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Abstract. Standard model predictive control for real-time operation of industrial
production processes may be inefficient in the presence of substantial uncertainties.
To avoid overly conservative disturbance corrections while ensuring safe operation,
random influences should be taken into account explicitly. We propose a multistage
stochastic programming approach within the model predictive control framework
and apply it to a distillation process with a feed tank buffering external sources.
A preliminary comparison to a probabilistic constraints approach is given and first
computational results for the distillation process are presented.

1 Introduction

The work reported here is part of a joint research effort aiming at real-time
control of chemical processes under uncertainty. Two different stochastic opti-
mization approaches are studied, with the intention to explore and compare
their respective general properties and their usefulness in certain practical
situations. A specific distillation process serves as a prototypical application
example which is investigated under various aspects.

Distillation processes are used to separate liquid or vapor mixtures of sev-
eral substances into products with different compositions of a desired purity,
by the application and removal of heat. Distillation is the most widely used
separation process in chemical industry; it consumes large amounts of energy.

The specific process under investigation is the separation of a binary mix-
ture of methanol and water in a continuously running system of two energet-
ically coupled distillation columns. The process is fed from a buffer tank that
collects several external sources. In practice, uncertainty occurs when the in-
flow into the tank may vary at random due to disturbances in the upstream
processes. A robust extraction strategy is then required to prevent the tank
from running dry or spilling over while keeping the process in favorable oper-
ating conditions. Specifically, we assume that the total energy consumption
is to be minimized over a given planning horizon; cf. [12, §1].

A pilot system of the process just described is installed at the Institute of
Process Dynamics of the Technical University of Berlin. Optimization results
have been obtained in the partner project for a simplified one-stage column
model called a flash unit [14]. In that work, the composition of the inflow
mixture and its temperature are assumed to be deterministic whereas the
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Fig. 1. Distillation column with feed tank. F¢: random inflow rate; F': feed rate;
L: reflux flow rate; @Q: reboiler duty; zp: distillate; p: bottom.

inflow rate may vary at random. The rate is modeled as an autocorrelated
Gaussian process representing the superposition of many independent inflows,
as indicated in Figure 1. A rectangular inflow profile modeling a single event
with known rate and duration but random starting time is also considered
in [14]. Each of these stochastic models represents disturbances that occur in
usual process operation, as opposed to exceptional events like failures.

The stochastic optimization approach presented here is based on a sce-
nario tree model; cf. [12, §§2, 3]. Possible deviations from the expected inflow
profile over the entire planning horizon are thus represented as a discrete-
time stochastic process with finitely many realizations. An optimal solution
in this framework minimizes the mathematical expectation of the cost (en-
ergy consumption) over all scenarios. The optimal control strategy is itself a
nonanticipative stochastic process: it determines a different extraction profile
for each scenario, thus specifiying a priori how to react to future measure-
ments of actual inflows. This approach requires that (within a linearized
model) the constraints can be satisfied for any possible sequence of random
disturbances (the tank filling level can be kept feasible for any sequence of
inflows). More generally, the approach is applicable if hard constraints can
always be satisfied and costs for potential violations of soft constraints can
be quantified. In the latter case, soft constraints will be satisfied only if this
is possible and economic.

The probabilistic constraints approach pursued in the partner project also
models the inflow history as a discrete-time process but allows continuous
probability distributions given by a density function; cf. [12, §§2, 4]. The
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optimal control strategy in this case is deterministic: it does not react to
actual disturbances. Instead, it minimizes the cost under the restriction that
constraints will be satisfied with high probability (for instance, in at least
95% of all cases). This approach is appropriate if it is not possible to satisfy
all constraints with certainty (in certain extreme cases one cannot prevent
the tank from running dry or spilling over), or if such events cause substantial
costs for which no precise model is available.

Both stochastic optimization approaches are naturally applicable within a
moving horizon framework. In the present context, real-time process control
means response times in the order of 10 to 15 minutes. This is appropri-
ate for the distillation process with a planning horizon of about a day and
reoptimizations every 2 or 3 hours.

As indicated in [12, §1], uncertainty may influence the planning and oper-
ation of chemical production processes in various ways. For instance, [23,24]
study the design of chemical plants under uncertainty, with the aim of guaran-
teeing the existence of feasible control strategies after observing the random
event(s). Process operation under uncertainty is investigated, e.g., in [16,25]
and, for the case of random feed streams, in [7] and in the partner project
[13,14]. A stochastic integer programming approach to online scheduling of
batch processes is given in [8]. The rigorous treatment of exceptional events
by scenario-based DAE models is described in [1]. A coarse classification of
relevant types of uncertainty and a general discussion of the topic can be
found in [17]. The specific area of distillation processes is particularly well-
studied under various aspects. See, e.g., [20] for a recent general survey, [5]
for optimal control in the presence of random feed, or [2] for a large-scale in-
dustrial application. For the background in stochastic optimization required
in this paper we refer to [12, §§2, 3] and standard textbooks [3,15].

The current investigation treats the same general situation as [14], us-
ing a tracking approach presented in §2. The discretization of the Gaussian
inflow process in a scenario tree framework is described in §3, and a new,
straightforward technique of evaluating integrals of the multivariate normal
density is proposed in §4. Finally we present first computational results in §5
and give some conclusions in §6.

2 Optimization Model

A schematic diagram of a distillation column with a buffer tank is shown in
Figure 1. Uncertainty occurs in the tank inflow F¢; control variables are the
reboiler duty @, the feed extraction F' directed from the tank to the column,
and the reflux flow L. For more detailed descriptions ot the system we refer
to [12, §1] and [9,13].

Our first investigations, as reported here, are aimed at answering the
following question: given a desired extraction profile 13", under which inflow
conditions is it possible to satisfy the level constraints in the tank, and how
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difficult is it? Difficulty is measured as the expectation of the accumulated
quadratic deviation between actual extraction and target profile. That is, we
solve on-line a stochastic tracking problem where the target profile typically
results from an off-line process optimization. Uncertainty is thus effectively
decoupled from the process dynamics. Of course, such a simplified approach
will be practically useful only in situations where the distillation column is
always capable of processing the extracted amount of liquid without violating
the purity constraints, and the total energy consumption [ @Q d¢ is not too
sensitive to the deviations.

2.1 Continuous Time

Since only the basic model structure is of interest here, we formulate a de-
terministic tracking problem for simplicity (without uncertainty in the inflow
rate F¢). Given a target feed rate F and denoting by v the liquid volume in
the tank, the model reads

T
min /0 %[F(t) —F(t)]*dt (1)
s.t. 0(t) = Fe(t) — F(t), (2)
v(0) = Do, 3)
o(T) = or, (4)
v(t) € [™", ™%, (5)
F(t) € [F™in, pmax], (6)

Here 09 is the known initial volume, and 07 is a prespecified final level.

Note that some terminal condition on the liquid volume is always required
in the original problem since minimizing the total energy consumption of the
reboiler would otherwise result in processing as little liquid as possible, and
hence yield a full tank at the end of the planning horizon. Here we simply
fix v(T); the nature of the condition (called a cycling constraint) will be
discussed in more detail in the following section.

2.2 Discrete Time

Considering T periods (not necessarily of equal physical length) in discrete
time ¢t = 0,1,...,T, we denote by v; the liquid volume in the tank at time ¢,
by f; the feed volume extracted during (¢,¢ + 1), by f; the associated target
extraction volume, and by &; the random inflow volume during (t—1,t). In our
approach, the latter is assumed to vary only within some known finite interval
[¢min ¢max] We also assume that the volume f; is extracted at a constant
rate, which is consistent with standard practice in process operation. The
tank filling volume now evolves according to

v = v — fro1 + &, t=1,...,T.
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Note that the time index on f; and ft refers to the following period whereas
on & it refers to the previous period. This reflects the fact that decisions on
extraction volumes must be made at the beginning of each period whereas
inflow volumes are only measured at the end. An obvious consequence is that
the control f; will always lag behind one period in compensating for undesired
inflows. It can never steer the state vy to a precise value but only into some
range determined by the inflow variation: v; € (vy_1 — fi_1) + [€PI", £Max].

In particular, the cycling constraint vy = 07 cannot be satisfied with
certainty but only in an average sense. It is thus replaced by

E('l)T) = 'lAIT (7)

in [14]. This is the best one can do in a probabilistic constraints framework,
but the condition is actually quite weak in our approach: final values of v
may vary over the entire feasible range rather than being clustered around
07 (as intended). In fact we can do better: it is possible to satisfy a similar
condition independently for every realization of the preceding state vr_1,
which amounts to prescribing the conditional expectation

E(UT|’UT_1) = @T. (8)

(This condition can also be interpreted as a limiting case of (7) when the
feasible range [vi" vMax] is continuously reduced in an appropiate manner.)
We will present optimization results for both alternatives.

The discrete-time stochastic tracking problem minimizes the expected track-

ing error. In variables v = (vg,...,vr) and f = (fo,..., fr—1) it reads

-1, X

min ) SE[(f; - f1)*] 9)

(v.f) =52

st. vp=v_1 — fr1+&, t=0,...,T, (10)
E(vr) =9r or E(vr|lvr_y) =07, (11)
v € [p™in ™)t =1,...,T, (12)
fee ™, ™), t=0,...,T—1. (13)

Uncertainty occurs only in the right-hand side of the dynamic equations (10).
The special case t = 0 is formally handled by setting v_1 := f 1 := 0 and
& := U, which is equivalent to using the physical quantities v_1, f_1, and &
from the actual, continously running process.

Given a scenario tree with vertex set V', we denote by L; C V the level
set of nodes at time ¢ and by L = Ly the set of leaves; further by 0 € Ly the
root, by j € L; the “current” node, by ¢ = w(j) € L;_; its unique predecessor
(ift > 0), and by S(j) C Ly its set of successors. The node probabilities are
pj >0, j € V. For further details see [12, §2], or [18, §2.4] where alternative
scenario models (with explicit nonanticipativity constraints) are discussed.
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In the numerical formulation, the state va:riable is 2; := v and the contrql
is defined as the tracking error, u; := f; — f; (with limits u}*® := f™in — f,
and u"®* 1= fmax— ft) Correspondingly, we define hy := & — ;1. Objective
terms then simplify to E(u?), and the remaining equations and constraints
retain their original form with proper variable replacements—except that
the control bounds are now time-dependent. On the scenario tree, stochastic
quantities x¢,u¢, hy are represented by their realizations zj,uj, hj, j € L.
Letting V* := V' \ {0} and recalling ¢ = w(j), the first optimization problem
(with cycling constraint E(vr) = 9r) then reads

. 1 5

m e w
JEV\L

st. xj =2 —u; + hj VjevV, (15)
x; € [z™" 2™ V) e V™, (16)
uj € [uf™, up™] VjeV\L, (17)
S pya; =i (18)
JEL

The second problem can be written in the same form where the cycling
constraint E(vr|vr_1) = o7 replacing (18) translates to

Z p—k'vk =0r Vj€ Ly ;.
kesG) P7
However, this (set of) condition(s) is not explicitly specified in the problem
formulation. Instead, we use it to pre-eliminate the final period entirely as
follows. Substituting the dynamic equation (10) into (8) yields

or = E(vr—1 — fr—1 + &r|vr—1) = vr—1 — fr—1 + E(&r|vr-1).

Hence, the final-period feed extraction is uniquely determined as
fro1 =vr_ — o7 + &4 (19)

where éT,l := E(&r|vr—1) is the conditional expectation of the final-period
inflow. The uniqueness of fr_; shows that (8) is actually the strongest pos-
sible cycling constraint in our framework.

It remains to clarify the roles of conditions (12) at + = T and (13) at
t =T — 1. The bounds on vy translate to a restriction of the problem data,

§T _ éT—l € [,Umin _ @ijmax _ ’ﬁT]

This yields an a priori feasibility check: no feasible solution can exist if the
final inflow &7 (conditioned on vr_;) varies too much. On the other hand,
since ) ) )

§r —&r—1 € [E7™ — &7, 67" = &7,

the restriction is always satisfied if the latter range is contained in the former.
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The bounds on fr_1 simply imply a further restriction of vr_1,
vp_1 € (r — r_1) + [F™®, F).

In the numerical formulation, the final state variable is now defined as
the final-period tracking error, z7 1 := (vp_1 — O + &r—1) — fr—1 by (19).
Accordingly, we have hy_1 := &_1 — 07 + &r—1 — fr—1 and limits

2P = max (™R, o™ — Gy + Ep_1) — froi,

PR = min(f", 0" — o +épo1) = fro,

yielding a possibly empty interval (which is also checked a priori). At times
t = 0,...,7 —2 we use the same variables as before. That is, x; = wvy,
U = fr — ft, (with limits u;“i“, up®), and hy := & — G4—1. The state bounds
for 0 <t < T — 1 are z}M" := ¢™i% and gP8x ;= ymax,

Due to the eliminations, the leaves of the original scenario tree are now ob-
solete (typically a drastical reduction in size!), and the optimization problem
is defined on the subtree with vertex set V., := V'\ L and leaf set L. := L1_;.
It reads

, 1 1
min Y gpu+ ) P (20)
7 jEVL\L. j€L.
st. zj =z —u; + hj Vj eV, (21)
xj € [of™, 2] Vj e VY, (22)
uj € [u up®™] Vje Ve \ L. (23)

This is still very similar to problem (14-18), but instead of a terminal condi-
tion we now have objective terms in the final period, and the state bounds in
T — 1 are now defined by the (possibly empty) intersection of two intervals.

3 Discretizing the Gaussian Process

The autocorrelated Gaussian process model for the inflow rate F; leads im-
mediately to an autocorrelated discrete-time Gaussian process of inflow vol-
umes &, see Figure 2. The latter is given by a general multivariate normal
distribution NV(£, X) whose dimension is the number of time periods, 7. The
density function ¢ of the normal distribution is positive on the entire space,
that is, its support is IRT. Thus, although with small probability, it allows
arbitrarily large inflows and even negative ones (which are physically impos-
sible unless the tank leaks). On the other hand, a scenario tree representation
necessarily corresponds to a discrete probability distribution, with compact
support. Since we intend to compare the two stochastic optimization ap-
proaches, this raises several nontrivial questions: How should the support be
chosen, how should the scenario tree be constructed, and how should the node
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_ discrete
\ 4 inflow volume

continuous
inflow rate

Fig. 2. Expected inflow profiles (bold) and realizations. Left: continuous time.
Right: discrete time.

probabilities be assigned to obtain a “good discretization” of the continuous
normal distribution? Such questions would be less relevant in practice: sce-
nario trees would be constructed directly from measurements, and a Gaussian
process would be seen as just one possible approximation of the real data,
with the property of being particularly well tractable in the probabilistic
constraints approach.

Compact Support. Due to the absence of real data we make the following
assumptions that seem reasonable for a basic investigation: the actual inflow
rate may only vary within a (possibly variable) symmetric bandwith around
the expected rate, and “negative inflows” are impossible,

Fe(t) € [FE™™ (1), (1)) = [Fe(t) — AFe(t), Fe(t) + AFe(t)] C Ry (24)

Integration over the subintervals then yields a similar relation for the inflow
volumes,

& € [, 6% = [& — A&, & + AG) C Ry (25)

This means that the discrete distribution will be supported by a T-dimensional
compact box centered at the mean and lying entirely in the positive orthant,

T
2= [€- AL+ A = [[l& - A4, & + A&] c RE. (26)
t=1

We now define a new density function (whose support is precisely this box)
by restricting the given normal density to = and renormalizing the weight,

0=©) = prx=O0®.  PE)= [ pO)de @D

Probabilities are thus replaced by conditional probabilities with respect to =.
Obviously the construction leaves expected inflows invariant by symmetry.
The correlations of inflows, however, will deviate from their original values,
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Fig. 3. Construction of a scenario tree by recursive partitioning of the compact
support =. Node probabilities correspond to the weights of (unions of) sub-boxes.

giving increasingly inaccurate approximations with decreasing weight P(%).
Moreover, assumption (24) on the inflow rate guarantees that all constraints
are satisfied in continuous time if this is true in the discrete-time model.

Scenario Tree. Currently we construct the scenario tree from a uniform
recursive partitioning of =. Each scenario corresponds to an elementary box
of full dimension. The stage-t scenarios correspond to unions of elementary
boxes having the same geometry in the first ¢ dimensions (i.e., identical pro-
jections into the associated subspace). This means that the same nodes are
traversed up to level ¢ in the scenario tree or, equivalently, that inflow vol-
umes are identical during the first ¢ periods, see Figure 3. The number k; of
partitions in dimension ¢ is the number |S(j)| of successors of each node j on
level t — 1. The resulting total number of boxes (scenarios) is N = Hle k.

Scenario Probabilites. As scenario probability we define the weight of the
associated elementary box (with respect to the renormalized density ¢=).
This weight is assumed to be concentrated in the geometric center of the
box, whose coordinates represent the sequence of associated inflow volumes.
Although the center of gravity would yield a more accurate approximation,
we prefer the geometric center since this allows to choose an exact range
of inflow variations a priori: realizations of the discrete distribution will be
evenly spaced at a distance of 2A&;/k; between limits

A& A&

ke’ ky
(With the center of gravity, minimal and maximal realizations would depend
on the density.)

Emin +

Emax —

(28)
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Fig. 4. Discretization of a univariate normal distribution on [-2,2].

For a standard univariate normal distribution, Figure 4 shows the proba-
bility density function, the renormalized density for the interval = = [-2,2]
(having weight 0.9545), an approximation by a piecewise constant density
for k1 = 5 scenarios, and the weights of the five subintervals concentrated in
their respective midpoints.

4 Calculating Scenario Probabilities

Consider without loss of generality a centralized normal distribution N(0,X)
(with mean £ = 0) in IR”. The density function reads

1 1 1
() = —————=exp (——5*2‘ §) . 29
©) (2m)T det(X) 2 (29)
In our optimization model with equidistant time discretization we make the
same assumptions as our colleagues [13,14]: random inflow volumes & have
the same variance o2 in all periods, and their correlations c,; decrease linearly
with the distance |s — t| such that the elements of the covariance matrix are

1
Zst=02cst, Cst:]-_T|5_t|7 S,tz].,...,T. (30)

We have to calculate the scenario probabilities which are defined as mul-
tivariate integrals of the density function over rectangular domains. Multi-
dimensional numerical integration is generally hard since the required effort in
direct generalizations of univariate integration methods grows exponentially
with the dimension. Thus, Monte Carlo techniques are often applied. In the
special case of normal distributions, some alternative approaches are reported
in the literature. Schervish [19] employs an adaptive quadrature routine using
an error estimate based on the Newton-Cotes approximation with non-local
modifications. Dedk [4] combines a transformation to spherical coordinates
with Monte-Carlo techniques. The method of Genz [10] transforms the in-
tegration domain to the unit cube and applies either Monte-Carlo, adaptive
subregions, or lattice rules to the transformed integral.
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Here we propose a straightforward, easily implementable approach based
on direct integration of the second order Taylor series expansion in combi-
nation with adaptive refinement. This appears to be a new method; it seems
appropriate in our situation since we have to evaluate integrals over compar-
atively small domains: the elementary boxes representing scenarios.

Taylor Approximation. In scalar product notation {(£,n) := £*X =1z, the
first three derivatives of the density function (29) are

Dyp(&)[h] = —(§)(¢; h),
D%p(&)[h, h] = +p(€) [(€, h)* — (h, h)]
D390(§)[h7 h7 h] = _(p(é-) [<£7 h)3 - 3(67 h’)<h7 h)] -

Hence, with some 6 € [0, 1], the third-order Taylor series expansion reads

P&+ 1) = 9l€) — QlE)E) + 50(6) [(E: 1 = (h, )]

1

— 50O (6,1 = 36 WA, )] + 5= Do(€ + Om)[A, by, ).

We need to integrate ¢ over rectangular boxes £ + A = { + h:h € A} where

A=[—a,a] = H[—at,at], Vol(4) = H 2a;. (31)

For the expansion above, this integration is easily evaluated in closed form.
In terms of the Hessian

H(é) == p&)(Z ey~ -z
one obtains

1

T
[, o= o Vol g > Hu®)a +0(lal)]- (3

Observe that, due to symmetry, all odd-order terms vanish in the integration.
Thus we get an asymptotic error of order four by adding just one correction
(of second order) to the trivial approximation P(£ + A) = ¢(&) Vol(A).

Asymptotic Error Control. To ensure sufficient accuracy, a simple adap-
tive strategy is employed. After evaluating (32), A is partitioned into a “left”
half 4; and a “right” half A,, and the same weight approximation is applied
to A; and A, yielding values w,w;,w,. The bisection procedure is recur-
sively repeated with each box until the relative difference falls below a given
tolerance,

|wi + wy — w|

wy + Wy

< €.
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Two heuristic strategies have been tested for determining the side s in which
to cut the box:

— the largest side, a; = max; ay;
— the side giving the largest second order term, Hy,s(€)a? = max; Hy (€)a?.

The second strategy was found to perform better and was used in numerical
calculations, with the tolerance set to e = 105.

Matrix Determinant and Inverse. It turns out that both the determi-
nant and the inverse of the specific correlation matrix (30) have closed-form

representations,
T+1 (202\"
det(X) = —— | —
() =1 (%)

and (for T > 3)

1 -1 10...01
-12 -1 00 0

E—I_T T + T o
g 12 -1 A(T+1) 1 00

11 10...01

Using these formulae in (32) yields significant savings in the numerical com-
putation, especially for higher dimensions. The computational effort is still
immense (several hours for a complete discretization), but it should be kept
in mind that the weight calculation is an off-line task which is required just
once for a given inflow distribution.

5 Computational Results

In this section we report on computational experiments with the stochastic
tracking problems stated in §2.2, where either the expectation or the condi-
tional expectation of the final liquid volume are prescribed, E(vr) = o7 or
E(vr|vr_1) = Or. All problems are solved by a primal-dual interior point
method combined with a tree-sparse KKT solver [21,22].

5.1 Prescribed Expectation of vr

Problem data. To allow a comparison of optimization approaches, our com-
putations are based on the following problem data for which optimization
runs have also been performed in the partner project. They are slight modi-
fications of the computations described in [14].

The planning horizon has a length of 16 hours and is equidistantly par-
titioned into eight discretization intervals of two hours each, At = 2h. Only
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Table 1. Target extraction volumes for each two-hour period.

Target type 1 2 3 4 5 6 7 8

Expected inflow 75.44 1629 221.2 250.3 250.3 221.2 162.9 75.44
Deterministic 139.8 186.3 186.3 186.3 186.3 186.3 186.3 162.0
Probabilistic 126.2 193.0 196.9 198.0 198.0 198.0 198.0 111.7

the flow rate into the buffer tank is assumed to vary at random, whereas its
temperature and the respective concentrations of methanol and water remain
constant. A parabolic profile of the expected inflow rate is assumed, start-
ing and ending with 11.0ml/h and reaching a maximum of 127.6ml/h after
eight hours, at ¢ = 4. The associated variance of the inflow volume in each
two-hour period is 02 = 20.0 ml?, yielding by (30) the covariance matrix

1
Y = 20cq, cst=1—§|s—t|, s,t=1,...,8.

The liquid volume in the tank is to be kept between 440ml and 1320 ml,
with an initial filling level of 1210ml. This value is also specified as the final
level so that the distillation process can be repeated periodically if there are
no disturbances. In the presence of disturbances, preventing violations of the
upper limit v¥™#* is a major concern since the initial level and desired final
level are quite close to that limit.

Problem types. We consider three problem types corresponding to the
following target extraction profiles:

1. the expected inflow;

2. the optimal extraction strategy of a deterministic optimization based on
the expected inflow (“deterministic solution”);

3. the optimal extraction strategy under probabilistic constraints as ob-
tained in the partner project (“probabilistic solution”).

Tracking the expected inflow is a very simplistic approach; we include this
case only for comparison purposes. The deterministic and probabilistic cases
are discussed in [14], where both are solved for a DAE model of a flash
unit, using a finer discretization of 32 time periods. The extraction limit
is fmax = 186.34 (average inflow plus 5%) in the deterministic case, and
™ = 198 in the probabilistic case. For the problem data given above
(with 8 periods), the expected inflow and optimal profiles are displayed in
Table 1 and Figure 5. Here the probabilistic solution satisfies the lower (less
critical) level constraint with certainty, and the upper level constraint with
a probability of 0.95.

Inflow and extraction bounds. For a given inflow limit £™*, we choose
as support = (on which the normal distribution is discretized) the largest
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Fig. 6. Weight of support versus inflow limit.

cube centered at the mean ¢ and lying entirely in [0, £™2¥]7
E:=£4[-4,A]", A= mtin min (&, £ — &). (33)

Recalling that {™** = Fg"®*At, this obviously models a fixed bandwidth of
the inflow rate F;. To study the feasibility question stated in §2, we vary the
inflow limit £™2 in a suitable range of values slightly larger than the largest
expected inflow max; & = 250.3ml, namely ™% € {255,256,...,265}. The
discrete bandwidth is then determined by the largest expected inflow as A =
£max _max;, &, covering the range [4.7,14.7] and yielding cubes = of different
sizes with weights roughly between 0.3 and 1; see the solid line in Figure 6.
(For our standard deviation o =~ 4.5, this allows to compare “good” and
“poor” discretizations of the normal distribution.)

Obviously, feasibility is harder to achieve when £™2* is increased (giving
larger inflow variations) or when f™2* is decreased (giving a smaller control
range). For each £™#* value we therefore set f™* = £ first and then
decrease f™2* until the problem becomes infeasible. For all combinations of
£max and f™a* we solve problem (14-18). Data for variances o2 = 40 and
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Fig. 7. Tracking error versus extraction limit for expected inflow.

0% = 80 appearing in the plots are associated with problems in § 5.2 and will
be discussed below.

Expected Inflow. First we consider optimal solutions for the expected
inflow as target profile. Figure 7 plots the optimal objective value, i.e., the
(expected) “tracking error”, versus extraction limit f™* for selected inflow
limits ™ covering the entire range [255, 265]. One observes that the tracking
error increases with decreasing extraction limit; closer inspection of the data
reveals that its value is actually zero in all problems with f™a* > 251. The
first observation confirms precisely the expected behavior: since the target
profile has a peak inflow of 250.3 in the middle, large extractions are required
in earlier and later periods when f™#* is reduced below that peak value.
The second observation says that (accumulated) inflow deviations can never
violate a limit if precisely the expected inflow is extracted. This is easily
verified; it indicates that inflow variations are moderate even in the case
M = 265 which covers about 99.9% of the distribution.

It is also observed that the tracking error is almost independent of the
inflow limit £™2* for large values of f™?* whereas there are significant differ-
ences for small values. This is also easily explained: A large extraction limit
is not a severe restriction in any case, whereas a small limit will be binding
in most periods until the problem becomes eventually infeasible.

Deterministic Solution. Next we consider the deterministic solution as
target profile. Figure 8 plots the tracking error versus extraction limit f™a*
for the same £™2* values as before. Here it is observed that in all cases the
tracking error remains constant (on a low level) over a wide range of f™a*
values but increases rapidly when infeasibility is approached. Smaller inflow
limits yield smaller tracking errors for all extraction limits. This might come
as a surprise but can be explained when the target profile is inspected: the
deterministically optimal extraction is constantly at its upper limit 186.34,
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Fig. 8. Tracking error versus extraction limit for deterministic solution.
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Fig. 9. Tracking error versus extraction limit for probabilistic solution.

except for the first and last interval. Again, only small f™* values are a
severe restriction, and a violation of the upper level constraint by accumulated
inflow deviations can be avoided with comparatively small corrections. This
is consistent with the results in [14]: although many trajectories violate the
upper level constraint for the given profile, the limit is only slightly exceeded.

Probabilistic Solution. The probabilistic solution as target profile yields
almost identical results, as shown in Figure 9. However, the constant level
for large f™2* values is consistently smaller than in the deterministic case: at
most 1.86, but often exactly zero. This confirms the robustness of the prob-
abilistic solution (certain feasibility is achieved with negligible extra effort)
and is again a consequence of the precise shape of the target profile. On the
other hand, for small f™* values the tracking error is larger than in the
deterministic case, which can be seen in the direct comparison of all three
target profiles displayed in Figure 10 (where £™2* = 265). The latter fact
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Fig. 11. Smallest feasible extraction limit versus inflow limit.

indicates that reducing the probability of constraint violations may go along
with an increase of their size.

Feasibility. Figure 11 shows how the smallest feasible extraction limit f™a*
depends on the inflow limit £™#*. (There is obviously no dependence on the
target profile.) At £™a* = 265, a feasible solution can still be obtained with
fmex = 191, and at £m& = 274 with f™?* = 198. This demonstrates the
flexibility of the stochastic programming approach: with reasonable extrac-
tion limits, constraint violations can be avoided with certainty by suitable
predetermined reactions to inflow measurements.

5.2 Prescribed Conditional Expectation of vr

Feasibility was comparatively easy to achieve in the previous problem due to
the moderate inflow variance and weak cycling constraint. Therefore we also
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Fig. 12. Tracking error versus extraction limit for all target profiles, with inflow
limit £™* = 275 and conditional expectation in cycling constraint.

investigate problem (20-23), using the variance values o € {20,40,80} and
respective £™®* ranges 255265, 260-270, and 265-275. Associated weights of
the support = and smallest feasible extraction limits are included in Figures
6 and 11. A comparison of all three target profiles for o2 = 80 and £™2% = 275
is given in Figure 10. As expected, increasing the variance (and accordingly
the inflow limit, to cover sufficient weight of the distribution) requires larger
extraction limits to achieve feasibility. Moreover, the optimal tracking error is
never zero in all these cases. This shows that, even if no level constraints are
violated by the nominal extraction, corrective action is required to meet the
stronger cycling constraint. In some of the higher variance problems, part of
the tracking error is also due to corrections preventing violation of the upper
level constraint. However, the stronger cycling constraint has no significant
impact on feasibility. This is because the prescribed final level is close to the
critical upper level constraint: if no violations occur as long as inflows are
large, the control will be able to extract a sufficient amount of liquid during
the last period so that the final level is met on average. (If accumulated inflow
deviations are negative, the control just extracts less liquid than expected.)
In contrast, test runs show that certain feasibility is harder to achieve if the
final level is close to the middle of the feasible range. To sum up, results for
the stronger cycling constraint are similar to the previous case, and they scale
in some sense for the larger variance values. Differences for the three target
profiles are slightly accentuated; cf. Figures 10 and 12.

6 Conclusions

Multistage stochastic programming has been proposed as a new approach in
real-time control of chemical processes. This can be seen as a generalization
of standard model predictive control in the sense that reactions to measured
disturbances are combined with the prevention of unfavorable future events
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by means of a stochastic model. The basic concept of the approach has been
demonstrated for the problem of controlling the buffer tank of a distillation
column with random inflows, and a preliminary comparison with a proba-
bilistic constraints approach has been given. Future research should extend
this work in different directions. For instance, a more realistic, integrated
treatment of stochasticity and process dynamics in the application example
is intended. Further, scenario reduction techniques as in [6] appear promis-
ing in obtaining better discrete distributions and at the same time allowing
finer time discretizations. Finally, warm start techniques and other algorith-
mic improvements may increase the efficiency of the approach so that faster
processes can be controlled in real time.

Acknowledgments

We would like to express our gratitude to G. Wozny, P. Li, and M. Wendt
(Technische Universitét Berlin) and to R. Henrion and A. Mdller (Weierstrafl-
Institut Berlin) for numerous vital discussions and for providing the process
model and optimization data used in the comparison. We also wish to thank
L. T. Biegler and G. Rodriguez (Carnegie Mellon University) who suggested
this research and introduced the second author to basic robust control is-
sues during two enjoyable research visits. Finally, we gratefully acknowledge
financial support by the Deutsche Forschungsgemeinschaft.

References

1. O. Abel and W. Marquardt. Scenario-integrated optimization of dynamic sys-
tems. AIChE J., 46(4):803-823, 2000.

2. O. E. Agamennoni, J. L. Figueroa, G. W. Barton, and J. A. Romagnoli. Ad-
vanced controller design for a distillation column. Int. J. Control, 59:817-839,
1994.

3. J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Sprin-
ger-Verlag, New York, 1997.

4. I. Dedk. Three digit accurate multiple normal probabilities. Numer. Math.,
35:369-380, 1980.

5. U. M. Diwekar and J. R. Kalagnanam. Efficient sampling technique for opti-
mization under uncertainty. AIChE J., 43:440-447, 1997.

6. J. Dupacovd, N. Growe-Kuska, and W. Romisch. Scenario reduction in stochas-
tic programming: An approach using probability metrics. Preprint 00-09, In-
stitut fiir Mathematik, Humboldt-Universitit Berlin, 2000.

7. A. M. Eliceche, M. Sanchez, and L. Fernandez. Feasible operating region of
natural gas plants under feed perturbations. Comput. Chem. Eng., 22:S879—
S882, 1998.

8. S. Engell, A. Méarkert, G. Sand, R. Schultz, and C. Schulz. Online scheduling of
multiproduct batch plants under uncertainty. Preprint SM-DU-494, Universitét
Duisburg, 2001. Submitted to [11].



20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Izaskun Garrido and Marc C. Steinbach

H. A. Garcia, R. Henrion, P. Li, A. Moller, W. Roémisch, M. Wendt, and
G. Wozny. A model for the online optimization of integrated distillation
columns under stochastic constraints. Preprint 98-32, DFG Research Center
“Echtzeit-Optimierung grofiler Systeme”, Nov. 1998.

A. Genz. Numerical computation of the multivariate normal probabilities. J.
Comput. Graph. Statist., 1:141-150, 1992.

M. Grotschel, S. O. Krumke, and J. Rambau, editors. Online Optimization
of Large Systems. Lecture Notes in Computational Science and Engineering.
Springer-Verlag, 2001. In preparation.

R. Henrion, P. Li, A. Méller, M. C. Steinbach, M. Wendt, and G. Wozny.
Stochastic optimization for operating chemical processes under uncertainty.
Technical Report ZR-01-04, ZIB, 2001. Submitted to [11].

R. Henrion, P. Li, A. Mdller, M. Wendt, and G. Wozny. Optimization of a
continuous distillation process under probabilistic constraints. Submitted to
[11].

R. Henrion and A. Méller. Optimization of a continuous distillation process
under random inflow rate. Preprint 00-4, DFG Research Center “Echtzeit-Opti-
mierung grofler Systeme”, Mar. 2000. Submitted to Comput. Math. Appl.

P. Kall and S. W. Wallace. Stochastic Programming. Wiley, New York, 1994.

S. Orgun, I. K. Altinel, and O. Hortagsu. Scheduling of batch processes with
operational uncertainty. Comput. Chem. Eng., 20:51191-S1196, 1996.

E. N. Pistikopoulos. Uncertainty in process design and operation. Comput.
Chem. Eng., 19:5553-5563, 1995.

W. Romisch and R. Schultz. Multistage stochastic integer programs: An in-
troduction. Preprint SM-DU-496, Universitit Duisburg, 2001. Submitted to
[11].

M. Schervish. Multivariate normal probabilities with error bound. J. Appl.
Statist., 33:81-87, 1984.

S. Skogestad. Dynamics and control of distillation columns—a critical survey.
Model. Identif. Control, 18:177-217, 1997.

M. C. Steinbach. Recursive direct algorithms for multistage stochastic programs
in financial engineering. In P. Kall and H.-J. Liithi, editors, Operations Research
Proceedings 1998, pages 241-250, New York, 1999. Springer-Verlag.

M. C. Steinbach. Hierarchical sparsity in multistage convex stochastic pro-
grams. In S. Uryasev and P. M. Pardalos, editors, Stochastic Optimization:
Algorithms and Applications, Kluwer Academic Publishers, 2001. Dordrecht,
The Netherlands.

D. A. Straub and I. E. Grossmann. Design optimization of stochastic flexibility.
Comput. Chem. Eng., 17:5339-5354, 1993.

R. Swaney and I. E. Grossmann. An index for operational flexibility in chemical
process design. AIChE J., 31:621-630, 1985.

P. Terwiesch, D. Ravemark, B. Schenker, and D. W. T. Rippin. Semi-batch
process optimization under uncertainty: Theory and experiments. Comput.
Chem. Eng., 22:201-213, 1998.



