9‘9 VAAVAVA
S 00 ecan
X X X XXX T
00000

D>
X <
<.<,

X
IS,
\V4

/\
A

i

TakustraRe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

ALEXANDER REINEFELD AND VOLKER LINDENSTRUTH?

How to Build a High-Per for mance
Compute Cluster for the Grid?

1 Universitat Heidelberg, Kirchhoff Institut fiir Physik
2 Invited paper for the 274 Intl. Workshop on Metacomputing Systems and Applications (MSA’2001), Valencia, 2001.

ZIB-Report 01-11 (May 2001)

How to Build a High-Performance
Compute Cluster for the Grid

Alexander Reinefeld
Konrad-Zuse-Zentrum fir Informationstechnik Berlin

Volker Lindenstruth
Universitat Heidelberg, Kirchhoff Institut fiir Physik

Abstract

The success of large-scale multi-national projects like the forth-
coming analysis of the LHC particle collision data at CERN relies to
a great extent on the ability to efficiently utilize computing and data-
storage resources at geographically distributed sites. Currently, much
effort is spent on the design of Grid management software (Datagrid,
Globus, etc.), while the effective integration of computing nodes has
been largely neglected up to now. This is the focus of our work.

We present a framework for a high-performance cluster that can be
used as a reliable computing node in the Grid. We outline the cluster
architecture, the management of distributed data and the seamless
integration of the cluster into the Grid environment.

Keywords: Grid computing, resource management, cluster architec-
ture, distributed data-intensive applications.

Contents
1 Introduction
2 LHC Requirements

3 Outline of a Cluster Architecture
3.1 Computing Nodes
3.2 Interconnects and Protocols
3.3 Fault Tolerance

4 Management of Distributed Data

5 Integrating Clusters into the Grid: The Resource Manage-
ment Problem
5.1 Resource Management at the Grid Level
5.2 Resource and Service Description
5.3 Local Resource Management

6 Summary

1 Introduction

Two paradigms are changing the way we do computing: Clusters and Grids.
Both have been born by the need for a more economical means for high-
performance computing: Clusters employ cost-effective commodity compo-
nents for building powerful computers, and Grids provide a means for the
better exploitation of computing resources that are interconnected via wide
area networks like the Internet.

Much work has been spent on the design and implementation of mid-
dleware for computational Grids, resulting in software packages like Globus,
Cactus, Legion, WebFlow, NetSolve, Ninf, Nimrod-G, Condor-G, and oth-
ers. All these software packages have been successfully deployed and some
of them are already used in the daily work—at least in the academic com-
munity.

Once the idea of Grid computing [5] grows beyond that of an academic
experiment, the demand for computing cycles may by far outgrow the sup-
ply. It will then be no longer feasible to provide computer cycles on costly
supercomputers in the Grid. Low-cost commodity clusters will become an
attractive alternative—not only for high-throughput computing, but also for
running parallel high-performance applications.

We present a framework for a low-cost, high-performance cluster that
can be used as a reliable compute node in the Grid. The impetus for this
work came from the EU project Datagrid, where we are collaborating on the
design of Grid-aware clusters.

Besides being focused on the seamless integration of clusters into Grids,
our work also concentrates on the management of large data sets, including
such important topics as caching, replication, and synchronization within the
bounds of the cluster and also in the ‘outside’ Grid environment. We target
at an integrated design that takes both environments, local and global, into
account. With the cluster architecture, we pursue three major goals:

e Jow total cost of ownership by providing improved fault tolerance and
resilience as compared to conventional Beowulf clusters [10],

o high degree of scalability between 10! and 10° nodes,

o mazimum performance for parallel applications by better exploiting
commodity interconnects.

Building on the cluster as a compute node, we present middleware for
the proper integration of clusters in Grid environments. Here, the focus is
on the specification and management of distributed resources.

2 LHC Requirements

The Large Hadron Collider (LHC), a high energy physics collider experiment
is currently being prepared at the European research institution CERN.
There are four LHC experiments planned (ALICE, ATLAS, CMS, and LHCb),
which all have in common that a large number of particles is tracked and
reconstructed, resulting in very high data streams [1]. During operation,
the data stream of digitized data will exceed some TeraByte/s. This data
stream is reduced by a complex hierarchy of data selection, filtering and
compression systems to a few PetaBytes per year and experiment. This
so-called RAW data is archived to permanent storage and further analyzed
subsequently.

Fig. 1 shows an outline of the resulting data paths for the ATLAS ex-
periment as an example. The data is processed in various steps producing
a variety of data sets. This processing is iterated with an increasing rate as
the end of the chain is reached. The first step resembles the calibration of
the experiment and reconstruction of the detected particles from the mea-
sured or simulated RAW data, creating the Event Summary Data (ESD).
This step is computationally intensive as it requires multi-dimensional im-
age processing. Assuming the steady continuation of Moore’s law on the
increase of processor speed, the processing of one such RAW event will take
about 3.6 seconds on a fast computer in 2005 when the LHC experiments
go online, while the simulation of one such event is 3 to 5 times slower. The
ESD is further reduced to Analysis Object Data (AOD), which is used as a
basis for the physics analysis. In order to allow fast searches for particular
scenarios, there is a small tag summarizing each event. From those AODs
Derived Physics Data (DPD) is produced. These data sets are processed
several times a day per user with different algorithms.

Aside from the data hierarchy, Fig. 1 shows the estimated number of
processors' required in 2005 for each processing step and its aggregated
data flow. Note that the estimated total computing power for the LHC
experiments in 2005 exceeds 50,000 processors!

The large computational requirements for the first processing step (RAW
— ESD) and the reduced event size results in an aggregate data stream of
about 10% of any other stage in the analysis chain, roughly corresponding
to an OC-12 link for ATLAS, which is state-of-the-art today.

Considering the total amount of processors required and the moderate

'based on today’s benchmarks and assuming that Moore’s law will hold true for the
next years.

sIsATeue sIsAYJ (S) dATIRINT 298/gD 8F'€ *P/U YXT 10 SNAD STOT
1senQ)
4.1 7> S UIA3 5149 4014 > gL o> tsmo 012> | OGTX
||||||||||| WIIIIIIIIII <add ~ 1 ddd T T T T

PIeq
(0ST:08)% 0STX
(ada) 2ardm-u su0)) () 23s/49) 9°S P/XT ‘PM 1 10§ SNdD 00€ // 238/g9 €T°C
RS/FOV'Y M/Pp ‘P/U 9T 10§ SNAD 0Sp M/PY D/ 9T 10§ SND 0Sk

4L 61 = (@ATPI01) SIdAd (O[45S']
HVLAOV £X

298/gD €81 yrom¥oN Yead 9e3a13ly 298/SITAl SOL
OV 19n1suo) () Amo.ﬂ_mu wm >_W, wmw H_m« moeo m\ owL/p 0T O/ 9L 403 S(1AD) SL
- . 1 88¢ = (@050 S1UN OL«SS'T | oy
sASH
(as® ‘ 25/4D ¢
asA sosAyd jonnsuo)) (7) DOS/EIN ¢ B/OTY PALTE 103 SNdO ¥ > ouwy/p OF ‘P/Y 91 10§ SO L¥L -
4L 0¥z = (dIN T) 9149601 0T+9 ~ | 9L SLL=(EM00S) $IUAd (016G 1 X
IS MV " sassed [610498 ['TA ASH J9JUR7) L
SIJUII [BUOISA], IO O], (99s/59AGIN 08>)
<— (UOISSTIISUER) JUI[0-U0) OW § Ul)Y 03 ASH I NV
Surssaooadox 4L SLL =(dX00S) S1UaAd (0[4SS'| g
£ =)
uwonINISuodY g (1) (dSH) ere Arewuins JudAY B wwo sy e T
Yoea 23s/g 3 (08/09S) N 096 * w
ad ¥'S = (dIN 7) S0 (01:L'T 2
(passaxdwod) eyep MAVI qm

J9JU3d)) (L NIHD * J0SSD0I I
(8,01) B/PSTT J0F (AN T) Da8/51UaAH LT JOBBHY, dUN-UQ

eje(,mey-

Figure 1: Sketch of the data flow hierarchy for the example of the ATLAS

experiment at CERN

data stream after the first processing step, the Europe-wide distribution of
the LHC computing hierarchy seems feasible. The RAW data is produced,
archived and processed at CERN, which also hosts the largest compute farm,
the Tier 0 (T0) center. The output is transmitted to three to five Tier I
(T1) centers per experiment, which are distributed throughout Europe.

Given the size of the various data sets ranging up to almost one PetaByte
it becomes obvious that the required resource management has to expand
from available computing resources to include the mass storage. The jobs
must be submitted to the systems holding the required data, rather than
sending the data to some available processors. For example, taking the
smallest data sample, the DPD, and assuming an OC-12 link, the DPD
data transmission time of about 7 hours exceeds the allowable processing
time of 4 hours. The total size of the data sets drives up the size of the
computing farms.

From the above it is clear that LHC computing will fail without the
availability of Grid-enabled, high-performance, large-scale compute clusters.
This aspect alone sufficiently explains the motivation for the here described
research—aside from the many other application domains that are also ex-
pected to benefit.

In addition to the cluster architecture, the required resource management
becomes particularly complex as the amount of different data objects and
their versions to be taken into account exceeds by far the number and type
of resources typically handled by existing resource management systems (see
Sec. 5).

3 Outline of a Cluster Architecture

While for the high-throughput computing demands of the LHC experiments
simple compute farms with a large number of powerful compute nodes may
suffice, this approach is not feasible for conducting online analysis under
quasi real-time conditions. Here, a fast system area network, more powerful
computing nodes, and, most important, a cluster management system with
effective real-time scheduling mechanisms are of prime importance. The
following sections describe these components in more detail.

3.1 Computing Nodes

In former years, there was a clear distinction between low- and high-end
processors. This is no longer true with the new processors from Intel (1.7
GHz Pentium 4 and IA64-Itanium), AMD (Athlon, 1,3 GHz) and Compaq

(Alpha 21264, 833 MHz) which are all targeted at the mass market. To-
day, the major difference lies in the choice of the chipset and the memory
subsystem. The 4-fold discrepancy in memory bandwidth between the low-
end SDRAM, the intermediate-level DDR-RAM, and the high-end Rambus
memory is paralleled by a 4-fold increase in cost. As a result, a low-end
dual Intel Pentium 3 node? node may sell at a moderate cost of $1200,
while a fully integrated Intel Pentium 4 system® with Rambus memory may
cost $4700. Which one to chose depends on the budget and the application
characteristics.

Contrasting the wide range of different hardware platforms, there is only
one choice of operating system: Linux. With its current release 2.4.x, Linux
also supports SMP nodes with up to 16 processors. Experiments in using
Microsoft Windows do not seem to be successful, which might be attributed
to the less flexible system management and to the significantly higher cost
for operating software licenses.

In summary there is a large variety of hardware options for the computing
nodes to choose from in order to match the application requirements for
memory size, bandwidth and architecture, cache architecture and size, and
the type of processor. But given the wide support of PCI(-X) bus standard in
basically all compute nodes this choice does not affect the choice of network
architecture at all.

3.2 Interconnects and Protocols

Nowadays, also a wide variety of fast system area networks is offered: Myrinet,
SCI, Atoll, Gigabit Ethernet, Giganet (cLAN), QsNet, ServerNet, Fibre
Channel, and GSN. Which one to chose depends on the type of application
and on the available budget.

For communication-intensive and latency sensitive, parallel applications
the new SCI [9] or Myrinet [8] adapter cards with 64 bit wide, 66 MHz fast
PCI bus connectors may be a good choice. Both SANs deliver a bandwidth
in excess of 250 MB/s at a latency of less than 5 ps. The cost per node
including a proportional number of switches, cables, software etc. is at
about $1800, which is, however, comparable to the price of a complete low-
end compute node.

To keep the cost low, we used a Gigabit Ethernet (GbE) network in our
cluster installation. However, it was clear that we had to adapt the maxi-
mum packet size (and later also the protocol itself), because the standard

2Tyan dual Intel P3, 800 MHz, 500 MB SDRAM, 45 GB disk
3Dell dual Intel Xeon, 1.7 GHz, 1 GB RDRAM, 40 GB disk

Ethernet MTU of 1500 byte, which is also used in GbE, is not adequate
for the high transmission speed of GbE. In GbE, 1500 byte frames may
cause interrupt rates of up to 100 kHz. Even with the non-standard jumbo
frames of 9000 byte and interrupt coalescing, the CPU has to cope with
interrupt rates beyond 10 kHz, yielding an almost 100% CPU load on an
800 MHz Intel P3, as illustrated by the ‘4’ symbols in Fig. 2. Even so, TCP
gives a throughput of almost 90 MByte/s at a relatively small packet size
of 500 bytes (left curve in Fig. 2). It has to be stressed that this processing
overhead does not scale with Moore’s law as it is highly I/O bound.

The right curve in Fig. 2 shows the performance of the Scheduled Transfer
Protocol (STP) [11] on GbE. STP is an ANSI-specified connection-oriented
data transfer protocol that supports flow-controlled read and write se-
quences and non-flow controlled, persistent-memory put, get and fetch
sequences. For all sequences, small control messages are used to pre-allocate
buffers at the receiver side, so that the message transfer can thereafter be
done at full speed directly from the physical network into the memory at
the receiver side. Hence, the initial latency is higher, but once the buffer is
established the maximum bandwidth of the network is fully utilized. Fig. 2
shows preliminary experimental results of STP on GbE. We expect the per-
formance to improve when our 1ibst library becomes available that supports
zero-copy memory transfers under Linux.

Note the less than 5% CPU time overhead of STP which has to be com-
pared with 60 to 100% in case of TCP/IP. The time spent in the network
protocol limits the scalability of a compute cluster and therefore is an es-
sential parameter to keep low. Assuming an overhead of 50% at 90 MB/sec,
a total of 200 additional nodes will be required for a tier 1 regional center
as sketched in Fig. 1.

Another advantage in using GbE as a cluster network is its universal
applicability for SANs, LANs and WANs. We tested TCP on GbE over a
2 x 500 km WAN distance between Berlin and Nuremberg using two SGI
Onyx2 (IRIX 6.5.4). With the standard MTU size we obtained a through-
put of 45 MB/s and with jumbo frames 85 MB/s. Again, the frame rate
(interrupts/sec) is the bottleneck. The latency of 5.7 ms corresponds to the
speed of light within the fiber. We achieved a very promising zero packet
error rate over 90 hours of stress test (sending 100 frames).

3.3 Fault Tolerance

In very large scale clusters, the canonical trend to increase each component’s
reliability such that the overall system retains a high uptime cannot be

throughput and cpu usage of TCP and STP on GbE

120 T T L L L L 1
2.4.0-test10 TCP
2.4.0-test10 TCP cpu +
2.4.0-test10 STP
2.4.0-test10 STP cpu X
100 —

80 —
Y
2} X
= c
£ =
3 60 8 g
-g) =]
5 t Rl - 100 Lg)-
s

40 - 1 80

- 60
20 - - 40
4 20
0 0

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

packet size in byte

Figure 2: Bandwidth (left axis) and CPU time usage (right axis) for TCP
(left graph) and STP (right graph) on Gigabit Ethernet—both using jumbo
frames

applied, because the expected failure rate increases with the product of the
number of components. Here, any single point of failure must be eliminated
in the design and appropriate monitoring functions must be established to
provide a status of the components and some means for remote maintenance
and control.

We are currently implementing a fault tolerance system with a variety
of sensor and actuator functions, basically allowing to measure any status
within the system and to perform any function except physical replacement
of components. This is accomplished by the design of a micro controller-
based PCI device, which has access to all basic interfaces of the compute
node and is operated through a private control network. This device senses
the health status of the node and is capable of operating all functions up to
including re-setting and power cycling, thus providing ultimate, standard-
ized control over a given node. The use of PCI as the baseline bus guarantees

the applicability of the device to almost any of today’s computers. This de-
vice is capable of autonomously performing basic maintenance and repair
functions.

However given the complexity of a large-scale compute cluster the variety
of failures and race conditions requires more sophisticated repair function-
ality. Therefore, aside from logging any state changes to a monitoring data
base, a hierarchical fault tolerance and repair server is being designed, that is
able to handle any complex error conditions and instruct the fault tolerance
agents in the front-end node.

Given the availability of a fault tolerance system, which enables the
cluster to cope with failure rather than trying to avoid failure with additional
costly hardware, the per-node-cost can be held as low as possible.

4 Management of Distributed Data

Another important aspect to be considered in the context of computing
clusters is their mass storage subsystem. During the last decade the areal
density of hard disks has increased by 60% p.a., allowing to attach a Ter-
aByte of low cost disk capacity to any compute node using two or three hard
disk drives during the next years. This scenario would result in a PetaByte
of on-line disk capacity of a tier 1 center as sketched in Fig. 1, obviating
the need for any mass storage system. The availability of significant online
mass storage at the incremental cost of mass market hard disks has to be
compared with the appropriate network attached disk servers or HPSS sys-
tems. Therefore a paradigm shift is to be expected here, similar to the shift
from super computers towards compute farms.

The individual hard disk data transfer rate improves with 40% p.a. while
the average access time based on rotation and head movement increases by
8% p.a. with typical ratings to date at 30 MB/s data transfer rate and
7 ms average access time. Those figures are independent of the storage
architecture. However the improving raw throughput of the device also
drives towards distributed architectures as already a 4x RAID LO striping
would result in an aggregate data stream of 120 MB/s, saturating a GbE
link.

However, there is one fundamental issue related to a networked storage
architecture as compared to a network attached storage: the reliability of
the overall system. If a node is lost due to failure, the cluster looses an ap-
propriate amount of compute power, but all online data remains unaffected.
For a networked storage architecture, means to protect against data loss

10

must be implemented. Cluster-local RAID systems, which are supported by
the Linux kernel, are not feasible because they do not protect against the
loss of a whole node. However the principle of RAID can well be adopted
to a cluster.

The failure model of a networked mass storage system is rather simple
as the error checking and recovery of the hard disk devices themselves is
standard today and performed by the disk itself and any operating system
locally. Therefore the data itself does not have to be checked for errors.
Recovery mechanisms have to be provided only for the case of a node not
being able to deliver a data block at all. In that case it has to be recreated
from appropriate redundant data.

local exclusive

localedundant synchronous backup:

parity = d(A) ®d(B) ®d(C) ®d(D)

other'q backup,

incremental backup:

non-critical parity,, = parity,, ® dgy(X) @ d,(X)

data
data with
backup local g

local redundant local rgdundant
— 5% |- L

other's backup v
other's bac
7}

25%

N
local exclusive local exclusive

local redundant
| —

> other‘s backup

= 25% of
ocal redundant

local exclusiv\F

local redundant

other's backup‘

Figure 3: Sketch of a distributed cluster mass storage system

One possible scenario is outlined in Fig. 3. The concept is similar to
RAID level 5. Here a parity block is generated for a group of four dis-
tributed data blocks. Consequently the loss of any node allows to recreate
the appropriate data by using the remaining three valid blocks plus the
parity block. In order to recover the irrecoverable loss of a node with 1 Ter-
aByte of local storage to a new node, configured from scratch, a total of 4
times 1 TeraByte of data have to be moved across the cluster interconnect.
Assuming 50% utilization of a GigaBit network, the transfer of a TeraByte
corresponds to 5.6 hours. However the required XOR transaction on the

11

four data blocks can be performed pair wise, allowing to overlap some of the
operations on different nodes.

However, the affected data is not off-line during this recovery time, which
can be performed in the background. Any data block can be recreated
immediately on demand. For example recovering a 64 kB data block on any
node in the cluster results in an additional latency of about 2 ms caused
by the data transfer, which is small as compared to the average disk access
time. Intelligent network interfaces can be used here to perform the parity
operation without burdening the host CPU in order to further the efficiency
of the recovery methodology.

The discussed scenario requires a data overhead of 25% for the parity
blocks. However any level of redundancy and overhead can be implemented,
trading the data overhead versus the tolerance with respect to multiple
simultaneous failures and recovery network load and latency.

On the other hand not every data item has to be stored in a redundant
fashion. For example page and swap, replica copies, local scratch space can
be made available directly.

It should be noted that the presented scenario effectively implements a
linear coding scheme, thus allowing reads to be served directly by the nodes
owning the data. In case of writes only the parity block is required to be
updated as sketched in Fig. 3, here, however, requiring the transmission of
both the new and old data block for updating the parity block.

5 Integrating Clusters into the Grid: The Resource
Management Problem

In Grid environments, the great variety of supported resources (computers,
networks, instruments, files, archives, software) and their dynamic behavior
poses a number of resource management problems:

e Diverse local management systems and policies: Various incompatible
local management systems and policies must be supported.

e Resilience: The Grid management software must be able to cope with
the changing availability and performance of components.

e Co-allocation: Multi-site applications (i.e., jobs running concurrently
at different sites) must be supported by suitable co-allocation schemes.

e Remote steering: The execution of interactive applications must be
supported by suitable monitoring information and online control.

12

GRID JOB e E V.

(RSD description) v { broker for
. broker for

broker f collaborative
DFOKEr Ior § throughput ‘environments
interactive jobs 8

HPC-jobs

L"

co-allocator [l

CRM: Center
Resource
Manager

CIM: Center
Information
Manager

advertisement
at sign-on Z - S
. c|uster -~ system

cluster managed managed
managed by PBS

by LSF
by CCS y

Figure 4: Integration of the local cluster management system (lower part)
into the Grid environment (upper part)

To deal with these problems, Grid environments are organized in hierar-
chical layers. In the following, we first outline the basic architecture of the
Grid layer and thereafter the tools used in the local sites.

5.1 Resource Management at the Grid Level

Fig. 4 illustrates the framework of our Grid architecture. A Grid job, shown
in the top part of the figure, is sent to a resource broker which searches
for suitable resources. Note, that there may exist several brokers, each
of them specialized on certain types of applications: e.g., one broker for
handling interactive high-performance jobs, another for parameterized high-
throughput jobs, etc. Resource requests are specified in RSD notation (see
Sec. 5.2) and sent to the Center Information Manager (CIM) which holds a
database on the available resources and the currently planned job schedule
on the computers of a local site. The CIM checks the availability of resources

13

and informs the broker, which decides whether to submit the job to the
local site(s). In case of a positive decision, a co-allocator is asked to allocate
the resource(s) just before runtime. This task is done in cooperation with
the Center Resource Manager (CRM) which performs the pre- and post-
processing (e.g. job setup, start of the runtime environment, monitoring,
cleanup) to support the execution of the Grid job on the local system.

The described framework, which has been implemented for pharmaceuti-
cal drug design projects [3], is very similar to the scheme used in the Globus
project [4, 5]. In the following, we discuss the specification of resources and
thereafter the interface to the local cluster management.

5.2 Resource and Service Description

RSD (Resource and Service Description) [2] is a set of tools and services
for specifying, registering, requesting and accessing any kind of resource
in a Grid environment. In this context, the term “resource” is used in
its broadest sense: A resource may be, for example, a compute node, a
LAN link, a data archive, a graphics device, or a software package. Fach
of these resource objects may have attributes, e.g., a computing node may
be characterized by its processor type, the clock rate, the amount of main
memory, and any other useful information.

In contrast to the Globus approach [4], which uses two separate con-
structs for describing the available resources (MDS) and the resource re-
quests (RSL), our approach is symmetrical. RSD is used by the application
programmer to define the necessary resources for the job by means of a task
graph and also by the site administrator to describe the available systems,
their interconnection network and all available services. Resources and ser-
vices are represented by hierarchical graphs with attributed nodes and edges
describing static and dynamic properties such as communication bandwidth,
message latency, or CPU load. This allows to run a graph mapping algo-
rithm when matching the resource request with the available resources in
the broker. Of course, the vertice’s attributes and the timing information
(the schedule) is taken into account in the mapping process.

Fig. 5 shows an RSD specification of a cluster with eight Intel Pentium
3 nodes connected by SCI adapter cards in a unidirectional ring. Note that
this RSD code is shown for illustrative purposes only. In practice, there is
no need to use the somewhat clumsy RSD language for specifying resources,
because there also exists a graphical user interface that generates RSD code.
The code is translated to XML and stored by the CIM.

14

NODE cluster {
CONST N = 8; // number of nodes
CONST CPU[] = (“‘P3’’, “‘P4’’, ‘‘IA64’’); // CPU types

// specify 7 nodes with Intel P3 and SCI ports
FOR i=1 TO N-1 DO
NODE i { PORT SCI; CPU=P3; MEMORY=512; 0S=Linux; };
oD
// first node has 1 GB and an additional ATM port
NODE O { PORT SCI; PORT ATM; CPU=P3; MEMORY=1024; 0S=Linux; };

// specify unidirectional SCI ring, 1 GB/s
FOR i=0 TO N-1 DO

EDGE edge _$i_to_$((i+1) MOD N) {

NODE i PORT SCI => NODE ((i+1) MOD N) PORT SCI; BW = 1.0; };

)]
// virtual edge from node O to external hypernode
ASSIGN edge_to_hypernode_port {

NODE O PORT ATM <=> PORT ATM; };

b

Figure 5: RSD example: A cluster with unidirectional SCI topology

5.3 Local Resource Management

The seamless integration of local systems into the Grid still poses a big
problem because many existing local management systems do not support
necessary features like online control, site autonomy, or co-allocation. For
clusters, the batch queuing systems PBS, NQE, LSF, LoadLeveler, Condor,
and Grid Engine (formerly Codine) are most popular. They handle job sub-
mission by allocating resources via predefined queues. The batch system
simply de-queues one job after the other when resources become available.
This guarantees a high system utilization but does not allow distributed pro-
cess control, online data scheduling, and co-allocation, which are all needed
in Grid environments.

Our CCS (Computing Center Software) resource management system [7]
copes with these problems. CCS is based on job mapping rather than job
queuing. It primarily runs in space-sharing mode, thereby giving jobs exclu-
sive access to resources at a specified time. This allows remote application
steering, co-allocation with guaranteed access to resources at a given time
and also data scheduling. In addition, CCS supports time-sharing mode as
well, which is used for the efficient execution of parameterized jobs that are
run in high-throughput mode.

15

With the fast innovation rate in hardware technology, we saw the need to
encapsulate the technical aspects of the underlying systems and to provide
a coherent interface to the user and the system administrator. Robustness,
portability, extensibility, and the efficient support of space sharing systems,
have been among the most important design criteria. This also caused us to
design (as early as 1992) the described RSD language for the specification
of resources. While initially there was just a textual interface, we later also
included a graphical RSD editor for easier manipulation of resource requests.
Also a site management layer (with the CIM and CRM illustrated in Fig. 4),
which coordinates local CCS domains, was included.

In its current version (V4.03) CCS comprises about 120.000 lines of code.
CCS is by itself a distributed software, running on any kind of UNIX sys-
tem (Linux, Solaris, AIX). Its functional units have been kept modular to
allow easy adaptation to future environments. More information on the
architecture and features of CCS can be found in [7].

6 Summary

High-performance commodity clusters are getting more and more important
as compute nodes in Grid environments. We have presented the framework
of a Grid-aware cluster which supports site autonomy while providing the
necessary hooks and services for the easy integration into the Grid, namely
guaranteed scheduled access to resources, support of co-allocation and re-
mote steering. Moreover, the cluster is resilient by means of monitoring and
control functions and it provides a fault tolerant networked storage archi-
tecture without having to pay the price of a hardware RAID system.

Acknowledgements

Thanks to Jens Simon and Florian Schintke for providing valuable informa-
tion and to Sebastian Heidl for running the tests on GbE. Part of this work
was financially supported by the EU project Datagrid.

16

References

[1]

2]

8]
[9]
[10]

[11]

M. Aderholz, et al. Models of Networked Analysis at Regional Centres
for LHC Ezperiments. Monarc Phase 2 Report. March 2000.

M. Brune, A. Reinefeld, and J. Varnholt. A Resource Description FEn-
vironment for Distributed Computing Systems. HPDC’99, Redondo
Beach (1999), 279-286.

R. Bywater, J. Gehring, A. Reinefeld, F. Rippmann, and A. Weber.
Metacomputing in Practice: A Distributed Server for Pharmaceutical
Industry. FGCS 15,5/6, Elsevier 1999, 769-785.

K. Czajkowski, 1. Foster, N. Karonis, C. Kesselman, S. Martin, W.
Smith, and S. Tuecke. A Resource Management Architecture for Meta-
computing Systems. JSSPP 1998, 62-82.

I. Foster and C. Kesselman (eds.). The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufman Publ., 1999.

K. Holtman and J. Bunn. Scalability to Hundreds of Clients in HEP
Object Databases. Proc. of CHEP 98, Chicago, USA, August 1998.

A. Keller and A. Reinefeld. Anatomy of a Resource Management Sys-
tem for HPC-Clusters. In: Annual Review of Scalable Computing, Vol.
3, Singapore University Press, 2001, 1-31.

Myrinet. wuw.myricom.com
SCI. Dolphin Interconnect: www.dolphinics.com

T. L. Sterling, J. Salmon, D. J. Becker, and D. F. Savarese. How to
Build a Beowulf. A Guide to the Implementation and Application of
PC Clusters. The MIT Press, Cambridge, 1999.

STP on Linuz. http://oss.sgi.com/projects/stp.

17

