnear 
system 

(3.7) .. B : u = f , 

where the matrix B and the vector f follow from their components 
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(3.8) , bj{ = 6(^ ,^0 

(3.9) ft = / ( * ) . 

3.3. T H E PROBLEM OF THE CONSERVATION OF ENERGY 

The problem of the conservation of energy will be discussed. We follow 
in principle the consideration outlined in STRANG/FiX [14] and show that 
using the implicit midpoint discretization and assuming the loss-free case, 
the optimized power evolution (2.45) is piecewise constantly approximated. 
If we write (3.1) again, using v = (UQ + UAZ)/2 , we get 

a A* 

= (2AlU^'^)-(2izUo'Uo) + 

•--+ {TL^0) ~ ( ^ ' ^ 
Because the bilinear form a(-, •)• on the left hand side is purely real and c is 
purely imaginary (see Tab. I), we have 

(3.10) (c-u^zjUte) = (c-Uo,u0) . 

We see that in the discrete case the term 

(3.11); : ' j c u , « ) 

is conserved along one step. 
Additionally, viewing c as z-independent over one propagation step, which 

is exactly true for the TE-polarization and approximately valid for the TM-
polarization, we can conclude from equation (2.45) 

1 

2 

2dz 

dz* r\u'-idz 
cdu \ ( cdu 

lTz'u) + [x 

(ru'tt) ' 
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and therefore the continuous model requires that the term 

(3.i2) Kr»-") 
is conserved within each propagation step. Using 

c = 2iriob 

introduced in Tab. I we find complete agreement with the power evolution 
equation (2.45). Comparing the equation (3.12) resulting from the continu­
ous model and (3.11) from our discretization, we find that in fact (2.45) is 
approximated by a piecewise constant function. Another consequence from 
equation (3.11) is that (u,u) remains constant throughout the whole struc­
ture. As we approximate the optimal power evolution (2.45), based on Fres-
nel's model, any deviation from the constant power required by the complete 
Maxwell's equations allows to monitor the model error. 

3.4. T H E LOCAL MATRICES 

In order to calculate the local matrices we need the following results 

(Vi,Vi) 

(Vi.Vt+i) 

(dvj dvj\ 

\dx\dx). 
(dvj dvi+i\ 

[dx\ dx J 

Now we can decompose B into its local matrices B,- using the equations 
(3.3) and (3.8). As it will be explained later in the context of the adaptive 
refinement, the coefficients b, c, and g can set to be constant over a single 
finite element. Therefore we obtain 

<-> *-MnHU"D' ' 
for i = 2 . . . N - 2 and 

16 

= -{hi-r + hi) 

- ^ 
. 1 1 

. + • hi-i hi 

~hi -

file:///dx/dx


(3.15JB*-! 

with 

h-N-
-miv-i "i + sfc + 

SN-l 1 - 1 

-1 1 + ^ f 

(3.16) 

(3.17) and 5,-

/ A z \ Az /Az 
VT —' 

/ A z \ Az /Az 
VT 

= 
Az, /Az \ 

THTJ • 
Analogously, f from the right hand side of equation is decomposed into local 
vectors ft- using equation (3.2) 

/ 

/< = (3.18) 

where m° is defined as 

(3.19) 

m?;(«o,vf) -

rri; («o,wf) 

Si 

Si 

'duo dvf 
dx ' dx 

'dug dv£ 
dx ' dx 

\ 

m\=c<{2 
fAz\ Az 

+ T5' • • ( T ) 

For i = 1, uf has to be replaced by v-^ and for i = N — l>-?$-i has to be 
replaced by UJV-
Now the left hand side of the linear system (3.7) can be reformulated in terms 
of the local matrices (3.13) -.(3.15) 

J V - l 

(3.20) 

• and for f. one gets 

Bu= £ Bt(u,-,ut+i) 
t = i 

(3.21) f = ( / 1 ( l ) , / 1 ( 2 ) + / 2 ( l ) , . . . , / i ( 2 ) + / i + 1 ( l ) , . . . , / J v_ 1 (2 ) ) i : 

The advantage of this formulation of the linear system (3.7) becomes obvious 
if we look at the adaptive refinement of a given grid, as we will see later. 
The last question, which remains to answer, is how to approximate numeri­
cally the scalar products contained in equation (3.18). Concerning the prac­
tical problems discussed in this paper,_the use of the two point' Gauss quadra­
ture turned out to be a good choice. With the appropriate formula we get 
for the first type of the scalar products: 
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/ tto(ar) • vL(x) dx « - (w1ti0(a:i) + ^2^0(^2)) 
Jo I 

fh h 
\ u0(x) • vR(x) dx « - (W2UO(:EI) + u^ 1*0(22)) , 

Jo I 

where the constants are given by 

Wi = 

W2 = 

X\ — 

x2 = 

The remaining type of scalar products can be integrated exactly: 

1 ^V3 
— + -7T-
2 6 
1 V3 
2 6 
h 

2 K h / , V« 
2 i + T 

f*du6 dvL 1 

Aöuo- ^ , l 

y0 d r i r ^ = Ä (uo(Ä) " u°m • 
3.5. ADAPTIVE REFINEMENT OF THE F I N I T E ELEMENT G R I D 

For every given cross section, the stationary subproblem (3.4) has to be solved 
up to a prescribed tolerance T]t. The first problem is the definition of a fun­
damental grid, from which the refinement is started. The class of integrated 
optics devices, which is investigated in this paper, is characterized by the 
fact, that the whole component is composed by a few number of thin films. 
The refractive index is constant within each layer, but changes between two 
neighboured films (see Fig. 3). Due to this refractive index geometry we can 
define a fundamental mesh in such a way that every single layer is described 
by a single finite element. The so chosen grid at level zero describes the 
complete transverse index structure but contains a low number of nodes. 

On the fundamental grid a solution is computed, which is of course very 
rough. In order to select the elements to subdivide, we need an estimator 
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FIG. 3. Mesh development 

for the local errors belonging to every finite element and an appropriate 
refinement strategy. The local error estimator used was proposed in [2] and 
results from a comparison between the solution obtained using linear finite 
elements and a local improvement using quadratic elements. Equation (3.4), 
written only for a single finite element reads" 

/ « « « x - / N (du dv\- o / N- fduo dv 
(3.22) mi • (u,v) + - « . ^ , ^ J = mf. • («o,«) - « • [ ^ ^ 

It is assumed that jthe linear solution u' is known and we look for a quadratic 
improvement u ' . We in t roduce— 

(3.23) 

(3.24) 

(3.25) 

u 
9 -

U 

vq = 

ul + uq 

a- vq 

__4_ 

~h2 x (x — hi) 

Inserting equation (3.23) - (3.25) into equation (3.22) leads to 

"m°(tio, * ) - m(«V««) - - ' ( & , £ ) - s ' ( £ , g ) 
(3.26) a = m(u9,u9) + s(vl,vqx) 
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The evaluation of the scalar products gives 

with 

and 

( u V ) = | (u'(0) + u'(Ä)) 

öu? d t^ \ _ 16 
dx ' dx j 3h 

dv!_ dvq\ 
dx ' dx J 

{uo,vq) » - (u(si) + 4u(x2) + u(x3)) 

.1 V^5 
xi = h • I — — 

2 10 

x2 = -

*3 = h'[\+-w 

1 vT 
\ 2 6 

. , /l V3 

The approximation of the last two scalar products was performed using the 
three point Gauss quadrature. With a from equation (3.26) the estimated 
transversal error of the ith finite element is . 

»/*, ;.. = \J{cLVq, CLV*) 

• - ' * # • 

Consequently, the resulting error estimates is given by 
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Now we are able to build a refinement strategy: 

refine the i-th element if 77; > cut. 

To determine 'cut', we use a simple prediction scheme following BABÜSKA 
and RHEINBOLDT [1] to forecast what may be happen to 77,- if the belonging 
element is subdivided. Locally we may assume that the following represen­
tation of the local error indicator is valid 

Taking the history of the refinement into account, we also have approximately 

7 ^ = ^ ( 2 / ^ 

and 

« " « » - / . (hi\ ' 17*. -«[J) • 

and therefore the prediction rjnew for the new elements, if the actual elements 

will be subdivided, is estimated to 
_ 2 • ""**~ - -

new li 
"» ~~ -old • 

Obviously, only those elements"should be subdivided, which have anj?i.Tvalue 

above the largest predicted new 77-value. 

cut := maxT/"61" 

3.6. THE LONGITUDINAL STEPSIZE CONTROL 

Until this stage, we have achieved the following: 

• The z-discretization was carried out first, using a physically reasonable 

stepsize Az , 
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• The arising stationary subproblem was solved adaptively using the fi­
nite element method. Any prescribed accuracy concerning this sub-
problem can be achieved. 

Since we want to limit the complete discretization error rather than only 
the transversal one, the following requirement has to be fulfilled: 

(3.27) r,t + 7)z<TOL , 

where rjz indicates the longitudinal error still required and TOL is the given 
accuracy. In order to obtain r\z , we compare the solution u of equation (3.1) 
and a new solution ue , which results from a implicit Euler discretization of 
the basic equation, (2.39). The implicit Euler step can be written as 

In complete analogy to the sections 3.2 and 3.4 we get a new linear system 

(3.28) B eu e = fe . 

The matrix B e can be assembled from the local matrices (3.13) - (3.15) 
exactly as B does, but the factors m,-, m- , and s,- have to be changed to mf, 
rnj'e , and sf by 

.m] = Cj(Az) - Az •gi(Az) 

m?'e = c-(Az) 

5,- . = • Az-bi(Az) . ' • ' • • ' • - . 

The same holds for the local vectors ff, which form the right hand side of 
(3.28). We obtain f? from ft- of (3.18), if there s,- is set to be zero and m° is 
replaced again by m,-''. 
Now T^ is given by 

rjz = \\u-ue\\Li 

Following DEUFLHARD [4], [5], a proposal for a new stepsize can be obtained 
by 

(3.29) Aznew = a2 
\ 

\TOL.  
Az 

where crz is a constant. Now the complete adaptive algorithm can be de­
scribed: -
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1. For the proposed Az the stationary subproblem is solved with an ac­
curacy T/t, where 

Vt<<rf\-TOL 

is required. In our examples a security factor at = 0.25 was chosen. 

2. Next, the same step on the same grid is computed again, using now the 
implicit Euler discretization and r\z is calculated. 

3. According to equation (3.29), Aznet" is determined. If is the resulting 
discretization error is larger than TOL, then the whole propagation 
step has to be calculated again using the proposed new Az, otherwise 
the next step can be calculated starting with Az = Aznew. 
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TABLE II. Input waveguide 

waveguide geometry refractive index n 

width 0.4/zra substrate 3.16446 
length lOOOfim waveguide 3.39885 

4. APPLICATION TO TAPER STRUCTURES 

The cause to develop the adaptive algorithm described in the previous sec­
tions was the need for an effective numerical tool to simulate integrated 
optical waveguide tapers with complicated refractive index geometries based 
on the semiconductor material InGaAsP/InP. Such taper structures can be 
seen as mode transforming devices connecting dielectric waveguides with dif-

. ferent spot sizes. As an example, the coupling of a passive semiconductor 
waveguide to a glass fiber will be investigated in this section. The structure 
to simulate has been proposed by Nolting [9] as a part of the COST-240 prob­
lem set. The spatial refractive index distribution is compatible with present 
fabrication technologies. In order to learn some properties of the adaptive 
algorithm, we will build up the ID-model of the original structure in several 
steps. At first only the input and output waveguides of the structure are 
considered, then the case of the butt coupling of both waveguides, followed 
by the case of a symmetrical tapering, and finally the complete taper model. 
The program AMIOl (mnemotechnically for: Adaptive Multilevel Integrated 
Coptics 1-D) is written in the language C. All simulations presented in this 
section were carried out on a SUN spare workstation IPC. 

4 .1 . T H E Z-UNIFORM SLAB WAVEGUIDES . : 

Figure 4 shows the principal spatial refractive index geometry of the two 
incorporated z-uniform waveguides and their data are given in Table II and 
III respectively. 

If the input waveguide is launched with its fundamental mode at z = 0, 
the fields propagates in the z-direction and the local amplitude distribution 
\u\ remains unchanged as it is shown in Figure 5. The distribution of nodes 
belonging to this field distribution is given in Figure 6. The concentration of 
nodes is higher in. regions with higher field intensities and becomes low far 
away from the waveguide. The simulation of the output waveguide leads to 
very similar plots and is therefore suppressed here. The performance of both 
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waveguide (InGaAsP) 

FlG. 4. Z-uniform slab waveguide 

T A B L E I I I . O u t p u t waveguide 

waveguide geometry retractive index n 

width 5.0/JTO substrate 3.16446 
length lOOOjim waveguide 3.16756 
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simulation runs is given in Table IV. 
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FIG. 5. Z-uniform slab waveguide: field distribution 
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FlG. 6. Z-uniform slab waveguide: self-adaptive distribution of nodes of Figure 5 

Because the analytical solution u^ue of the field propagating along the 
z-uniform waveguide is known, we can compute' the true error 
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TABLE IV. Numerical effort 

TOL CPU/s steps 
input waveguide 0.01 17.3 54 
output waveguide 0.01 14.0 53 

Vtrue = y(u ~ UtTW, U - UtTUe) • 

The appropriate results are plotted in the Figures 7 and 8. 

T " 
0.12--

T " 0.10-
Vtrue 0.0&-

0.06-

- 0.04 • 

0.02-• 

0.00 1000 

i/pm • 

FIG. 7 . Input waveguide: true error 

In both cases the error increases linearly after a short transient length, but 
the magnitude of the errors is very different. Whereas the error of the weak 
guiding output waveguide remains less than the prescribed TOL along the 
whole simulation length, the error of the strong guiding waveguide exceeds 
this value after 150/im. These errors are due to a deviation between the exact 
propagation constant ß and the numerical generated propagation constant 
ßhum- Of course the difference ß - ßwm can be decreased by decreasing the 
prescribed tolerance TOL, but this leads to an increasing numerical effort 
and seems to be not necessary for most of the practical purposes. If we 
compute the the accumulated phase differences along the whole simulation 
length A<f> = {ß- ßnum) • *, we get for the strong guiding input waveguide 

A<£;= 6.8° -\0.l2rad) 
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FIG. 8. Output waveguide: true error 

and for the weak guiding output waveguide 

A<£ = 0.1° (0.171(T3ra<f) . 

Concerning practical cases, where relative phase differences play a more es­
sential role than absolute phase differences, one is encouraged to start a 
simulation with even larger tolerances. 

4.2. T H E B U T T COUPLING 

Figure 9 shows the butt coupling of the input and the output waveguide 
considered in the previous section. The length of both waveguides is taken 
to 50fim. The field distribution of this structure, again launched by the 
fundamental mode of the input waveguide, is given in Figure 10 and the be­
longing distribution of nodes in Figure 11. These figures show exemplarily 
the adaptive discretization of the transverse cross section and the influence 
of the stepsize control. A very small number of nodes and steps is needed 
to propagate the field along the input waveguide, whereas this number dra­
matically increases behind the location of the butt coupling (see Figure 12). 
The numerical characteristics are given in Table V. 

As discussed in section above, the power P(z) can be used to estimate the 
validity of Fresnel's approximation to Maxwell's equations. Figure 13 shows 
the plots of the power P{z) and the scalar product (u,u) along the direction 
of transmission. The scalar product remains constant due to the choice of 
the implicit midpoint rule, but the power changes abruptly at the location öf 
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Output waveguide 

FIG. 9. Butt coupling of the input and the output waveguide 

zjpun 

120f 

1001 

x/fim-

FIG. 10. Butt coupling: field distribution 

TABLE V. Numerical effort to simulate the butt coupling 

TOL CPU/s steps 1. section steps 2. section 

0.05 157.0 7 147 

29 



zjum 

120--

100--

80--

60-

40-

20-

! i ! 

10 20 30 40 50 60 70 

x/fJLm-

FlG. 11. Butt coupling: distribution of nodes 
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FIG. 12. Butt coupling: evolution of the number of nodes 
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TABLE VI. Geometry of the symmetrical taper structure 

width at the input face OAfim 
width at the output face O.Olfim 
length of the input guide 50.0/mi 
length of the output guide 50.0^m 
taperlength 500.0pm 

the refractive index change. Because an ideal solution of a nonlossy structure 
is characterized by P — const., every power deviation from a constant value 
indicates an inaccuracy of our model based on Fresnel's wave equation. From 
this point of view we can explain the abrupt power change with the generation 
of reflected waves, which are not taken into account in our propagation model. 

Reflexion „ 

(u,u) 

_H 1 i : 1 1-

2 0 ' : 40 60 80 100 

z/fim—• 

J'lG . 1 3 . Butt coupling: power evolution, behavior of P allows monitoring of the modehng 

error "•.-•"--

4.3. THE SYMMETRICAL TAPER STRUCTURE 

The principal spatial refractive index structure of the symmetrical taper 
. structure is shown in Figure 14, the related data are given in Table VI. 

The taper itself has the.same refractive index as the input waveguide and 
its width is linearly decreased. This structure is well suited to analyze some 

• properties of the numerical algorithm. In order to compare the different 
results using different tolerances, the definition of the overlap integral is 

T 
P(z) 
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3.5--

3.0-
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0-
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FIG. 14. Symmetrical taper 

useful. We assume that we can expand every solution u(z) in a series of 
modal eigenfunctions at-(x) of a z-uniform reference waveguide. 

«(*) = E aia<(x) » ' 

with the normalization (a,-, a,-) = 1. Using the orthogonality relation 

(ai,aj) = 0 for J ^ j , 

.which is valid in the nonlossy case, we get '~— ___. . 

ai = (u(z),ai) . 
. . . . . . . • • - : / 

Now, |oo| provides an approximated measure for the power coupling efficiency 
from the input to the fundamental mode of the reference waveguide. This can 
be seen as follows. If the input waveguide is launched with its fundamental  
mode a™ obeying the normalization condition, and having a propagation 
constant ß™ = nj,n • &0, then this mode carries a power, according to equation 
(2.45) 

Pin = njn • . ' 

Eqtdvalently, we get the power of the fundamental mode of any reference 
waveguide - . , 
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TABLE VII. Numerical effort and results using different tolerances 

TOL LCPU/s steps T) 

0.08 19.3 72 0.8654 
0.06 23.2 84 0.8651 
0.04 30.2 105 0.8686 
0.02 60.9 160 0.8621 
0.01 124.6 254 0.8640 

P*' = nlef-(aT
0

efaT
0

ef,alefalef) 

= < • |«oc / |2 • 

Now, the coupling efficiency is 

pref  

^ ~~ pin 

ref „ 
_ • Ü 2 _ re/ 2 

For practical purposes the last equation is approximated by 

This equation is often referred as overlap integral. ""-'•';'•- ':ZL':." 
The symmetrical taper structure was simulated varying the tolerance from 
0.01 to 0.08. Table VII shows the-numerical effort needed and the obtained 

••• coupling coefficients TJ, if the output waveguide is taken"as reference waveg-

^ uide. - . ' : . . " . ' - ' • • • • • • ' - ^ - • • - ' • - • ••••• " V ; ; - : . : ; : ; ; . , " . ' - . . V . : 1 " • . . . • • • • • • : . . • • • " ••'•• 

The r]-values differ less than 1 per cent from each other, i. e., even the 
rough tolerance TOL = 0.08 is sufficient to calculate the power coupling 
effieciency. 
To give an idea, how the computed field behaves using different tolerances, 
the field distributions and their distributions of nodes are given for TOL = 

- 0 . 0 8 (Figures 15 and 16) and for TOL = 0.01 (Figures 17 and 18). The 
more accurate simulation offers some more details than the coarser one. To 
compare both simulations more quantitatively, the overlap integral accord­
ing to equation (4.3.) is used in a modified way.-Along the input waveguide 
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FIG. 15. Symmetrical taper: field distribution, TOL = 0.08 (compare Figure 20 ) 

•q(z) is calculated using the input waveguide itself as reference waveguide to 
compute a0(x), i. e., the normalized input power is observed. Behind this 
waveguide the output waveguide is taken as reference waveguide, i. e., now 
r)(z) gives the power coupling coefficient to the output waveguide. Figure 19 
shows T](z) computed in the described manner. One can read from this figure 
that without the taper the power coupling coefficient will be about 0.26 and 
that this value is increased using the taper up to 0.86. The plot of the dif­
ferent results r){z) , one using TOL = 0.01 and the other using TOL — 0.08 
in the same coordinate system cannot be distinguished from each other. 

AH results presented so far used a reference index no according to equation 
(2.36). . The intuitive feeling that this choice of n0 not only guarantees a 
minimum of the power error but also seems to be preferable with respect to 
the stepsize control is caused by the physical insight that we have transformed 
the reference index to the first power weighted momentum of all propagation 
constants of the launched wave group and that therefore the algorithm sees 
a minimum of changes in the direction of propagation. This is underlined 
by equation (2.45). To prove this, Figure 20 shows the simulation of the 
symmetrical taper again, using TOL = 0.08 and taking the reference index 
to the refractive index of the InP-substrate as it is done usually. Comparing 
the Figures 15 and 20 the shorter steplength in the lower part of the figure is 

20 40 60 80 100 

x/fim-
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FlG. 16. Symmetrical taper: distribution of nodes, TOL = 0.08 

TABLE VIII. Numerical effort using different reference indexes 

TOL] CPU/s steps 

adap. no 0.08 -19.3 72 
n0{InP) 0.08 104.8 468 

visible. The increasing stepsize in Figure 20 can be explained with fact that 
the difference between the substrate index and the reference index according 
equation (2.36) gradually decreases along the taper structure (Figure 21). 
Table VIII gives a comparison between both simulations. "~'~" " ."" 

The Figures 22 and 23 prove that the number of nodes is not essentially 
influenced by the choice of n0. - —" 

The last representation using the symmetrical taper structure concernes 
the integration scheme for the z-integration. As discussed in section 3.3 the 
choice of the implicit midpoint rule seems to be well suited to approximate the 
required conservation of power. In fact, Figure 24 comparing the power evo­
lution using the midpoint rule in a first run and the Crank-Nicolson scheme 
in a second run shows that the required power constancy is significantly bet­
ter approximated applying the midpoint rule. 
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FIG. 24. Symmetrical taper: Comparison of the power deviation using Crank-Nicolson 
and implicit midpoint integration scheme 

TABLE IX. Geometry of the asymmetrical taper structure 

width at the input face 0.4pm 
width at the output face 0.01pm 
length of the input guide 50.Q urn 

length of the output guide 50.0pm 
taperlength 1000.0pm 
thickness of the guiding layers 0.014pm 

4.4. T H E ASYMMETRICAL T A P E R STRUCTURE 

The spatial refractive index geometry of the ID-model of the taper to fab­
ricate is given in Figure 25 and its data are assembled in Table DC. Figure 
26 shows the simulated field distribution using TOL — 0.01 and Figure 27 
displays the appropriate distribution of nodes. It is seen that the structure 
behaves as expected, only a small amount of power is radiated away at the 
butt coupling to the output waveguide (note that the amplitude is logarith­
mically scaled). This impression is backed quantitatively by the computed 
power coupling coefficient given in Figure 28. At the output of the structure 
we have a power coupling efficiency of about 0.96. 

Table X describes the numerical effort using different tolerances and the 
obtained coupling coefficients. 

It is found again that a TOL — 0.08 is sufficient for practical purpqses, if 
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FIG. 25. Complete ID model of the taper coupling 

TABLE.X. Asymmetrical taper: Numerical effort and results using different toler­
ances • - . - " . 

TOL CPU/s steps 1 
.0.08 25.0 110 0,9655 
0.06 33.9 124 0.9690 
0.04 44.1 152 0.9653 
0.02 99.7 239 0.9667 
0.01 216.0 364 0.9634 
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FlG. 26. Asymmetrical Taper: fielddistribution, TOL = 0.01, amplitude logarithmic 
scaled -
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FlG. 29. Asymmetrical taper: number of nodes 

only the power coupling coefficient is considered. To complete the description 
of the adaptive algorithm, the evolution of the number of nodes and of the 
stepsize are displayed in the Figures 29 and 30, respectively. 
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CONCLUSIONS 

The following main results have been presented: 

1. A self-adaptive finite element method to simulate the propagation of 
light in integrated optics devices was implemented following Borne-
mann's adaptive Rothe method. 

2. It was shown that the the implicit midpoint discretization in the longi­
tudinal direction supplied the desired behavior of the power evolution. 

3. The observation of the deviation of the power from a constant value 
can be used to monitor the validity of Fresnel's approximation. 

The next steps will be to integrate the Helmholtz equation rather than Fres­
nel's approximation and to extend the algorithm to 2D cross sections. 
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