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Abstract

A new approach to the numerical solution of optimal control problems including
control and state constraints is presented. Like hybrid methods, the approach aims
at combining the advantages of direct and indirect methods. Unlike hybrid methods,
however, our method is directly based on interior-point concepts in function space
— realized via an adaptive multilevel scheme applied to the complementarity formu-
lation and numerical continuation along the central path. Existence of the central
path and its continuation towards the solution point is analyzed in some theoretical
detail. An adaptive stepsize control with respect to the duality gap parameter is
worked out in the framework of affine invariant inexact Newton methods. Finally,
the performance of a first version of our new type of algorithm is documented by
the successful treatment of the well-known intricate windshear problem.

Keywords: numerical optimal control, interior point methods in function space,
affine invariance
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1 Introduction

In the last decade, the numerical solution of optimal control problems has reached a
high level of sophistication. Present methods are able to treat important classes of
large scale real life problems in science and engineering. Two types of methods are in
common use: (a) direct methods, mostly based on some robust collocation including
an ad hoc parametrization of the controls (see BOCK and PLITT [7]), and (b) indirect
methods, typically based on either multiple shooting techniques (see BULIRSCH [9],
STOER and BULIRSCH [27|, DEUFLHARD [13, 14|, BOCK [6]) or adaptive collocation
methods (see ASCHER, CHRISTIANSEN, and RUSSELL [3], ASCHER and BADER [2],
ASCHER, MATTHELJ, and RUSSELL [4]). Whenever the necessary Euler-Lagrange
conditions give a sufficient description of the problem, then indirect methods lead
to a provably optimal solution [9]. However, they require rather detailed a-priori
knowledge about the sequence of optimal subtrajectories. In contrast to that, direct
methods may dispense of this severe constraint, but have a tendency to lead to non
optimal solutions now and then. For this reason, hybrid methods seem to be the
state of the art (see VON STRYK and BULIRSCH [29], BULIRSCH, NERZ, PESCH, and
VON STRYK [12]): in a first step, some direct method, wherein the control variables
are parameterized ad hoc, supplies a rough idea about the optimal subarc sequence;
then, in the second step, an indirect method is employed to finally solve the problem
to high accuracy.

The present paper advocates a unified function space approach realizing ideas of
both direct and indirect methods in infinite dimension rather than in finite dimension
— as opposed to the above hybrid methods. There are several possibilities of such an
extension. In a recent monograph PYTLAK [25] proposed an approach that he claims
to be a function space approach. However, in our above wording, that approach is of
the type robust collocation, leaving a considerable gap between the presented theory
and the rather heuristic algorithmic realization. A genuine function space SQP
method has been suggested by ALT and MALANOWSKI [1]. However, implementing
a finite dimensional interior point QP solver within their proposed method would
involve the solution of a sequence of discrete problems with duality gap parameter
@ — 0 on each of the successively finer grids. Such a procedure would suffer from
severe difficulties in the presence of C-discontinuities of the control variables.

The present paper advocates a function space approach realized as a mested
reduction of mesh size and duality gap parameter. The extension of interior point
type methods from finite to infinite dimension is not at all straightforward: after
all, the concept of logarithmic barrier functions is no longer useful in the infinite
dimensional setting (cf. JARRE [20]). Fortunately, the complementarity version of
IP methods, including the central path concept, carries over naturally to infinite
dimension. However, some careful theoretical consideration is needed: the well-
known two-norm discrepancy (see MAURER [22] and MALANOWSKI [21]) strongly
advises the use of different norms for handling differentiability on one hand and
convexity on the other hand.

The paper is organized as follows. In Section 2, we turn to the central path in



function space as the mathematical concept and derive the main theoretical frame-
work. In Section 3, important details of an algorithm on this theoretical basis are
worked out. Affine invariant norms are used to control the iteration process towards
the numerical solution (see VOLKWEIN and WEISER [28|, POTRA [24], or more gen-
erally, DEUFLHARD [15]). Our computational approach actually ezploits function
space via an adaptive multilevel refinement of all variables including the controls.
Its present realization is done within the setting of collocation methods. In this
context it seems worth mentioning, that our herein suggested method differs clearly
from comparable finite dimensional multigrid techniques by SCHULZ [26], wherein
the adaptive refinement of the control variables is done in the outer loop, as opposed
to our infinite dimensional technique, wherein the refinement is performed in the
innermost loop. An adaptive stepsize control along the central path is worked out
as the infinite dimensional extension of finite dimensional suggestions due to DEU-
FLHARD [14]. Our present version of the algorithm is working satisfactorily, but
far from optimized concerning the discretization and solution of linear subproblems.
Nevertheless, in Section 4, we are able to document the successful solution of a
well-known intricate optimal control problem, the abort landing in the presence of
windshear (cf. MIELE et al. [23], BULIRSCH, MONTRONE, and PESCH [10, 11]). Even
though our approach does not need any cumbersome analytic preparation which is
required for any indirect method, our numerical results are in full agreement with
those obtained by multiple shooting [11].

2 Central Path Continuation in Function Space

We consider the abstract optimization problem

=0
min J(z) subject to () (2.1)
g(z) >0

v

where J is a functional defined on a real Banach space X and ¢, g are mappings
from X into real Banach spaces Z. and Z,, respectively. The partial ordering on Z,
is assumed to be induced by a closed convex cone K. In order to fix the theoretical
frame, we first collect the basic necessary and sufficient conditions for an optimal
solution of such a problem — see [22]. Let (-,-) denote the dual pairing associated
with Z, and Zj. Throughout the paper we tacitly assume that the given problem
has a locally unique solution. If not so, the algorithms to be designed should be
able to detect any local non-uniqueness.

Theorem 2.1 (Necessary conditions). Let a solution x of problem (2.1) be reg-
ular, i.e. 0 € int(g(z) + ¢'(x) X — K), and define the Lagrangian

L(z,A,n) = J(z) = (A, @) — (0, 9()) -
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Figure 2.1: Zero level sets of the smoothed complementarity function (2.9) for u €
{1,1/4,1/16}.

Then there are X\ € Z; and n € Z;, n > 0, such that

Oz L(z,A\,n) =0 (2.2)
c(r) =0 (2.3)
(n,9(z)) =0. (2.4)

In many cases of real life applications, these necessary conditions already define
a unique optimal solution. However, there exist well-known counterexamples that
require more than just the necessary conditions.

Theorem 2.2 (Sufficient conditions). Suppose z is a regular point for the ab-
stract problem (2.1). Assume that J, ¢, and g are defined and twice continuously
Fréchet differentiable on some larger space X, O X. Assume x, X, and 7 sat-
isfy (2.2-2.4). Suppose that there are 6 > 0 and 8 > 0 such that

(02L(z, \,n)h, k) > d||h|2

for all h € kerd(z) with ¢'(z)h € K + span{g(z)} and (n,¢'(z)h) < B|h|p. Then
there ewists a neighborhood U of x in X, such that x is the unique local solution

of (2.1) inU.

For optimal control problems as studied here, equation (2.4) is equivalent to point-
wise complementarity in the sense that

n(t)g(z)(t) =0, n(t) >0, g(z) >0 for almost all ¢. (2.5)

The idea of interior point methods is to replace the unwieldy complementarity con-
dition (2.5) by a relaxed substitute condition of the type

n(t)g(z)(t) =p for p>0, (2.6)



wherein p is the duality gap parameter. The connection between (2.5) and (2.6) is
via a homotopy with respect to u, the so-called central path. For the central path
to be well-defined, the additional feasibility condition

n(t) >0, g(z)(t) >0 (2.7)

has to be satisfied. For y — 0 we arrive at the condition (2.5) — see Figure 2.1.
So-called complementarity methods permit infeasible iterates as well replacing
condition (2.5) by a condition of the type

¢(9(w)an;ﬂ) =0, (28)

where the feasibility of the central path is guaranteed by the construction of .
Thus, infeasible intermediate iterates can be accepted — a feature, which increases
the overall robustness of the method. Throughout the paper we specify ¥ to be the
so-called FISCHER-BURMEISTER function [18]

Yla,bjp) =a+b—+a®+ b +2pu, (2.9)

the zero level set of which is characterized by the interior point conditions (2.6)
and (2.7). Upon introducing slack variables w, we arrive at the canonical formulation

O L(z, A, m)
F(z,\,n,w;p) = w_—(:(gw(zv) =0, (2.10)
P (w, n; 1)

which will be the formulation to be actually solved numerically. Assuming sufficient
differentiability, the associated derivative has the form

(9513(3/72 A), n) —d(z)*  —g'(z)*
—g'(z) I ’
Onp(w,m;p)  Owtp(w,m; p)

which clearly reveals the saddle point structure of the abstract optimization prob-
lem (2.1).

For ease of writing, we introduce the extended variables v = (z, A, n,w), with
a typical splitting of the unknowns z = (u,y) into control variables u and state
variables ¢. In this notation, let now J, ¢, and g be specified as

F'(z, A\ n,w;p) =

1
J(z) = /0 fa(t)) dt,



Variable Dimension Space

U Ty Lg“
Y Ty (Wpl )
T Ny + Ny Xp = L x (W)™
A ny + Ny Ap =L X R™
Ui Ty L;lu
My Ty (Wpl )"
n Ty, + Ty By = Ljw x (W)™
v Ty Vo
S ]
Xy = L}’; X (Wp )
Zp:X;xA;prpr
c [Rmwt2ny _y |R™A
Cr R27y — R

Table 2.1: Variables, their dimension, and the associated function spaces.

wherein ¢(z)(t) = c(u(t),y(t),y(t)) contains the ordinary differential equations as
equality constraints. For the purpose of survey, a list of variables, dimensions, and
associated spaces is given in Table 2.1.

The actual existence of a central path v(u) for the above general mapping
F(v(p); ) = 0 is harder to prove than in the finite dimensional setting. The proof
is rather technical and therefore omitted here; it can be found in WEISER [30]. For
the purpose of the present paper we merely follow the basic lines of that derivation
and collect the essential results. The derivation proceeds in two steps: first, local
continuation into an open set, which includes p > 0; second, continuation within a
closed set up to u = 0.

The pointwise complementarity condition (2.5) enforces n,w € L, hence we
have to choose p = 0o, which implies X = X, and V = V.

Theorem 2.3. Let f, ¢, ¢, and g be twice Lipschitz-continuously differentiable with
respect to their arguments, and p > 0. Then the mapping F : Voo X Ry — Z is a
continuosly differentiable mapping. Its derivative F' satisfies the Lipschitz condition

I1F" (v5 18) = F' (03 1) | Vg s 20 < cOmst s [l = By, -

The above result clearly indicates numerical difficulties to be expected in the con-
tinuation process as gy — 0. In order for any Newton-type continuation method to
work, we need to verify that the derivative is not only Lipschitz continuous, but also
has a bounded inverse.



Theorem 2.4. Assumptions of Theorem 2.3. Let D C V be an open bounded set
and let po > 0 be a sufficiently small duality gap parameter. Assume that for v € D
and 0 < p < po the following conditions hold uniformly:

1. The linearized state equation is solvable: There exists a constant B8 > 0 such
that for every constraints variation 6 € Lp> X R™ there is a state variation
dy € (Wpl)"y with

cy(z)dy =0 and ||5y]wryry < B8] Lox g
forp=1,2,00.
2. The state equation c(u(t),y(t),y(t)) = 0 is linear in y(t).

3. The strengthened Legendre-Clebsch condition holds: for

H(t) = f"(z(t)) — " (u(t), y(8), 5()TA®) — " () n(t)
+'(@(®)T 0y (w(t), n(t); ) Butp(w(t), m(t); g’ (u(?)),

there exists a constant v > 0 such that
EW)TH()E) > [E)?
for almost all t € [0,1] and all z € ker .

Under these assumptions F'(v;u) has an inverse, which on every closed set D X
[—, o] with p— > 0, is uniformly bounded.

It is interesting to note that the existence of the central path is directly connected
with the sufficient conditions for an optimal solution — see Theorem 2.2.

Theorem 2.5. Assumptions and notation as in Theorem 2.4. Assume there exists
some starting point vg € D and po > 0 such that F(vg; po) = 0. Then there exists a
path v(p) € D that can be continued up to the boundary of D x (0, uo].

Once the existence of the central path has been established, we are ready to proceed
to the second step of our derivation, which involves the continuation of the central
path within closed sets up to g = 0. Unfortunately, due to the smoothing effect
of the complementarity regularization, continuation in V, cannot be performed up
to 4 = 0. Instead, we will resort to the coarser Hilbert space setting of V5. In
the presence of state constraints, the Lagrange multipliers usually contain Dirac
distributions at boundary points of state constrained subarcs — in which case every
reasonable approximation will leave any bounded set D even in V5. In the presence
of control constraints, the dual variables are known to be continuous apart from
a singular set, which can be excluded by constraint qualifications. In view of this
feature, we restrict our treatment to control constrained problems for the remaining
part of this section — making sure that we exclude the singular set (see Assumption 2
in Theorem 2.8 below).



Figure 2.2: Nearly active sets computed from the slack variables w and the Lagrange
multipliers n for p = 1. The reduction in the duality gap parameter p from left to
right leads to a better approximation of the solution’s active set.

Note that in fact only the first part — continuation within open sets y > 0
— can be carried out numerically. The theoretical restriction to the Hilbert space
V5 is therefore not too severe. It may, however, influence the approximation order
with respect to the continuation parameter u. For an associated experimental result
see Figure 4.8. Even our key example in Section 4 falls out of the present analytic
setting, since it involves state constraints as well. However, in this case, the adaptive
multilevel algorithm to be worked out in Section 3 produces successively sharper local
peaks on successively finer meshes — thus realizing a multilevel approximation of
the Dirac distribution. For an illustration of this effect see Figure 4.9 below.

In what follows we will prove uniform boundedness of F'(v(p);u) ! for u — 0.
This requires more subtle analytic techniques than those used to prove Theorem 2.4
above (cf. [30]). For this purpose, we exploit the well-known splitting of inequality
constraints into active and inactive ones: active constraints are subsumed into the
equality constraints ¢, whereas inactive constraints are simply dropped. Since the
exact active/inactive splitting at p = 0 is typically not known for p > 0, we weaken
the concept introducing an approximate splitting into nearly active and inactive
inequality constraints — for an illustration see Figure 2.2.

For ease of presentation, we will consider 7, = 1. The extension to more com-
ponents is straightforward. To be precise, we define a p-nearly active set €2, by

Qp(v) ={t €[0,1] : w(t;p) < pn(t; 1)} and its complement Q2 = [0,1]\Q2,
for p > 0. This splitting induces a splitting of variables
w = (pr7w;) a‘nd n= (npang) )
of spaces

Wp = {’LU|QP Tw e L2} and Wpc = {’LU'Q;:) Tw E LQ}, (2.11)



and of inequalities and complementarity function
9=1(90,9,) and ¢ = (¢, 957).
Lemma 2.6. The splitting (2.11) leads to the diagonal operator splittings

- * o
ons]

where ||(0wipp) " w,»w, and [[(8y9S) " lw,—w, are bounded independently of p.

Owth(w,n; 1) = P W] and  Opp(w,n; p) =
w¥p

Proof. For the nearly active set we infer

—1
w
Outp(w, )™ = |1~ e
wp( ) ’LU2+772‘|‘2H
_ Vw42 V2w 7P
WA+ 2u—w " R —w

From sw = 7 with s > p~! we conclude

2(1+s2)w? 2(1+s?) < 2(1+p72)

Ow » 115 < - )
ol i) S e —e T VIt o1 S JTrpfo

Straightforward computation yields [|(0w%,) ™" |w,—w, < const, where the constant
depends only on p. The analogous proof for (8n¢g)_1 is omitted. O

For the proof of the main theorem we will use the following Lemma by BRAESS
and BLOMER [8]! on saddle point operators with penalty term.

Lemma 2.7. Let X and Z be Hilbert spaces. Assume the following conditions hold:

1. The continuous linear operator C : X — Z satisfies the inf-sup-condition:
There exists a constant 8 > 0 such that

" (¢, Cx)
inf sup ———+— >
veX cez Izl x <]z

2. The continuous linear operator A : X — X* is symmetric positive definite
on the nullspace of C' and positive semidefinite on the whole space X : There
ezists a constant o > 0 such that

(z,Az) > a|z||% for all z € ker C

and

(,Az) >0 forallz e X.

'Note that there is a misprint in Lemma B.1 in the article. The assumption that A is positive
semidefinite on the whole space is used in the proof without being stated.



3. The continuous linear operator D : Z* — Z is symmetric positive semidefinite.
Then, the operator
A C*
C -D
is invertible. The inverse is bounded by a constant depending only on o, B, and the
norms of A, C, and D.

Theorem 2.8. Let ny = 0. Suppose that the following conditions are satisfied uni-
formly for all v = (z,\,n,w) on the central path.

1. The control u occurs linearly in J, ¢, and g.

2. For the nearly active constraints C := (c'(z), g,(z))” the inf-sup-condition

- (C& (x, )
in sup
XEA2,CEW eex, [I8]1x (Ixla + [1€]Iw;)

holds for some 3 > 0.

3. The modified Hessian of the Lagrangian is positive definite on the nullspace of
the nearly active constraints and positive semidefinite on the whole space:
For

H = 02L(z, \,n) + g5 (2)*Ops(w, m; 1) ™' OutpS(w, ms g (z)  (2.12)
there exists a constant o > 0 such that

(Hz,x) > 04||ac||§(2 for all z € ker C
(Hz,z) >0 forallz € X5.

If the central path v(p) is defined on the half-open interval (0, u), it can be contin-
uously extended in Vo to include a limit point v(0) satisfying the KKT conditions
(Theorem 2.1).

Remark 2.9. In general, whenever controls u arise nonlinearly, they can be ex-
pressed analytically in terms of state and dual variables via differentiating the Hamil-
ton function — which might be the only possibly necessary analytic preprocessing
in our approach. Therefore, the limitation to linearly occurring controls is no severe
restriction.

Proof. The proof will be merely outlined. Details can be found in [30].



In a first step, we eliminate Aw and Anj from the system F'(v;u)Av = ¢ =
(z,5,7,q)T to obtain

H —(d) —(g9,)* Az
—c A
—g, —(Owtbp) ' Onbp] [Anp
24 (95")* (On5) ™ (g5 — Ouwtprs)

s (2.13)
_(aw"/Jp)_IQp +7p.

In a second step, we show that the inverse of the operator in (2.13) is bounded
independently of . Note that (9y,) ™1, 9y, (anpg)_l, and Oy, are all bounded
uniformly for g > 0 by Lemma 2.6. Then, using Assumptions 2 and 3, we can apply
Lemma 2.7 which guarantees the existence of a unique solution Az € Xy, AX € Ag,
and An, € W, with

1Az x, < const |2 + (g5)* (8ntpp) ™ (g — Buwdbirp)lxs
< const ([l2x; + /(g5 *11(3%5) I llaplwa + l10wtplllrgllwe))
< const (|lz[|x; + const (llgllw, + lIrpllws))
< const (] z,

and with similar calculations,

[AM A, + [Anplw, < const|(]z, ,

where the constants are independent of u. Tracing the eliminations of the first step
back yields

[Anglw, < const[Cllz, and [Aw]w, < const|(]z, .

Hence, F'(v(u); #)~! is bounded independently of p. Finally, from
1

Outp(w,n; ) = <p
utp (w15 1) peme A

=

and
T
OuF(v(p) =[0 0 0 —5,9]
we infer for the derivative of the central path v(u) that

o) vy = 1 (0(10)s )20 P (0(12)) v
_ _1
< 1F' (v(n); 1) "M 2s5v3 10w F (1) 2, < comstp™2.
Therefore, the path is uniformly continuous and thus can be continuously extended
to include a limit point v(0).
If u occurs linearly in J, ¢, and g, both the path v(u) and F are continuous in

Va, such that F(v(0),0) = 0 and v(0) satisfies the first order optimality conditions
of Theorem 2.1. O

10



Remark 2.10. In general, Assumption 2 imposes an upper bound on the choice of
p due to the monotonicity

p1§p2:>Wp1CWp2-

If W, gets too large, C' may become non-injective and thus no longer satisfy the
inf-sup-condition.

3 Numerical Algorithm

For the numerical computation of the solution point v(0) we employ a Newton
type continuation method following the central path v(u) defined by (2.10). When
applied to F(v) = 0 and AF(Bv) = 0, where A and B are invertible linear trans-
formations, Newton’s method generates equivalent sequences of iterates. This in-
variance property should be inherited by numerical algorithms and accompanying
convergence theory. Unfortunately, full invariance is impossible due to the necessity
of measuring convergence in some appropriate norm. Fixing B = I one obtains
affine covariant (error oriented) methods [16], whereas setting A = I yields affine
contravariant (residual oriented) methods [19]. Coupling A = B* results in affine
conjugate (energy oriented) methods for convex unconstrained optimization prob-
lems [17]. For an in-depth treatment of affine invariance we refer to the upcoming
research monograph[15].

3.1 Affine Invariant Norms

Neither of the above-mentioned invariance classes reflects the structure of the opti-
mization problem (2.1). A new class of affine invariance and a corresponding invari-
ant norm for equality constrained problems (7, = 7, = 0) that has been worked
out in VOLKWEIN and WEISER [28| needs to be extended to include inequality
constraints as well.

First we recollect the norm construction for equality constrained problems. We
utilize the positive definiteness of 92L on the nullspace of the active constraints by
constructing an affine conjugate seminorm. This seminorm is complemented by a
residual-oriented approach to the constraints in order to define a norm.

Lemma 3.1. The adjoint equation operator T (v) : ker ¢/(z) x Ay — X35 defined by
T(v) := [02L(v) —d(z)*]
18 an isomorphism.

A proof is given in [30].
Let R(v) : ker (z) x Ag — X3 x A5 be defined by

[@%L(v) IR] |

11



where I denotes the Riesz-isomorphism. If §2L(v) is positive definite on ker ¢/(z),
we can define a local norm on Zy = X3 x A3 by

(@, )" 13 = (R(v)T (v) e, T(v) " a) + U, - (3.14)

Since T'(v) is an isomorphism and R(v) positive definite, this norm is equivalent to
the canonical norm on Zs. Furthermore, it is easy to verify that it is invariant under
linear transformations of the domain space Xo: with

-

we have
R(Bv) = [BW%L(B”)B I] = B*R(Bv)B
and
T(Bv) = [B*02L(Bv)B —B*d(Bv)*] = B*T(Bv)B,
such that
l(Ba, )", = (R(Bv)T(Bv) "' Ba,T(Bv) ' Ba) + 1|3

(R

= (B*R(v)BB 'T(v) "B 'Ba,B 'T(v) 'B ' Ba) + ||I[3;
= (R(v)T(v)"'a,T(v)""a) + [1]%s

= ll(a, )" lI5,

Note that albeit its nontrivial deﬁnition this norm is comparatively cheap to eval-
uate: the computation of T'(v)'a can be implemented by one more system solve
with the same operator F'(v) and a different right hand side.

The norm (3.14) can be used for inequality constrained problems, too, if the
slack variables w and the Lagrange multipliers 7 for the inequality constraints are
eliminated beforehand. Then the term 02L(v) above has to be replaced by

H(v) := 03 L(v) + g' ()" 0y (w, m; 1) ™' Quthp(w, m; )9’ () ,

which must again be positive definite on ker ¢(z). However, this norm may suffer
from the ill-conditioning of 8, (w,n; 1) "t 0wt (w, n; p) for p — 0.

Alternatively, we can resort to the splitting of the inequality constraints into
nearly active and inactive sets as introduced in Section 2. Elimination of the "nearly"

inactive slack variables wy and Lagrange multipliers 77 then leads to

Hp(v) := 05L(v) + (¢ (2)5)* Oy (w, m; 1)~ By (w, 3 p) g (), (3.15)

which must be positive definite on N, := ker ¢/(z) X ker ¢'(z),. Since
Oy (w,m; 1) ™ Ot (w, 35 1)

12



is bounded for y — 0, the ill-conditioning is avoided. Unfortunately, proceeding like
that suffers from two drawbacks: first, the local norm varies nonsmoothly with the
splitting into nearly active and inactive constraints and hence with the evaluation
point v it is attached to, and second, it is expensive to evaluate, since x € N, is
difficult to obtain. In general, however, both drawbacks can be avoided in practice.
Typically, not only the modified Hessian (3.15), but 62L(v) itself is positive definite
on the X-component of F'(v) ™! (X5 x {0z} X {Ows} X {Ow,}), which is almost N,
at least for small y. Thus we can define

ll(as s 5,0) %, 0 = (O2L()E,E) + VIR, + lollify, + 1915, + 12135 + 113, + lal,
where
F'(v; p)(¢,v,0,9)" = (a,0,0,0)". (3.16)

It is immediately clear that this norm is equivalent to the canonical norm of Zs.
Furthermore, it is not affected by a change of splitting into nearly active and inactive
inequality constraints. The positive definiteness of 92 L(v), however, must be checked
in the algorithm.

So far, we have defined affine invariant norms for the coarser Hilbert space Z,.
In order to obtain an affine invariant norm on Z,,, we assume that

£ L) (DEWR) = vIER)? (3.17)

for all £ obtained from (3.16) and some v > 0. This is related to the assumptions
of Theorem 2.8. Then we define

(@, 1,8, 0)" (17, = I lloo + VIR + ol + 191 + 1R, + sl + lalfv.
(3.18)

with &, v, o, 9 as in (3.16). Because of the boundedness of F’(v;p) !, this norm is
equivalent to the canonical norm of Z,,. Unfortunately, it restricts the invariance
class to (block) diagonal transformations B. A fully satisfactory affine invariant
norm for Z,, has not been found yet.

Lemma 3.2. If (8.17) holds, then there exists an affine invariant Lipschitz constant
w > 0, such that

1F" (01 18) — F' (v2; ) oy ) < I F (013 ) (v1 = v2) | 01,0 (3.19)
for all v1, va such that co{vi,v2} C D.

Proof. The existence of w is a direct consequence of Theorem 2.3 and the equivalence
of the norms || - ||, and || - |z, - O

Formulating inexact Newton continuation algorithms in terms of local norms, we
need to have a Lipschitz-continuous dependence of the norm with respect to the
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evaluation point to which it is attached, i.e. the existence of affine invariant constants
Y» > 0 and 7y, > 0 such that

17l on ey = Il ooy | < Yol B (w15 ) (01 = 02) g0 Il 01,109 (3.20)

and

o) = 17wz | < Yalir = pi2lllr o) (3.21)

for all r. This can be easily derived from the Lipschitz continuity of F’ and the
equivalence of the local norms to the canonical norm. In contrast, obtaining quan-
titative estimates analytically is a difficult task. Based on an assumption similar
to (3.19), a rather crude estimate of 7, < 2w has been derived in [28]. In the affine
contravariant setting, 7, = 0 is trivially obtained, v, < w holds in the affine covari-
ant case, and 7, < % in the affine conjugate case. For the norm (3.18), however, no
quantitative estimate is known up to now.

Remark 3.3. Recently, POTRA [24] employed an affine invariant norm for proving
O(y/nL)-iteration complexity of an interior point algorithm applied to horizontal
linear complementarity problems, which include linear and quadratic complemen-
tarity problems. In the notation of the current paper, that author uses a diagonal
scaling like D := /0yt 10y3y. The applicability of such a scaled norm to the
function space optimal control setting is still under consideration.

3.2 Adaptive Central Path Following

Once the central path homotopy is theoretically established, a numerical continua-
tion scheme for following the path towards the solution v(0) must be developed. For
numerical pathfollowing, an adaptive tangential predictor / Newton type corrector
algorithm is worked out. The method is applied directly to the infinite dimensional
function space formulation, involving only in the innermost loop when solving linear
subproblems. Since a reduction of the discretization error is expensive, we substitute
both the tangential predictor and the Newton corrector by their inexact counter-
parts and aim for linear convergence only — in the spirit of complexity estimates
of [17].

As can be seen from the increasing Lipschitz constant of F'(-;u) as derived in
Theorem 2.3, the local convergence domain of the Newton corrector can be expected
to collapse for u — 0 (see Figure 3.3). Nevertheless, Theorem 2.8 provides a qualita-
tive upper bound on the error incurred by a premature termination of the numerical
continuation along the central path. Experience shows that feasible and acceptably
suboptimal solutions can indeed be obtained by following the central path up to
some p, > 0 — see Section 4.

Inexact Newton corrector. The corrector operates with constant duality gap

parameter; thus we drop p in order to simplify notation. Due to the inhibitive cost
of reducing the discretization error, we cannot strive for highly accurate Newton

14



0

Figure 3.3: Inexact tangential continuation along the central path.

corrections. Instead, we will employ an inezxact Newton method, where an inner
residual remains:

F'(w®)ov* = —F(v*) + 1
P = oF 4 Guk
The relative accuracy 6, of the inezact Newton correction 6v*, given by

P L]
[P

will play a crucial role. In actual computation, the inexact simplified Newton cor-
rection dvk+1 defined by

F'(vF)ovktl = —F(v*+1) 4 phtl

(3.22)

will also be used.

Theorem 3.4. Assumptions and notation of Theorem 2.4. Let vy, and w be con-
stants such that the local norm ||-||, satisfies (3.20) and the affine invariant Lipschitz
condition

I(F'(€) = F' () (€ = v)l¢ < w||Fy(v)(€ =3 (323)
holds for all collinear v,€,( € V such that co{v,&,(} C D. Let © < 1 and

L) = {e € D POl < (1+22) [Pl )

w
Assume that v° € D and that the level set L(v°) is closed. If w||F(v°)]y, < 20 and
the inner iteration is controlled such that
1+ 6
2

w||F' (vF)00F | x + (1 + Yo | F' (%) 0% || x )0x < O, (3.24)
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then the iterates are well defined for all k € N, stay in L(v°), and the residuals
converge to zero at a rate of

IE @) s < OIF @F) e -

Furthermore, if the inexact simplified Newton correction is computed with relative
accuracy 041,

_— 1) w
[/ (M50 T < (14 F) (7255 + G IF/ R0 e ) I (R0 e (3.25)

holds.
Proof. By induction, let £(v*) be closed and w|F(v*)||,« < 2. Then

F(oF + s6v*) = F(v*) + / S F,(vF + t6vF)so* dt (3.26)
0
=(1—-s)F(v*) + sr* + /‘S(Fv(vlC + tov*) — F,(vF))dvk dt  (3.27)
0

for all s € [0, 1] with co{v*,v* + sév*} C D.
Using the Lipschitz continuity (3.23) of F’ and the norm continuity (3.20), for
o € [0, s] we have

HF(IUk + dek)‘lvk+a(5vk
< (1 - S)HF(vk)”karaJvk + s”rkl|vk+aévk
S
+ / [(F (0" + t50%) — ' (oF))50" e, g dt
0
< (1= 8)(1 4 o[ F' (%) 60" [ )| F (1) | e
1k k k s 1.k k|12 (328)
+ s(1 + oyl F (v7) 50" [ ) " | +/ twl| F" (v™) 60" || 5 dt
0
= (1+ oy F'(0%)50" |, ) (1 = 8) | F(0F)lle + 50k F(0F)] )
2
s
+ Sl )k
From (3.22) we have
(1= 6)|IF (F)[le < 1 Fs(0F)60" e = [F(0F) — 7¥[le < (1 + 6) [ F(0F)||x - (3.29)
Thus we arrive at

HF(Uk + 36Uk)‘|v’°+sév’°
[ (0F) ]| o

1
< (U s P (F)00F ) (L~ s+ sg) + 008 [ (0F) o0 e
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The ultimate goal is to establish a contraction property for the undamped Newton
method (s = 1). Thus we have to require

1+ 6

(L+ Wl F'(0") 50" 0) b + ——wl| F'(0F) 0" e <O <1,

which is the accuracy condition (3.24). Defining x := v,||F'(v*)év*|,« and using
s <1 and (3.24), we have

”F(Uk + Sévk)uuk—l—sévk 1+ 619

s2w|[F" (0*) 60" »

<(T+sx)(1—s+s6)+

[Pl 2
1 +5k 2 1,k k

=(1+sx)(1—38)+ (1+sx)sd + s“w|| F' (v") 60" || yr
<(1+sy)(1—3s)+s0 (3.30)
=1-5+s0+s(l—-s)x

X
< =.
<1l+ 1

From (3.24) we infer |F’(v*)dv*|» < 20 /w, and hence
k k 7O k
1F (" + 8007k 4sgor < {14 5= ) 1F(07)[or

holds. If co{vk,v* 4+ 6v*} ¢ D, then there is some s* € [0,1) with co{v¥,v* +
s*6vk} C D but vk + s*6vF g L(vF), ie.

YO

(") e

|IF(0F + 8*60F) ||y 4 gogor > (1 +

which is a contradiction. Thus, v**! € D. Furthermore, setting s = 1 in (3.30)
yields

IE @) fyesr < OF ()], (3.31)

and therefore £(v¥*!) C L(v*). Since L(v*) is closed, every Cauchy sequence in
L(v**1) converges to a limit point in £(v*), which is, by continuity of the norm,
also contained in £(v**1). Hence, £(v**1) is closed.

Inserting 0 = 0, s = 1 into (3.28) yields

| (0F) g0k + e < (14 i) [F () e

—_— w
< (14 F) (Sl @8) e + SIF"(05)30" 2 )

_— 1) w
< () (725 + I D00 e ) [P 0400 e

which completes the proof. O
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Inexact prediction step. From numerical experience, we expect more or less
constant reduction factors for u, translating into constantly decreasing continuation
step sizes. In order to avoid this biased step size behavior, the predictor is formulated
in terms of 7 = —log . The inexact tangential predictor 9(7) is defined by

F'(vo;10)p = =0, F(vo;m0) + 7,  9(1) = wo + (T — 70) b, (3.32)
where again a residual r remains.

Lemma 3.5. Assumptions of Theorem 3.4. Let v, and  be nonnegative constants
such that the local norm || - ||(,.r) satisfies

0l sy = 2l wr )] < e (2 = T2 01,70 (3.33)

and

1 (w23 72) (w1 ,r0) S NE @150y 1) + Il oy (72 = 1) + Blr2 = 71)* (3.34)

forall p € Zy, v1, vo such that F'(vi;11)(va—v1) = — (12 —71) (O F (v1;71) +7), and
co{v1,va} C D. Then the inexact Newton corrector with starting point vy converges
to the central path v(7) for all stepsizes AT = 19 — 71 satisfying

2
(1 + % AT)(IF @1 1) (01,70) + Il ) AT + BAT?) <~ (3.35)

Proof. Combining the convergence condition w|F(v; 7)) < 2 from Theorem 3.4
with assumptions (3.33) and (3.34) yields the result. O

Note that, since (3.35) represents a monotone convex function of A7, the maximum
permitted stepsize can be easily computed by an ordinary Newton method starting
from 1/2/(wp) .

Remark 3.6. Again, the constant -y, is needed because of the inexactness of the tan-
gential predictor. In exact Newton continuation algorithms (see DEUFLHARD [14]),
the change of local norms can be subsumed under the second order term S.

Computable Lipschitz Estimates. For actual computation we need easily com-
putable estimates of the theoretical quantities w, 7y, 77, and B, to be inserted into
conditions (3.24) and (3.35). From (3.25) and (3.20), (3.29), respectively, we derive
the computable estimates

2 [ (ok) 57T b )
wl. = — v — < w 3.36
e ||F'(vk)6vk||vk<<1+5k+1)||F'<vk)avk||vk —6) = (3:36)
and
(2 (B, P50 ), @ B, IO FFTe))
bl = 0+ 5o )T ) 5oR T s [ (oF) 0 o =
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where ®(a,b) = [H_La, %] denotes the inaccuracy interval and

d(A,B) = inf |a—b|
a€AbEB

is the usual set distance. Furthermore, computable estimates for v, and 8 can be
derived from (3.33) and (3.34) as

d<¢ (525 ”FI(UQ; 7'2)57]2"(1)2;72))’@(@’ ”FI(Ul; Tl)d_wu(m;n)))

T — < T
] L+ 02)1F (033 72)303 oy (72 —11) <7

and
[8] = max{0, 5} <
where
5 d((I)(é_g, 17" (v1; 71) 802l o1 71 ) » (61, ||F'(’Ul;71)5’Ul||(m,n))) 17 (or,0)
— 2 _

(7’2—7’1) T2 — T1

respectively. Of course, reliable estimates are obtained only if d; is sufficiently small,
which imposes additional accuracy requirements on the computation of the predictor
and corrector.

Since the computable estimates are based on local sampling only, they are nec-
essarily too small. Therefore, the computed continuation stepsize A7 is larger than
intended and may even be too large for the corrector to converge. In this case,
a stepsize reduction has to be performed on the basis of updated estimates. An
iterative stepsize reduction scheme and its termination has been studied in [30].

Solution of Linear Subproblems. Applying Newton continuation methods in
function space requires solving a sequence of linear complementarity problems of
the same structure as the nonlinear complementarity problem (2.10). In principle,
any standard linear BVP solver can be employed. If there is a stable direction for
the initial value problem, a multiple shooting discretization of the linear problem is
certainly apropriate. For the numerical example in Section 4 and further ones in [30],
a collocation method with adaptive mesh refinement has been used. The successive
grid adaptation is based on a not very sophisticated ad hoc error estimator. These
and related algorithmic issues will be worked out to a higher level of sophistication
in the near future.

4 Abort Landing in the Presence of Windshear

In this section we will consider a well-known intricate optimal control problem, the
abort landing in the presence of windshear. Our numerical results are based on
the precise model given in [5] — for the convenience of the reader, this problem
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formulation is arranged in the Appendix. The problem is of Chebyshev type, max-
imizing the minimal altitude. There is only one control variable u entering linearly
— thus satisfying Assumption 1 of Theorem 2.8. The optimal solution consists of
control and state constrained subarcs as well as touch points and singular subarcs,
which makes the problem difficult to tackle by means of the maximum principle. It
contains a third-order state constraint and a nondifferentiable wind model based on
spline representation — and is therefore not fully covered by our theoretical presen-
tation in Section 2. Nevertheless, as will be reported now, already the first version
of our herein developed algorithm worked satisfactorily.

Originally, the problem has been modeled by MIELE et al. [23]; as for the nu-
merical solution, these authors seem to have applied a robust collocation method
based on a finite dimensional parametrization of the control and combined with a
gradient restoration technique to find the corresponding optimal finite dimensional
solution. Their paper does not present any numerical results for the control, which
is the most critical variable.

As a preparation for the application of multiple shooting, BULIRSCH et al. [10]
required 11 pages to present a brief outline of the analytic derivation of the necessary
conditions. In contrast to that, our herein proposed method did not require any
analytical preprocessing — thus saving considerable human effort. In a second
paper [11], the application of the multiple shooting method has been described
along with the homotopy necessary to obtain the correct switching structure. In
1995, BERKMANN and PESCH [5] solved the same problem even more accurately
and claimed that "a competing direct method is unlikely to be able to produce
solutions with such high resolution". In fact, our direct function space method did
require a substantial computational effort to reach a comparably high accuracy. A
comparison of computing times, however, would be too early, since our first focus
was on developing a working algorithm within the rather new conceptual frame.
There is enough space left for perfectioning our algorithm, which will be filled in the
near future.

h [ft] h[ft]

6502.167 502.214
b _— N w

6502.156

600 600 -

500 500 1|
t [sec]
0 10 20 30 40 0 10 20 20 40

Figure 4.4: Altitude h for windshear problem. Left: multiple shooting result
from [5]. Right: central path result at u = 2.1-10~* (this paper).

Figure 4.4 shows a comparison of our altitude results with those obtained in [5].
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The agreement is perfect within the interval up to the last touch point ¢* = 25.997s.
Beyond that point, there exists a continuum of optimal solutions. This can be
understood from the fact that for ¢ > t* all relevant Lagrange multipliers vanish
(Figure 4.5) and none of the inequality constraints is active. Only the multiplier
corresponding to the Chebyshev reformulation of the minimization problem does
not vanish (see ¢ = 0 in the Appendix).

-2 t[s

0 10 20 % 40
Figure 4.5: Lagrange multipliers \; corresponding to equality constraints (scaled).

As already mentioned above, the most critical variable is the control u, the angle
of attack rate. That is why we present its rather complex behavior in Figure 4.6.
As can be seen, our results once again are in perfect agreement with the multiple
shooting results from [5] at least in the relevant interval [0,¢*]. Slight differences do
occur as local Gibbs phenomena around two discontinuities, among which one arises
at t = t*. The latter occurrence does not deserve too much attention — we could
have suppressed it in the canonical way by adding some term eu? to the functional
for sufficiently small e.

uplv -
w [10-2] u [10-2] L !

51 B o 5

t [sec]
0 10 20 30 40

-5 1 _ -5 4 e

0 10 20 30 40

Figure 4.6: Control u for windshear problem. Left: multiple shooting result from [5].
Right: central path result at p = 2.1-10~* (this paper).

In passing we note that PYTLAK [25] has also attacked this problem by his
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method and documented his results, but obtained a control behavior quite different
from the one given in Figure 4.6.

As for the obtained functional value (minimum altitude hpi,), BULIRSCH et
al. [11]| report an improvement of 10ft over MIELE et al. [23]. On top of that,
BERKMANN and PESCH [5] achieved a further improvement of 2.7 - 107 °ft to a
value of hAmin = 502.1562810ft. Our method led to an even better minimal altitude
of hmin = 502.210661 ft. In order to assess this value, we solved the initial value
problem in both forward and backward direction using the computed control from
our algorithm. As a numerical integrator we selected the Matlab implementation of
Dormand-Prince RK45. In forward direction we obtained hpni, = 502.210433 ft, in
backward direction Ay, = 502.210438 ft. This clearly confirms that our result is an
improvement even over [5].

In order to throw some light into the performance of our new algorithm, we next
give some details about the continuation process with respect to the duality gap
parameter u and the adaptive multilevel scheme.

The computations were started on a uniform initial grid with mesh size hy =
1/25. On this grid, the nonlinear KKT equations F'(v;1) = 0 with dimension 2748
have been solved using a Newton method with damping. The corresponding initial
trajectory is depicted in Figure 4.7.

h[f] ;
700 | 51 u[107
600 1 0 ’\/\_’\/ﬁ
500
t[sl -5 1 t[d
0 10 20 30 40 0 10 20 30 40

Figure 4.7: Initial trajectory for windshear problem. Left: altitude h. Right: control
u.

An illustration of the adaptive continuation process along the central path is
given in Figure 4.8. The log-log scale indicates that

J(w(p)) — J(v(0)) ~ p® with o = 1.44.

Finally, the adaptive mesh refinement structure for this problem is presented in
Figure 4.9. Successive refinement led to mesh sizes

hj = 2_jh0 .

Obviously, the highly dynamic structure of the solution is captured reasonably well
by the adaptive refinement procedure.
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Figure 4.8: Central path continuation for windshear problem.
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Figure 4.9: Adaptive mesh refinement in windshear problem.

Conclusion

In this paper we present a direct function space method for optimal control prob-
lems based on the complementarity formulation of interior point methods. The new
method essentially dispenses of any analytical preprocessing — thus saving consid-
erable human effort. In its algorithmic realization, function space is exploited via an
adaptive multilevel method in combination with an adaptive central path following
algorithm. A theoretical justification of the algorithm has only been achieved for
control constrained problems where the controls appear linearly. However, numeri-
cal results for a well-known intricate optimal control problem with both control and
state constraints seem to indicate that a much wider class of problems should be
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tractable by our algorithm. Even though a lot remains to be done both in theo-
retical justification and in algorithmic realization, we are confident to have opened
a promising alternative path towards the numerical solution of complex optimal
control problems from science and engineering.
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Appendix: Mathematical Model of Windshear Problem

In what follows we present the full mathematical model as given in [5], which cor-
rected a misprint in the parameters given in [10].

In order to convert the Chebyshev-type optimization problem to the Lagrange
formulation that has been assumed throughout the work, we introduce a lower bound
¢ of the altitude h together with the state constraint

h>(¢ (A1)
and the auxiliary equation
¢=0,

such that the cost functional can be written as

J:—/OTCdt.

Horizontal and vertical wind velocity is given by

W? = A(z)
wh = %B(w)
with
(—p + az® + bz + g2, 0<z <z
A(w)=<r(w_%&)’ ST S

4

p—alzs —2)° —bzs —2)" —q(zs —2)°, 22 <o <3

\pa I3 S T
(da3 + et + 525, 0<z<umz
Blz) - | —5lexp(—c(z — )4, 1 <z <z
x) = )
d(zs — z)3 +e(zz —2)* + s(z3 — 7)°, 22 <z <73
0, T3 < <zx

\

The parameter sets for the wind model from [5] are given in Table A.1.

Note that the wind model has discontinuous second derivatives at the junction
points 1, zo, and x3.

Under the assumption of the airplane to be a particle of constant mass moving
in a vertical plane and the wind field to be steady, the following equations of motion
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z1= 5.000-10? ft d—=-8.02881-107% s lft 2
zo= 4.100-103 ft e= 6.28083-10"1 g~ lft—3
3= 4.600-103 ft p=5.00000-10" st
a = 6.000-1078 sTt=2 g= 0.0  -100

b =—4.000-10~11 s Ht3 r= 2.50000-10%2 s!

c = —107"In(%) ft~* s= 00  -10°

Table A.1: Parameter values for the wind model.

Ap= 4.4560-10* 1b By=1.5520-10""

A =-2.3980-10' 1bsft~! B1=1.2369-10"' rad™!
Ay = 1.4420-1072 b s?ft2 By—2.4203-10 rad 2
Co= 7.2150-1071 p =2.2030-10"3 b sft~*
Ci= 6.0877-10° rad—! S = 1.5600-10°  ft2

Cy =—-9.0277-10° rad=2for pr =2 «a,=2.0944-10"1 rad
mg=1.5000-10° 1b § =3.4906-1072 rad

g = 32172-101  s72ft

Table A.2: Parameter values for the aerodynamic forces.

can be derived:

z=Vcosy+ W7
h=Vsiny+W"

.T D ) )
V = = cos(a+0) — — — gsiny — (W®cosy + Wsinvy)
m m

T L . .
V4= —sin(a+68)+ — —gcosy+ (WZsiny — W cos )
m m

a=u.

Here,  denotes the horizontal position, h the altitude, V the relative velocity, v the
relative path inclination, and « the relative angle of attack. The derivative of the
angle of attack u is chosen as control variable. Note that due to the occurrence
of the derivatives W2 and W" in the equations of motion, the problem is C? as
assumed by the theory only if the wind model functions A and B are C3.
Approximations for the aerodynamic forces thrust T, drag D, and lift L acting

£r=3.825-10°
Bp=2.000-10"1 7!

Table A.3: Model parameter data for the power setting.
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Umax=05.236-10"2 rad s~ !
Omax=3.002-10"1  rad

Table A.4: Model parameter data for the inequality constraints.

initial conditions terminal conditions

o=0.0 -10  ft ty=4.000-10" s
Y%=3.925:10"2 rad  ;=1.297-107' rad
ap=1.283-10"" rad

ho=6.000-10>  ft

V5=2.397-10>  ft s—!

Table A.5: Model parameter data for boundary conditions.

on the aircraft are given by

T = B(Ag + AV + Ay V?) (A.2)
D= %(BO + Bia+ Bya?)pSV? (A.3)
L= %(CO + Cra + Comax(0, a — a,)PE)pSV? (A4)

with the power setting

B = min(1, By + fot)

resulting from the additional hypothesis that, upon sensing the aircraft to be in a
windshear, the pilot increases the power setting at a constant time rate until the
maximum power setting is reached. Note that the lift approximation from [10] with
pr, = 2 has a discontinuous second derivative. The model parameter data given
in Table A.2 refer to a Boeing B727 aircraft powered by three JT8D-17 turbofan
engines.

Simple bounds are imposed on the angle of attack and its derivative:

|u| < Umax

o < Omax

Boundary conditions are given for the initial quasi-steady flight prior to the
windshear onset and for terminal steepest climb in quasi-steady flight:

I(O) = Xy V(O) = Vo
h(0)=ho  ¥(0) =
Y(tr) =5 -

29



