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ABSTRACT

An adaptive approach to the numerical solution of the wave propa-
gation in integrated optics devices with 1D cross sections is described.
First, Fresnel’s approximation of the exact wave equation resultmg
from Maxwell’s equations is considered. A criterion to estimate the —
validity of this approximation is derived. Fresnel’s wave equation be-
ing formally equivalent to Schroedinger’s equation uniquely defines an

~ initial-boundary-value problem, which is solved numerically by a step-
wise calculation of the propagating field. .
* Discretization in longitudinal direction first with stepsize control leads
_ to a stationary subproblem for the transversal field distribution, which
“is then handled by an adaptive finite element method. Thus full a.da.p-
~ tivity of the algorithm is realized.
" The numerical examples are concentrated on taper structures playmg
- - . an essential role in integrated optics dev1ces for telecommumcatxon
S "systems. SR :
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1. INTRODUCTION

The interest in the numerical simulation of the wave propagation in inte-
grated optics devices for optical telecommunication systems is constantly
growing and much work is being invested to the development of fast and
reliable algorithms. Starting with the basic publication of FEIT and FLECK
[6] a large variety of methods have been published until now (see for example
[15], [7], and [11]). Because we are interested in the handling of complicated
spatial refractive index geometries, and the progress in the technology forces
the trend to more sophisticated optical components, the algorithm proposed

by KOCH [10] using a finite element method for the transversal field descrip-
" tion was the starting point to develop a more efficient algorithm.

All the methods mentioned above are based on a discretization, which is
fixed in advance, but some of the complicated components, for example the
taper structures treated in this paper, can no longer be simulated efficiently
by using an a-priori fixed discretization. |
A successful handling of such devices requires an essential reduction of the
‘computational amount of work, which becomes most evidently in the case of
three space dimensions. An attractive concept of such an amount of work re-
duction is adaptivity, i. e., the automatic nonuniform discretization of every -
transverse cross section a.nd the use of a related stép size control in the longi-
. tudinal direction. The ob]ectlve of this paper is to test the idea of adaptivity
in the field of wave propagation in integrated optics devices. The algorithmic -
proposals concerning the adaptive formulation, whose application to optical

. problems are presented, are mainly due .to the work of BORNEMANN [2], [3]

-~ we would restrict ourselves to perfect reflection free structures, we will be .

" and ‘they are theoretlca.lly grounded there: Because this paperis: devoted to - * PrA
" the prmmpal formulation of wave propaga,txon usmg adaptive methods, it is, :
-v.-;,‘for the time bemg, restncted to problerns with 1D cross secmons Of course,
' 'this restriction is understood as a first step. - - © . SR

* The physical problem we want to solve can be descnbed as follows Suppose ~.

" two infinite, parallel planes bounding the part of our component, we are in- -~
tersted in. A coherent light source emits a beam, which travels through the
first plane, the input plane and then through the component until it passes

the second plane, the output plane. We are looking for the field distribution

between both planes. In the most general case we have to solve t_he time

- dependent: Maxwell’s equations until a stationary state is reached. But if

[P

able to formulate our problem as an initial-boundary-value problem, because
every field distribution at a given plane parallel to the input plane defines

s . - Rp— o oo e



uniquely the field distribution behind this plane. Now, for practical purposes
it should be enough, if the reflections within our component are sufficiently
small. To formulate such an initial-boundary-value problem we will use the
slowly varying amplitude approximation leading to Fresnel's wave equation,
which is a standard procedure in optics (see e. g. [10]). But we will take some
care in looking for an approximation, which is well suited for the adaptive
numerical formulation. It will turn out, that the adaptive method reacts very
sensitive to the ‘inherent difficulty’ of the problem and that therefore a very '
close interdependence between the nodeling of the problem, the formulation
of the algorithm, and the numerical efficiency can be observed.




2. THE PARAXIAL WAVE EQUATIONS

2.1. THE VECTOR WAVE EQUATIONS

It is assumed that the dielectric media is isotropic, nonmagnetic, and source-
less and that the permittivity ¢ depends only on the position. The usual time
dependence exp(iwt) is understood, where w denotes the opt1cal angular fre-
quency. Maxwell’s equations are given by

-

(2.1) VxH = iegewh
22) CVXE = —ipwH
- (2.3) ' V-H = 0
(2.4) . V(¢E) = 0

(H: magnetic field, E: electric ﬁeld, €o: permittivity in vacuum, e.: relative

- permittivity, go: permeability in vacuum)

‘ Usiﬁg these equations, we get the vector wave equation for the electric and

- the magnetic ﬁeld
ey E+w eoe,./zoE +Vv ( E) -0 ,
_ \ | Ve,
(26) - VH+weoe,/,on+—-—-x(VxH)—0

_f;:-;We deﬁne the Poyntmg vector as usual to LS

g »'v-s' = V. (ExH")
@28 . = icewBE — ipuHH"

The theorem of Poyntmg states that the real part of S is the a.verage power

flux density [12].

- We use a X, y, z-Cartesian coordmate system, ‘where every plane z = const
defines a cross section of our lntegra,ted optical component with'the transverse =

coordinates x and y, and the wave should travel dlmost parallel to the z-axis.

G 'Where the ' md1ca.tes the cornplex conjuga.te vector From the equa.tlons . o
N _(2 1) a.nd (2 2) follows -



The integration. of V - S over a cross section and the application of the
divergence theorem in two dimensions gives

(2.9) '/V-Sdnz_/szd9+/s,ndr :

, Q 0z Ja r .
where ) indicates an area integration in the x, y - plane and I' is a line
integral about this area, S, is the z-component of the vector S, S; the or-
thogonal projection of S to the transverse plane and n is an outwa,rd normal

unit vector from the contour T, .

Using (2.8) and (2.9), and integrating over the infinite cross section leads

to
(2.10) | L(,j’_ng(z) = .SR{ [ ot wEE" dn}
(2.11) O Pa(e) = {/S dﬂ}

" The line integral at infinity is identically zero because of the vanishing field

~ at infinity. Pq indicates the whole power over a cross section, besides a factor - '

of two. If the optical media are all loss-free, € is purely real and the right
hand side of (2.10) is identically zero. In this case it follows that we have
Py (z) = const for every cross section of the structure, as it is clear from the
prmmple of the conservatxon of energy.: -

2_.2. THE WAVE EQUATIONS FOR STRUCTURES WITH 1D CROSS SEC-
TIONS. : .

"'Because we- are restricted to problems with 1D "c:ds‘é"s'ecti'ons € is set.to

~ be only a function of x and z. Additionally, the field solut1ons ‘we look * o
* for should not change in the y-direction. With these assumptlons we get

_the well known, mdependent TE (Transverse Electric) and TM (Transverse

Magnetlc) solutions of Maxwell’s equations (2 1)-(2. 4) From (2.5) and (2 2)
it follows

(212) TE:  V?E, +n2E, = 0

i 8
(218) | o H, = ——5F,
o . i 9.
(2.14 , - 9
(214) H. = ooE,
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and from (2.6) and (2.1)

(2.15)  TM: V(;ll—,‘,VHy)-i-kgHy =0
(2.16) g, - 9
. €o6,w 0z
(2.17) E, = —— aH ;
- €o6w Oz,

where we have introduced the refractive index n and the vacuum wave num-

ber kp by

n? = ¢,
k2 = eopow?®

The z-cozhponents of the appropriate Poynting vectors are given by

TE:  Se, = -E,xH;
R : i OEy
@’ = B
EEE - TM: . Szez = E XH* N
o R ,aH

}(2.19), o e = EE,H 5z ©

‘.As dlscussed above, we want to 1nvest1ga.te a class of problems Whmh can be..., B

.- handled approximately as m1t1a1-boundary—va.1ue problems. For this purpose

we use in the following the slowly - varying amplitude or Fresnel approx1ma,-«‘-§i;~;_~5;-..;~ i

: txon T he slowly varying amplitude E is mtroduced by

(220 S BB -
where ng (rea.l pos1t1ve) is not fixed so far. B A
: ‘Repla.cmg E, in (2.12) with (2.20) yields the tra.nsformed wave equatlon

0k, & E : 8E ‘
+ -l- (n2 - no) k2E = 2'Lnoko*—6';— e

'_ ,_(221) 52 T 5 T\

This equatmn is still exact, no a.pprommatlon has been performed If we are R

~ allowed to neglect the second term on the left hand side of (2.21), we get a



partial differential equation (PDE) with only a first derivation with respect
to z. Clearly, this approximated PDE is a well defined initial-boundary-
value problem, because the boundary conditions about the cross section are
known to be the homogeneous Dirichlet conditions and a given field solution
at z = zp uniquely determines every field distribution at z > z. Due to
these reasons, the equation we want to solve for the TE-polarization is

O*E,
0z?
The same argumentation holds for the equation (2.15) describing the TM-
polarization, but in addition it is assumed for the moment that the refractive
index is only a function of the transverse coordinate x. This leads to the
approximated TM-equation

ok

(2.22) TE: + (n? = nd) BB, = Zinoko—s . _

) 3 1 al;ly nzf-n% 27 V 2'in0k0 aﬁy,’
223 M we T Tw Wh=Ta

In practice equation (2.23) is used for slowly vatying z-dependent refractive
index changes too. This approximation is not examined here. '

In the following the paraxial equations (2.22) and (2.23) are analyzed. To
make this as easy as possible, the whole structure is assumed to be loss-free,
i. e., the refractive index is purely real. The general idea is, that the power
over a complete cross section (eq. (2.11)) remains constant throughout-the
structure.. This follows from equation (2.10) and is a direct consequence from
Maxwell’s equations. But Maxwell’s equations are violated by the paraxial
- wave eqﬁa.tionsl (2.12) and (2.15), consequently the power calculated on the

" - basis of the paraxial equatlons no longer remams consta.nt Therefore we ca.n o

‘-5fconclude two thmgs e T L e e e

_e.-the dev1at10n of the ca.lculated power ba.sed on the paraxial waveequa- .. . . -

" tions from a ‘constant value can be seen as a phys1ca.l measure of the
- validity of these equations, and -

o the free pa.ra.meter ng should be chosen so that this devia.tiwon>isv as small
as possible.

If the Poynting vector formulation equa.t‘.xons (2.18) and (2 19) are rewntten
in terms of the slowly varymg amphtudes one gets B

(2.24) TE: = S, = —" EaE +"°’°° ;

Yy
az Ko

E,




(2.25) ™: S, = — -9 '"°k°HH*

weger ¥ 0z wege, Y

The case of the TE-polarization is considered first. To abbreviate the nota-
tion the usual L,-scalar product of two complex functions fi(z) and fo(z) is
introduced by

(2.26) (i fo) = [ (@) f3(e) do

The equations (2.11), (2.21), and (2:24) lead to a formula for the power Py
over a cross section, whlch is still exact: .

B oo L 8By OB\ . 12 (5 (1 .np)
TE:  Fa= 2w pgnoko {—(63: " Oz )+k°'<Ey’(n —nO)Ey)+
S : (- O°E, nok
(2.27) v (Ey, = 2)}+w0#0 (. £)

If we step over to the paraxial approximation, the third power term on the,
" right hand side of equation (2.27), containing the second z-derivative is ne-
glected and Py becomes inexact. To make one of the consequences clear,
we assume for the moment that a z-independent waveguide is given. As it

" . was shown in [8], the field distribution in every transverse plane of such a

~ waveguide can be written as modal expansion of all transverse eigenfunctions

228 E,,:Za,-,(z)e-/"éﬂ

, i ’-_-‘where forward and backward traveling wa.ves are mcluded Therefore we have ‘
in the loss- free case (real ,B,) S T - e :

.‘_(2'29) ' 7 - (Eyaaaz) <0 5
o mdependently from the direction of propa,ga.txon Thus, the ca.lcula.ted power
based on the paraxial approximation is always larger than the true one, and
we cannot decide if the power deviation is due to reflected waves or to-the
approximation of the forward propaga.tmg wave. )
" In order to keep Pq as accurate as possible, the neglected power term has to
~ be much smaller than the other terms. As ng is the only parameter we have

to influence the quality of our approxxma,tlon, we Tequire, that the power .. . 8

difference has to be a minimum in dependence of no.
Rewntmg equa,tlon (2.27) leads to



. O*FE
AP -wyug = L <E y)

2'n0k0 v 622
1 noko
= - Ty — T:
(2.30) wpoPa okt T g L2 o

where T} and T indicate the following no—independent terms

-

| 2 .= 0E, OE
i) - (5.28)
Tz = (Ey,Ey)
For a local extremum we require
0AP(no) 1 ko
’ o (977,0 - 2n§koT1 -2 T2

ending up with

e

KT

Cesy L BEeE)-(28)
wo(231) = —
TR K(B,E)

. This result is the same as proposed by SPLETT [13] to enlarge the applica-

 bility of Fresnel’s wave equation. As we are looking only for positive ny and
. because T is always positive too, T} has to be positive. Due to this fact, the
~ second derivation of AP with respect to ng is always negative, i. e., a local
maximum of the power difference AP was found. In Fig. 1 the qualitative
dependence of the power difference on the refractive index ng is given.

If we use the original Helmholtz equation (2.12), we get a further interpre-
tation of equation (2.31). Assuming a modal expansion for the original field
of a z-uniform waveguide ’

(232) | | E (z,z) = Zaj(z)e""b{z ' ,1



AP

minimal deviation

Fig. 1. Power deviation in dependence of the reference index

with a modal power P; (see (2.18))

. o ﬁ
(2.33) . - »P,-=;[—j;-'(a,-,a,-) )
leads to - o
. a ‘, ) .
n? = — (%’Ey) : e :
‘0 kE (Ey,Ey) _ A

_ aJ)aJ) - - ,
- Ek (Ey,E) _ :

: From thls equa.tlon 1t is-seen, tha.t no can be consldered as the a.nthmetlcal

mean of all propaga,txon constants, weighted with their modal power, i. e.,
“'we take the first power welghted momentum of all- propaga.tlon consta.nts_of R

the tra.vehng wave group. Sl
. In summary, we can state the followmg propert1es of the pa.ra.x1a1 wave equa-
~tion (TE) S ‘ _ _ Lo

o ‘there is an optlmlzed a.pproxmla.tlon of the pa.raxml wave equation

(2.22) to the original equation (2.21), if we compare them using the
power deference equa.tlon (2. 30) '

) the reference mdex no is given by equa.tlon (2. 31) It is the same equa.-
tion as holds for the propagatlon constant- a.nd the related field distri-



* TABLE I. Normalization

N NCREa

T koz koz

z koz | koz

u E, H,
1 | %

g n?—nd| o
c 2ing 2%1

P wﬂopn, wegPq |

bution of a single eigensolution of a z-uniform waveguide.

e Suppose, the field distribution over a cross section of a z-uniform, loss-
free structure is given. Then the power calculated using the paraxial
approximation is always larger than the true power, except the case,
where the field is given by a single eigensolution. In this special case
the power difference vanishes.

The same argumentation as above given in detail for the TE-polarization
holds for the paraxial TM-equation (2.23). In complete analogy we get

2.4, NORMALIZATION '

et e A PR

In order to snnphfy the notatmn to avoid physma.l umts a.nd to handle both

. polarizations with the same equation, the normahzatlon given in Ta.ble I is
" introduced.

In the followm.g the nota.tmn of the left colum.n of Tab. 1 is used.

Now the equation to solve»ls_

(2.35) _ —a—;b&-@-{-g-u_c.zu ,

ng is given by . : -

10

R e e T e L



(bn?u,u) — (622, 22)
(bu, u) ’

and the power transmitted in the direction of propagation is

(2.36)  on=

277.0

(2.37) P=- {(gu,u) - ( Z” g")} +no(bu w .

2.5. THE WEAK FORMULATION °

In order to get an equivalent variational equation to (2.35) we use the stan-
dard procedure (see e. g. ZIENKIEWICZ [16]). Equation (2.35) is multiplied
with a function v*,v € H} and integrated over the cross section :

g, 0 0 . ,
(2.38) / (axbyuﬁ-y u-—c- a—u)-v(:r)da;—O .
If the partial integration is performed, we get - '
(2.39) o a(yw) - (c%,v) , o
where the bilinear form a(u,v) is defined as -
' ‘ . ' Ou Ov\ .
(2.40) | a(u,v) = (gu,v) — (b-a—x, 53:.) .

< Equation (2.39) is to solve for the weak solution u € Hj 1 for all functions

Ty € H}'and the homogeneous Dirichlet conditions u = 0 at T.

" Using the bilinear form equatlon (2 40), the: equa.tlons (2 36) a.nd (2 37) can
: "_:be rewntten as . ot e _ s o

a(s, U) +no(bu U)

 (24) L om=2

| CRNE |
“and | -
' (2.425 L P(u).= —Z-%a(u,u)+n§(bu;‘u) -

.. where 1% indicates the refractive index according=to equation (2.36). In o

- general, no and 75 will be differ, because the solution of the paraxial wave
equation or the equivalent variational formulation depends on the original
chosen refractive index no. But, comparing equation (2.36) to minimize the

11



power deviation and the definition of the bilinear form (2.40) it is found that
the minimization condition is equivalently fulfilled, if

(2.43) a(u,u) =0

In this case we have 1y = ng and additionally

(2.44) P(u) = mno(bu,u)
Ju

(2.45) | (c—éz—,u) .= 0

Both equations are essential for the numerical algorithm. The first natu-
rally leads one'to use of the implicit midpoint rule as integration scheme, the
second influences the performance of the longitudinal stepsize control.

12



3. THE NUMERICAL ALGORITHM

3.1. THE DISCRETIZATION IN THE DIRECTION OF PROPAGATION

In order to get a fully discrete approximation of our basic equation (2.39),
we follow BORNEMANN [2]-[3] and discretize in the z-direction first. It is
- assumed that we start the simulation at z = 0 with a given u(z,0) = Yo
and look for the solution u(z, Az) = vas, where Az is the increment in the
z-direction. Application of the midpoint rule to equation (2.39) leads to the
stationary subproblem: - '

Uo + qu _ Uaz — Uo
(3.31) a4 ( ) ’.”) = (c Az ”)gz_ ’
where the subscript 925( means that all z-dependent coefficients have to be

taken at z = 4. If the linear form f (v) and the bilinear form b(u,v) are
introduced by ' ‘

| (3;2) s = ((e+59) )_‘%(”%‘g“)._ i

and

_' _ Az \ Az [, 0up Ov
| (3.3)‘ b(u,v)" = ((c -5 -g) UO,U>A2_’ + - (ba-,'a;)éé )

equation (3.1) can be rewritten as-

.32, THE CbM_P‘@_ET_E'_b;_sqgm:zATrdN' R 7
e The subproblem(34)‘ is solved in the usual finite element rnannerAspace -
.Va C Hy is definedas . e e
Vi = span{v’l_,..".f,ﬁvj\j,}' e e
1t is looked for an solution up € Vi, which obeys~ 4 '
b(un,vn) = f(va) | - S

'fora,llvaVh..’ o : S S oL
The whole cross section is divided into N +1 finite intervals as shown in Fig. -

e s qgeee e e T S



U1 U UN

Zo 51 ININ+1

FIG. 2. Linear basis functions vi

The functions v; are given by

R - _1 . . .
Vicg = iz (Z —zt—l) y Ti-1 Sz L g

(3.5) vi={ o =i(ep-z) , mw<c<ey
\ -, elsewhere o
- where -
(3.6) : hi = ziyy — z;

| ‘Every solution Uy, given by |

N S
uhzz:a,--v.-

- defines a vector u as
ay
; ap |
u -_— o -
ay

- Now we can state the fully discrete problem as the solution of ‘the linear
.system '

(37 . Biu=f ,-

where the matrix B and the vector f follow from their components

14
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(3,.3) o b= by, ;)
39 - fi= f(w)

3.3. THE PROBLEM OF THE CONSERVATION OF ENERGY

The problem of the conservation of energy will be discussed. We follow
in principle the consideration outlined in STRANG/FIX [14] and show that
using the implicit midpoint discretization and assuming the loss-free case,
the optimized power evolution (2.45) is piecewise constantly approximated.
If we write (3.1) again, using v = (ug + ua.)/2, we get

ia (U0+UAz‘Uo+qu) _ (cqu-uo Uo+qu)
T\ o2 2 - Az 12 Ja

Cc i
= (m“m’%) = <2A ) t

r (gmrene) - (o)
T \gag M) T oAzt e
Because the bilinear form a(:,-) on the left hand side is purely real and c is

purely im’é.ginary (see Tab. I), we have

- (3:10) | : (e Uns, taz) = (C- uo,uo) .
We see that in the d.lscrete case. the term o
,‘;‘(3 11). T :.,‘} ; “(c-»uv, u)

:1s conserved along one step. :
o Add1t1ona.11y, viewing c as z- mdependent over one propa.gatlon step, which
- "‘1s exa.ctly truefor the TE- polarization and approximately valid for the TM---

i pola.nza.tlon, we can conclude from equation (2.45)

S e
0 = (5‘)
# -
' f?ﬁ c@u
zaz_’u t Bz

15 - -



and therefore the continuous model requires that the term

1
(3.12) 5(-3 - u,u)
" is conserved within each propagation step. Using

c = 2ingh

1

introduced in Tab. I we find complete agreement with the power evolution
equation (2.45). Comparing the equation (3.12) resulting from the continu-
ous model and (3.11) from our discretization, we find that in fact (2.45) is
approximated by a piecewise constant function. Another consequence from
equation (3.11) is that (u,u) remains constant throughout the whole struc-
ture. As we approximate the optimal power evolution (2.45), based on Fres-
nel’s model , any deviation from the constant power required by the complete
Maxwell’s equations allows to monitor the model error.

3.4. THE LocAlL MATRICES

In order to calculate the local matrices we need the following results

1 )
(viyvi) = §(hi+1+hi)

- 1
(vi,vin) = Zhs
ow ow) _ 1 .1
.\ oz’ 0z /. - h;_1 hi -
Ovi i) . _1
-\ 9z’ Oz - hi

- Now we can decompose B into its local matrices B; using the equations

(3.3) and (3.8). As it will be explained later in the context of the adaptive

- refinement, the coefficients b, ¢, and g can set to be constant over a single
finite element. Therefore we obtain A

ki (1 1) sif 1 -1
3.1 ;= —m 24+
s mea()e( 1)
Sfori=2...N —2and | o .
ok [14m 1\ s (14h 1
3.14 B, =— hy 2 — h
( ) 1 | 3m1( %1 1 +h1 ’—1-0 1

16


file:///dx/dx

hN_] 1 1 SN-1 l ‘-'1
3.15)B = ——mpy_1 L2 SN
(318)By-s = Z5=mn <§ 1+—Lh’;_x)+hzv-z -1 1+——";’¥;‘>
with"
Az Az  (Az

3.16 P = (——) _——— ‘(._..)

; Az Az\
3.17 d g = —;(—-—)
(3.17) an s. 5 b 5

Analogously, f from the right hand side of equation is decomposed into local
vectors f; using equation (3.2)

0 L oug o) .
' m ('U:o,’l)i ) - S 31:: ' 8z : T
(3.18) i= el
0. Ry . g . (2w Z¥%
. ‘ m; -(uo,v,» ) $i*\ Bz Bz s

where m? is defined as.

| Azy Az (Az | | |
. 0 _ =T, (== ' B
@19 - c'(z)fzg‘(z) T |
Fori =1, vf ha.s to be replaced by v1 and fori = N —1, v§_; has to be
replaced by vy.

 Now the left hand side of the linear system (3.7) can be reformula.ted in terms
“of the local ma.tnces (3 13) (3.15). ' '

N-1
<=l -

and for f one gets B

@3 21) f= (fl(l) f1(2) + fz(l), - fi(2) +fs+1( ) ) |
The advantage of this formulation of the linear system (3.7) 1 becomes obv10us
if we look at the adaptive refinement of a given grid, as we will see later.

The last question, which remains to answer, is how to approximate numéri-
cally the scalar products contained in equation (3.18). Concerning the prac-

- tical problems discussed in this paper, the use-of the two point Gauss quadra-

ture turned out to be a good choice. With the a.ppropnate formula we get

 for the ﬁrst type of the scalar. products

17 )



/Oh uo(z) - vL(x) dz =~ —g (cgluo(a:l)‘-}- waug(z2))
/;h ug(z) - vR(x) dz =~ —g (wauo(z1) + wiuo(z2))

where the constants are given by

‘

1 B
#2 =377
T = ﬁ(1—£>

2 6

The remaining type of scalar products can be integrated exactly:

haUQ 6‘0 _ 1

o Bz o % = Ty (welh) —wl(0)
h 1 ’

Jo %—?-%d@ B —-(uo(h) ~ ()

: 3 5 ADAPTIVE REFINEMENT OF THE FINITE ELEMENT GRID

For every given cross sectlon, the stationary subproblem (3 4) has'to be solved ’
up to a prescribed tolerance 7,. The first problem is the definition of a fun-
' damental grid, from which the réfinement is started. The class of integrated
optics devices, which is investigated in this paper, is characterized by the
" fact, that the whole component is composed by a few number of thin films.
' The refractive index is constant within each layer, but changes between two
neighboured films (see Fig. 3). Due to this refractive index geometry we can
define a fundamental mesh in such a way that every single layer is described
by a single finite element. The so chosen grid at level zero describes the
complete transverse index structure but contains a low number of nodes.

On tbllié'funda.rhenta.l grid a solution is computed, which is of course very
rough. In order to select the elements to subdivide, we need an estimator -

18



level 0 _ 1 = !
level 1 } : I | {

NN

: | 1 | |
level2 " [T 1 |

— F1G. 3. Mesh development

~_for the local errors belonging to every finite element and an appropriate

refinement strategy. The local error estimator used was proposed in-[2] and

- results from a comparison between the solution obtained using linear finite

_ elements and a local improvement using quadratlc elements Equa.tlon (3. 4)
written only for a single finite element reads ~ :

g - Ou Ov\. R | au;, Ov
(3-22) m; « (u,v) + ;- (5’355) = mi (“o,v) “'?i' (‘5;,5;)

It is assumed that the linear solut1on u! 1s known and we look for a quadra.txc
- 1mprovement u?. We mtroduce T SRR : .

(323) " i , u = ub + u?

(3.24) ot = -t B
. (3-25) » ‘ 'vq = _iz (z -_— h‘)

- ‘Insertmg equa,tlon (3 23) (3.25) into equation (3.22) leads to

; 1 .
(uo,vq) - m(u vq) =S (%25,?" %1.;1) —S (%:: ) a;zq)

m (v?,v?) + s (v, vg,)

(3.’26) a=

19



The evaluation of the scalar products gives

(u',vq) = h (u'(O) + ul(h))
8

('Uq.,’vq) = 15h
vt v\ _ 16
0z 0z ) 3h
o o) Ly
0z’ Oz -
h
(w0, %) ~ 5 (u(z1) +du(zs) +u(2s))
with ‘ |
_ (1 V18
SR U AT
_ h
Ty = 2
1 /15 :
o= b (3+F) o
| (Oug B\ 4 :
(%1‘8%) z, Z(—U(O)'{"u(xl)+U(Il,'2)—-u(h))
S , 1 -
= (5%

22 = he (i“LT), :
The apprommatlon of the last two scalar products was performed using the

three point Gauss quadrature. With o from equation (3. 26) ‘the estimated
transversal error of the ith finite element is

= y/(cvd, av?)

8

Consequenﬂy, the resulting error estimates is given by

20
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N
NI
=1

Now we are able to build a refinement strategy:
refine the i-th element_ if m; > cut.

' To determine ‘cut’, we use a simple prediction scheme following BABUSKA
and RHEINBOLDT (1] to forecast what may be happen to 7; if the belonging
element is subdivided. Locally we may assume that the following represen-
tation of the local error indicator is valid

m = Gy’
Taking the history of the refinement into account, we also have approximately
ng = ci(2hi)™

and

and therefore the prediction 7™V for the new elements, if the actual elements

- < a Wl]l be subdivided, is estimated to -

o T

new __. LB
= ’7* _s.'inozd

new

cul ;= maxmn;
1

3.6. THE LONGITUDINAL STEPSIZE CONTROL

Un%il thissta.g'e; we have ‘a.chvieved the following:

~o.The z-'discreiization was carried out first, using a thSiéaﬂy reasonable.

stepsize Az - - S

21 -

o Obv1ously, Ac‘)i:il.y'tﬁﬂc;‘s'e; élé’nic;ifé‘ﬁhould be squividea; which havéjéﬁ;ngyalﬁé FE
:above the largest predicted new p-value. = e e



o - Now 5, is' glven‘by

¢ The arising stationary subproblem was solved ada.ptivelj using the fi-
nite element method. Any prescribed accuracy concerning this sub-
problem can be achieved.

Since we want to limit the complete discretization error rather than only
the transversal one, the following requirement has to be fulfilled:

(3.27) n+n. <TOL ,

where 7, indicates the longitudinal error still required and TOL is the given
accuracy. In order to obtain 7, , we compare the solution u of equation (3.1)
and a new solution u® , which results from a implicit Euler discretization of
the basic equation (2.39). The implicit Euler step can be written as

S us L - ul

s (uhr0) = (cfA2) - 222220, )
In complete analogy to the sections 3.2 and 3.4 we get a new linear system
(3.28) Bu® = f*

'The matrix B® can be assembled from the local matrices (3.13) - (3.15)
’ exa.ctly as B does, but the factors m;, m? , and s; have to be changed to m¢,

me* | and s¢ by

mi = c(Az) — Az gi(Az)
m* = a(Az)
8§ = 'Az-b,-(Az)

" “THe same holds for the local vectors ff, which ”fdrir_l-‘theﬂﬁght hand ‘side of
. (3.28). We obtain f; from f of (3 18), if there s; is set to be zero and m is
_"repla.ced aga.m by mo ' . : .

| = Jlu - ‘u’IlLa -
. Followmg DEUFLHARD [4], [5], a proposal for a new step51ze can be obta,med :
by |
1
;TOL Az .

Nz o cet -

_where o, is a consta,nt Now the complete a.da.ptwe algorithm can be de-
scribed: o -

(3.29) | A" =0,

22



1. For the proposed Az the stationary subproblem is solved with an ac-
curacy 1, where

1
m <o 5 TOL
is required. In our examples a security factor oy = 0.25 was chosen.

2. Next, the same step on the same grid is computed again, using now the
implicit Euler discretization and 7, is calculated.

-

3. According to equation (3.29), Az™" is determined. If is the resulting
discretization error is larger than TOL, then the whole propagation
step has to be calculated again using the proposed new Az, otherwise
the next step can be calculated starting with Az = Az"e¥,



TaBLE II. Input waveguide

| waveguide geometry || refractiveindexn |
width 0.4um | substrate | 3.16446
length 1000pm || waveguide | 3.39885

4. APPLICATION TO TAPER STRUCTURES

The cause to develop the adaptive algorithm described in the previous sec-
tions was the need for an effective numerical tool to simulate integrated
optical waveguide tapers with complicated refractive index geometries based
on the semiconductor material InGaAsP/InP. Such taper structures can be
seen as mode transforming devices connecting dielectric waveguides with dif-
- ferent spot sizes. As an example, the coupling of a passive semiconductor
waveguide to a glass fiber will be investigated in this section. The structure
to simulate has been proposed by Nolting [9] as a part of the COST-240 prob-
lem set. The spatial refractive index distribution is compatible with present
fabrication technologies. In order to learn some properties of the adaptive
- algorithm, we will build up the 1D- model of the original structure in several .
~ steps. At first only the input and output Waveguldes of the structure are
~ considered, then the case of the butt coupling of both waveguides, followed

by the Ca.s'e of a symmetrical tapering, and finally the complete taper model. °
- The program 'AMIO1 (mnemotechnically for: Adaptive Multilevel Integrated
Optics 1-D) is written in the language C. All simulations presented in. thls
- section were carried out on a SUN sparc workstation IPC.

. 4.1. THE z-UNIFORM SLAB WAVEGUIDES

- Figure 4 shows the principal spatial refractive index geometry of the two
~ incorporated z-uniform waveguides and then* data are glven in Table IT and -
~ IIT respectively.

If the input waveguide is la.unched with 1ts fundamental mode at z = 0,
the fields propagates in the z-direction and the local amplitude distribution
|u| remains unchanged as it is shown in Figure 5. The distribution of nodes
belonging to this field distribution is given in Figure 6. The concentration of
nodes is higher in regions with higher field intensities and becomes low far
- away from the waveguide. The simulation of the output waveguide leads to
very similar plots and is therefore suppressed here. The performance of both

24



‘ TABLE FIII.:,()utpbut waveguide -~ . B

era.veguide geometry |

refractive index n " |

width 5.0um || substrate | 3.16446
length 1000pm || waveguide | 3.16756
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simulation runs is given in Table IV.
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Fi1a. 5. Z-uniform slab waveguide: field distrjbutioh
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FIG 6. Z-uniform slab wavegmde self-ada.ptlve dlstnbutlon of nodes of Figure 5

Beca.use the analytlca,l solution ut,.u, of the ﬁeld propa.gatmg along the
- z-uniform waveguide is known, we can compute the true error



TaABLE IV. Numerical effort

[ [ TOL | CPU/s | steps |
input waveguide 0.01 17.3 54 |-
output waveguide | 0.0% 14.0 53

Mtrue = \/(u — Utrue, U — utrue)
The appropriate results are plotted in the F igﬁres 7 and 8.

0.12¢
‘ 0104
Mrue 408l
0.064r__
» _ 0044

0024 ‘ ' TOL -

............................................................................................

0.0 il 4 + 4 + s + I — +

FiG. 7. Input wavegmde true error

In both cases the error increases hnea.rly after a short tra.nment length but
‘the magnitude of the errors is very different. Whereas the error of the weak -
~ guiding output: waveguide remains less tha.n the prescnbed TOL along the

_ whole simulation length, the error of the strong guiding waveguide exceeds
. this value after 150um. These errors are due to a deviation between the exact
propagation constant B and the numerical generated propagation constant
Brum. Of course the difference 8 — fnum can be decreased by decreasing the
prescribed tolerance TOL, but this leads to an increasing numerical effort
and seems to be not necessary for most of the practical purposes. If we
compute the the accumulated phase differences along the whole simulation
length Ad = (B8 — Brum) * 2, We get for the strong guldmg input wavegmde

A$ =68 (0.12rad)
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Fig. 8. Output waveguide: true error

and. for the weak guiding output waveguide
Ap=01%° (0.1710"%*rad)

Concerning practical cases, where relative phase differences play a more es-
‘sential role than absolute phase differences, one is encoura.ged to start a
51mu1a.t10n with even larger tolerances.

4.2. THE BUTT COUPLING -

. Figure 9 shows the butt coupling of the 1nput and the output wa,vegulde
considered in the previous section. The length of both waveguides is taken

to 50um. The field distribution of this structure, again launched by the =~

- fundamental modé of the input waveguide, is given in Figure 10 and the be-

o longing distribution of nodes in Figure 11. These figures show exemplarily - -

- the adaptive discretization of the transverse cross section and the influence” Co

‘of the stepsize control. A very sma.ll number of nodes and steps is needed L

to propagate the field along the input waveguide, whereas this number dra-
matically increases behind the location of the butt couphng (see Flgure 12)
The numerlca.l characterlstlcs are given in Table V.

As discussed in section above, the power P(z) can be used to estimate the
validity of Fresnel’s approximation to Maxwell’s equations. Figure 13 shows
the plots of the power P(z) and the scalar product (u,u) aloag the direction
of transmission. The scalar product remains constant due to the choice of
the implicit midpoint rule, but the power changés abruptly at the location of
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Fic. 9. Butt coupling of the input and the output waveguide

e
z/um 9%

40
1Y
B ) 0 20 3 4 - 50 - & 8

Fic. 10. Butt coupling: field distribution

TABLE V. Numerical effort to simulate the butt coupling

[ TOL | CPU/s | steps 1. section

steps 2. section ]

147

l

1 0.05 L157.o |- 7
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TABLE VI. Geometry of the symmetrical taper structure

width at the input face 0.4pum
width at the output face | 0.01uym
length of the input guide 50.0um
length of the output guide | 50.0um
taperlength

500.0pm |

-

the refractive index change. Because an ideal solution of a nonlossy structure

is characterized by P = const:, every power deviation from a constant value
indicates an inaccuracy of our model based on Fresnel’s wave equation. From
this point of view we can explain the abrupt power change with the generation
of reﬂec’ced waves, which are not taken into account in our propagation model.

4.04y- :
T 354

P(Z) 3'0W

Reflexion
1

2.5+
2.0+
15¢
1.6
0.5+ .

(u,u)

o 20 & 100

z/pm—

FIG 13 Butt couphng power evolutlon beha.vxor of P allows momtormg of the modehng "

error -l -

4.3. THE SYMMETRICAL TAPER STRUCTURE

The principal spatial refractive index structure of the symmetrical taper

_structure is shown in Figure 14, the related data are given in Table VI.

‘The taper itself has the same refractive index as the input waveguide and

" its width is linearly decreased. This structure is well suited to analyze some

. properties of the numerical algorithm. In order to compare the different

results using different tolerances, the definition of the overlap integral is
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F1G6. 14. Symmetrical taper

useful. We assume that we can expand every solution u(z) in a series of
modal eigenfunctions a;(z) of a z-uniform reference waveguide.

u(z) =3 csai(z)

with the normalization (a;,a;) = 1. Using the orthogonality relation

(¢i,05)=0  for i3 ,

’

e e _which is valid in the nonlossy case, we get -

a=(u()ae)

= :

N oW, V H prov1des a.na.pproxunated measure for the power ébupling efﬁqiéhé& o
from the input to the fundamental mode of the reference waveguide. Thiscan .

be seen as follows. If the input waveguide is launched with its fundamental

mode ai* obeying the normalization condition, and having a propagation

constant Bi* = ni- ko, then this mode carries a power, according to equation
(2.45) ‘ ' ‘

i'-n.___ in
P"=ng .

Eqm'va.lently, we get the power of the fundamental mode of any.reference
waveguide : T

32
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TABLE VII. Numerical effort and results using different tolerances

{ TOL | CPU/s | steps | ni|
0.08 19.3 72 | 0.8654
0.06 23.2 84 | 0.8651
0.04 30.2 1 105 | 0.8686
0.02| 60.9| 160 0.8621
0.01 124.6 | 254 | 0.8640

Pref — nae/ ( ref ref _ref rcf)

ag ",y " G
= naef . aaci
Now, the coupling efficiency is
' pref e
.= pw ;
ref
- L) ref 2
= m (%o
. nd

- For bfactical purposes the last 'equatio\n is approximated by

. 're_f 2A

n=

Thls equa.tron is often referred as overla.p mtegra.l

: The symmetncal taper structure was simulated varymg the tolerance from - - -
. 0.01 to 0.08. Table VII shows the- numerical effort needed and the obta,med_'; S
. vcouphng coefﬁc1ents LS 1f the output wa.vegurde is ta.ken as reference Wa.veg- R

- uide. SR S _ .
- The n values d1ffer less tha.n 1 per cent from each other, i. e, even the
rough tolerance TOL = 0.08 is suﬂicxent to calculate the power coupling:

efﬁecrency
To give an idea, how the computed field behaves using dlfferent tolerances
the field distributions and their distributions -of nodes are given for TOL =

~-~0.08 (Figures 15 and 16) and for TOL = 0.01 (Figures 17 and 18). The

' more accurate simulation offers some more details than the coarser one. To ~ .

‘compare both simulations more quantitatively, the overlap integral accord-

mg to equat1on (4 3. ) is used in a modified way.- Along the input wa.vegulde
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Fig. 15. Symmetrical taper: field ciistributiqn, TOL = 0.08 (compare Figure 20 )

n(z) is calculated using the input waveguide itself as referenc,e‘wa,veguide to
- compute ao(z), i. e., the normalized input power is observed. Behind this

waveguide the output waveguide is taken as reference waveguide, 1. e., now
7n(z) gives the power coupling coefficient to the output waveguide. Figure 19

" shows 7(2) computed in the described manner. One can read from this figure -

that without the taper the power coupling coefficient will be about 0.26 and

" that this value is increased using the taper up to 0.86. The plot of the dif-
- ferent results 7(z) , one using TOL = 0.01 and the other using TOL = 0.08 -
- in the same cbordina.te system cannot be distinguished from each other..

All results presented so far used a reference index ng a.ccordmg to equation vl e

. (2 36). "~ The intuitive feehng that this choice of no not only guarantees a
R ; 'rmmmum of the’ power error but also seems to be prefera.ble with respect to
the stepsize control is caused by the physical insight that we have transformed

the reference index to the first power weighted momentum of all propagation

- constants of the launched wave group and that therefore the algorithm sees

a minimum of changes in the direction of propagation. This is underlined

by equation (2.45). To prove this, Figure 20 shows the simulation of the

symmetrical taper again, using TOL = 0.08 and taking the reference index
to the refractive index of the InP-substrate as it is done usually. Comparing

the Figures 15 and 20 the shorter steplength in the lower part of the figure is
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F16. 16. Symmetrical ta;;er: distribution of nodes, TOL = 0.08

“TABLE VIII. Numerical effort using different reference indexes

B | TOL | CPU/s | steps |
adap. ng | 0.08 193] T2
no(InP) | 0.08 | -104.8 468

-visible. The increasing stepsize in Figure 20 can be explained with fact that
the difference between the substrate index and the reference index according
" equation (2.36) gradually decreases along the taper structure (F]gure 21) i
. Table VIII gives a comparison between both simulations. 7" o

The Figures 22 and 23 prove that the number of nodes is not essentlally‘ " ’ o

influenced by the choice of ng. =~ - S -
The last representation using the symmetnca.l taper structure concernes -
the integration scheme for the z-integration. As discussed in section 3.3 the
choice of the implicit midpoint rule seems to be well suited to approximate the
required conservation of power. In fact, Figure 24 comparing the power evo-
lution using the midpoint rule in a first run and the Crank-Nicolson scheme
.in a second run shows that the required power constancy is 51gmﬁcantly bet-
ter approx:ma,ted applying the midpoint rule.
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" Fig. 17. Symmetrical taper: ﬁelddistributidh,.TOL =0.01
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F1G. 18. Symmetrical taper: distribution of nodes, TOL = 0.01
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Fia. 19. Syxnmetricé.l taper: power coupling coefficient
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- F1G. 24. Symmetrical taper: Comparison of the power deviation using Crank-Nicolson
and implicit midpoint integration scheme

TaBLE IX. Geometry of the asymmetrical taper structure

width at the input face ' 0.4pm

width at the output face 0.01um

length of the input guide 50.0um

- length of the output guide -50.0pum
.| taperlength : 1000.0um
thickness of the guiding layers | 0.014um

4 4 THE ASYMMETRICAL TAPER STRUCTURE '

.’I‘he spa.tla.l refractlve index geometry of the 1D- model of the taper to fab-
: ricate is given in Figure 25 and its data are assembled in Table IX. Figure -
26 shows the simulated field distribution using TOL = 0.01 and Figure 27
" displays the appropriate distribution of nodes. It is seen that the structure
‘behaves as expected, only a small amount of power is radiated away at the
butt coupling to the output waveguide (note that the amplitude is logarith-
mically scaled). This impression is backed quantitatively by the computed
power coupling coefficient given in Figure 28. At the output of the structure

we have a power coupling efficiency of about 0.96. -

- Table X describes the numerical effort using different tolerances and the
- obtained coupling coefficients.
It is found again that aT OL =0.08 is suﬁicxent for practical purpgses, if
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TABLE;X. Asym
ances .

B f“,l-ﬁTOL[CPU/s | steps| - 7] -
- [0.08] 25.0] 110[0.9655] - -
[ 0.06| 339 1241 0.9690
0.04 441 1527 0.9653
0.02 99.7 | 239 0.9667
0.01| 216.0[ 364 0.9634
41

F1G. 25. Complete 1D model of the tapei‘ coupling

metrical taper: Nlim_erical effort and results 'usin“g different tolef{ '
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Fic. 28. 'Asymmetrica.l taper: Power coupling coefficient
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Fic. 29. Asymmetrical taper: number of nodes

only the power coupling coefficient is considered. To complete the description
of the adaptive algorithm, the evolution of the number of nodes and of the
stepsize are displayed in the Figures 29 and 30, respectively.
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ST Fies 30. Asymﬁletricéi taper: evolution of Az. Thé'a‘.brupt VAz—changes _indi_caté a,bi-upt o

. geometrical changes (comp. Figure 25).
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CONCLUSIONS

The following main results have been presented:

1. A self-adaptive finite element method to simulate the propagation of
light in integrated optics devices was implemented following Borne-
mann’s adaptive Rothe method.

9. Tt was shown that the the implicit midpoint discretization in the longi-
-tudinal direction supplied the desired behavior of the power evolution.

3. The observation of the deviation of the power from a constant -value
can be used to monitor the validity of Fresnel’s approximation.

The next steps will be to integrate the Helmholtz equation rather than Fres-
nel’s approximation and to extend the algorithm to 2D cross sections.
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