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Abstract

Well-mixed stochastic chemical kinetics are properly modelled by the chemical master equa-
tion (CME) and associated Markov jump processes in molecule number space. If the reactants
are present in large amounts, however, corresponding simulations of the stochastic dynamics
become computationally expensive and model reductions are demanded. The classical model
reduction approach uniformly rescales the overall dynamics to obtain deterministic systems char-
acterized by ordinary differential equations, the well-known mass action reaction rate equations.
For systems with multiple scales there exist hybrid approaches that keep parts of the system
discrete while another part is approximated either using Langevin dynamics or deterministically.
This paper aims at giving a coherent overview of the different hybrid approaches, focusing on
their basic concepts and the relation between them. We derive a novel general description of
such hybrid models that allows to express various forms by one type of equation. We also check
in how far the approaches apply to model extensions of the CME for dynamics which do not
comply with the central well-mixed condition and require some spatial resolution. A simple
but meaningful gene expression system with negative self-regulation is analysed to illustrate the
different approximation qualities of some of the hybrid approaches discussed.

1 Introduction

Stochastic modelling of biochemical reaction networks, such as gene expression systems, are of
fundamental interest in molecular biology [7, 9, 36, 35]. Of central relevance is the description by
the chemical Master equation (CME) and associated Markov jump processes where the discrete
states refer to numbers for all species of reactant molecules. The dynamics can be simulated
by Gillespie’s stochastic simulation algorithm [22, 24, 26] that generates exact realizations of the
underlying jump process. However, the simulations may get extremely time-consuming, especially
if parts of the molecular population appear in high copy numbers or reaction rates are high. For
such situations, various approximation methods and reduced models have been developed.

Beside the numerical schemes to speed up the simulations by e.g. grouping together closely
following reactions (so called τ -leaping methods), there exist analytical approaches to reduce the
system’s complexity by defining simplified models. If the copy number is large for all involved
species, the CME can be approximated by stochastic differential equations or ordinary differential
equations (ODE’s) - this is a classical result proven by T. G. Kurtz [38, 39, 40]. The approximation
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is based on an equal scaling of all molecule numbers. In many applications - as in genetic networks
-, however, some of the involved species (e.g. proteins) are typically present in much greater
abundance than others (e.g. DNA), which makes an equal scaling inappropriate. This leads to
hybrid methods where only a part of the system is approximated by continuous dynamics, whereas
species in small amounts remain discrete. The most prominent hybrid approach is given by piecewise
deterministic Markov processes (PDMP’s) which were introduced by Mark H. A. Davis in 1984 [13].
As the name suggests, these processes move deterministically for some period of time before the flow
is interrupted by a random jump. PDMP’s have been extensively studied in [54, 55, 17], including
a convergence analysis and an application to autocatalytic genetic networks. Similar methods have
been proposed in [33, 49, 42], with error estimates conducted in [34].

Other existing hybrid approaches are based on a partition of the set of reactions into fast and
slow ones, modelling the fast reactions by continuous Markov processes while the slow reactions
remain discrete[11, 28, 6, 2, 1, 47]. Although the resulting hybrid algorithms significantly reduce
the computational time, the underlying separation of reactions might be ambiguous and will not
always provide a convenient description of the given dynamics. For many applications, the more
natural partition is given in terms of population size levels.

In this paper, we focus on such natural partitions, i.e., species of reacting molecules will be
partitioned into two or more regimes according to their abundance and not according to the speed
of the reaction channels they are involved in. We give a short description of PDMP’s and expand the
model formulation by allowing noise around the deterministic trends of the rescaled species, which
leads to piecewise chemical Langevin equations (PCLE), also called “hybrid diffusions” [12, 20, 45].
As a consequence we arrive at a joint equation for all hybrid models with (a) low copy number
species with discrete molecule number states and stochastic jump process description, (b) medium
copy number species with continuous molecule density states and stochastic PCLE-type description,
mixed with (c) high copy number species with continuous molecule density states and deterministic
reaction rate equation description, given by

Y (t) = Y (0) +
∑

k∈Klow

Pk
(∫ t

0
α̃k(Y (s)) ds

)
ν̃k

+
∑

k∈Kmedium

∫ t

0
α̃k(Y (s))ν̃k ds+

∫ t

0
Ξ(Y (s)) dW (s) (1)

+
∑

k∈Khigh

∫ t

0
α̃k(Y (s))ν̃k ds,

where the state Y (t) is composed of the molecule numbers as well as molecule densities in the
system at time t, the reactions are numbered by k and grouped according to their nature (i.e. their
impact onto the three classes of species) into sets Klow, Kmedium, and Khigh, while α̃k and ν̃k denote
the correspondingly scaled propensity functions and stochiometric vectors of the reactions, Pk are
standard Poisson clock processes, Ξ defines appropriately scaled noise intensities, and W (s) denote
standard vector-valued white noise processes. The details of how to derive all these quantities based
for a given reaction chemical reaction network are explained in Section 3.

For illustration, we investigate a gene expression system with negative self-regulation which
very well demonstrates the different approximation properties of PDMP’s and PCLE’s; especially
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it reveals that PCLE’s are better suited to reproduce empirical distributions and sizes of stochas-
tic events like protein bursts, which are a typical characteristic of self-repressing gene expression
systems. Moreover, the proposed genetic network provides a basis for clarifying the cause of small
volume failure: What exactly goes wrong if the approximative rescaling is applied to species with
low copy numbers?

When considering the gene expression system within a eukaryotic cell, some spatial resolution
is required because the individual reactions may be subject to local restrictions. This motivates
to extend the analysis to reaction-diffusion systems described by spatio-temporal CME’s. We will
give a short introduction to such extended CME’s and show that the associated reaction-diffusion
dynamics can suitably be approximated by the presented hybrid methods, as well.

In general the article intends to give a structured overview and joint description of the exist-
ing model formulations and to illustrate the relation between them. In Section 2 we review the
CME formalism and its approximation by chemical Langevin equations (CLE) and reaction-rate
equations (RRE). Also the spatiotemporal chemical Master equation (ST-CME) is depicted as a
model extension for non well-mixed reaction systems. Hybrid models for multiscale dynamics are
presented in Section 3, where we derive consistent time-change representations of the respective
combined processes. Finally, Section 4 contains the application to a gene regularity system.

2 From CME to ODE: modelling reaction networks

In the following we give a short review of several modelling approaches for chemical reaction kinetics.
Starting with the chemical master equation as the most accurate model for well-mixed reaction
systems in Section 2.1, we motivate the relevance of approximative modelling approaches some
of which are presented in Section 2.3. Finally, we show in Section 2.4 how the CME-model can
be extended to situations where the well-mixed condition is broken and some spatial resolution is
required to capture the characteristics of the dynamics.

2.1 The chemical master equation

We consider a system of L ∈ N chemical species S1, ..., SL which behave well-mixed in a fixed space
of motion Ω. The system is affected by K ∈ N reaction channels R1, ..., RK . The state of the
system at time t ≥ 0 is given by N(t) = (N1(t), ..., NL(t)) ∈ NL0 with Nl(t) denoting the number
of molecules of species Sl at time t. The effect of reaction Rk is given by the state-change vector
νk = (ν1k, ..., νLk) ∈ ZL where νlk defines the net change in the number of molecules of species Sl
due to reaction Rk. If the reaction is represented by the stoichiometric equation

Rk : a1kS1 + ...+ aLkSL → a′1kS1 + ...+ a′LkSL (2)

with coefficients alk, a′lk ∈ N0, the related state-change vector has entries νlk = a′lk − alk [27].
Given N(t) = n = (n1, ..., nL), the related transition

n→ n+ νk

occurs at rate αk(n) > 0 where αk is a well-defined propensity function. According to the law of
mass action, the propensity is a function of the corresponding macroscopic rate constant γk > 0
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and the number of molecules involved in the reaction. E.g. for a unimolecular reaction by species
Sl it holds αk(n) = γknl, and for a bimolecular reaction of two species Sl, Sl′ , l 6= l′ it holds
αk(n) = γk

V nlnl′ where V is the system’s volume times the Avogadro constant [4]. The inverse
scaling by the volume for the bimolecular reaction reflects the fact that inside a larger volume it
takes more time for two reactant molecules to find each other. Analogue arguments for a reaction
as in (2) lead to the general propensity function

αk(n) = γkV
L∏
l=1

nl!
(nl − alk)!V alk

,

see [51] for details.
In order to state the time evolution of N(t), let Rk(t) denote the number of times the reaction

Rk has occurred by time t. Then, obviously,

N(t) = N(0) +
K∑
k=1
Rk(t)νk.

Given that the reaction propensities depend only on the current value N(t) of the system, the
model satisfies the Markov property and the counting processes Rk can be represented in terms of
Poisson processes. This gives the time-change representation

N(t) = N(0) +
K∑
k=1
Pk
(∫ t

0
αk(N(s))ds

)
νk (3)

of the continuous-time Markov process N(t), with Pk, k = 1, ...,K, denoting independent, unit-rate
Poisson processes [30].

As an alternative to this time-change representation, the dynamics can be characterized by the
Kolmogorov forward equation for the distribution of N(t). Defining

P (n, t) := Prob(N(t) = n|N(0) = n0)

for some initial state n0 ∈ NL0 , the system of differential equations

∂P (n, t)
∂t

=
K∑
k=1

(
αk(n− νk)P (n− νk, t)− αk(n)P (n, t)

)
(4)

is fulfilled, which in the context of reaction networks is called chemical master equation (CME).

2.2 Stochastic simulation

The CME (4) is the Fokker-Planck equation associated with the Markov jump process (3). In
general its state space is not finite, that is, the CME consists of a countable (but infinite) set of
coupled ODE’s which, even for rather simple chemical reaction systems, becomes very complex.
Solving the CME analytically is impossible in almost all situation of practical interest, instead
numerical solution methods are requested. These methods fall into two categories: Numerical
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integration methods for (4) that aim at approximating the probability distribution P (n, t), and
sampling techniques that compute an ensemble of realization of the jump process (3) and then
approximate expectation values and higher moments of the probability distribution P (n, t) by
statistical means. Gillespie’s stochastic simulation algorithm (SSA) [26] is the most prominent
sampling technique. In its basic form, called direct method, it uses the fact that given a state
n ∈ NL0 , the random waiting time for the next reaction to occur follows an exponential distribution
with mean 1/α0(n) where

α0(n) :=
K∑
k′=1

αk′(n).

The index k of the next reaction is a statistically independent integer random variable with point
probability αk(n)/α0(n). In total, the stochastic simulation algorithm (SSA) is the following:

1. Initialize time t = t0 and state n = n0 and choose a time horizon T > t0.

2. Calculate αk(n) for all k = 1, ...,K and their sum α0(n).

3. Generate two random numbers r1, r2 from independent uniform distributions in [0, 1], set

τ = 1
α0(n) ln

( 1
r1

)

and choose k to be the smallest integer satisfying
∑k
k′= αk′(n) > r2α0(n).

4. Execute the next reaction by replacing t← t+ τ and n← n+ νk.

5. Return to 2. or end the simulation in case of t ≥ T .

Obviously, the SSA is easy to implement and results in exact realizations of the jump process.
There exist reformulations of it which reduce the computational effort per iteration step (i.e. per
reaction event), see e.g. the next-reaction method by Gibson and Bruck [21] or other methods in
[10] and [41]. Such alternative versions of the SSA are useful, however, they do not decrease the
number of iteration steps necessary (on average) to reach a given time horizon. In case of closely
following reaction events, so-called dense accumulations, the time increase τ in each iteration step
is small - which induces a long runtime, no matter how effective the reaction events are determined
in each step. This motivates to forgo the perfect exactness of the SSA in order to find faster
approximate simulation strategies. One of them is the so called τ -leaping method which is based
on the idea of aggregating several reaction events per iteration step [26]. The analytical background
is the following. Given a state N(t) = n at time t, let τ > 0 be small enough such that during the
time interval [t, t+ τ) the propensity functions of all reactions are likely to stay roughly constant.
Thereby, the number of times reaction Rk fires during [t, t+ τ) follows a Poisson distribution with
mean αk(n)τ , and the state at time t+ τ can be approximated by

N(t+ τ) ≈ n+
K∑
k=1
Pk(αk(n)τ)νk, (5)
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where Pk(µk) are statistically independent Poisson variables with mean (and variance) µk. Equation
(5) is an approximation of (3) and obviously suggests to apply basic numerical schemes - like the
explicit Euler method - for approximative simulations of N(t): Given a lag-time τ > 0 as well as a
state N(tj) = nj at some time tj ≥ 0, generate for each k an independent Poisson random number
Pk(αk(nj)τ) and set nj+1 = nj +

∑K
k=1 Pk(αk(n)τ)νk as an approximation of N(tj+1). For more

details and practical issues (like how to choose the lag-time τ) we refer to Refs. [26, 30, 3].

2.3 Approximation methods

Dense accumulations of reaction events occur for any reaction rate constants γk if the number
of reactant molecules is large. In this case, a direct analytical approximation of the CME by a
chemical Langevin equation or an ODE is reasonable not only to speed up numerical simulations
but also to uncover the structure of the chemical system. We give a short summary of the stepwise
approximation, for details see e.g. Refs. [26], [4], [38], [39], [40].

As before, let τ > 0 be small enough such that an approximation of the dynamics by (5) is
justified. If, on the other hand, τ is also large enough for all reaction channels to fire several times
(i.e. αk(n)τ � 1 for all k), then the Poisson variables can further be approximated by normal
random variables and equation (5) is approximated by

N(t+ τ) ≈ n+
∑
k

Nk (αk(n)τ, αk(n)τ)νk (6)

where Nk(µk, σ2
k) are independent normal random variables with mean µk and variance σ2

k. Re-
ordering equation (6) yields the chemical Langevin equation (CLE)

N(t+ τ) = n+
∑
k

αk(n)τνk +
∑
k

√
αk(n)τ Nk(0, 1)νk,

or, in form of an Itô stochastic differential equation,

dN(t) =
∑
k

αk(N(t))νk dt+
∑
k

√
αk(N(t))νk dWk(t) (7)

where Wk(t) denotes a one-dimensional Wiener process (standard Brownian motion) for each k [25].
While the process defined by (3) resp. (4) runs within NL0 , the state space for the approximative
process (7) extends to RL. Its integral notation

N(t) = N(0) +
K∑
k=1

∫ t

0
αk(N(s))νk ds+

K∑
k=1

∫ t

0

√
αk(N(s))νk dWk(s)

clearly exhibits the approximate character in comparison to (3).

In the thermodynamic limit where both the system’s volume V and the volume-dependent
molecule numbers N (V )

k approach infinity in a way that the concentrations N (V )
k /V stay constant,

the noise terms in the chemical Langevin equation become negligible, leading to a deterministic
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system described by a set of ODE’s. This is due to the fact that the propensity functions grow in
direct proportion to the volume [26, 23, 22, 24]. Actually, for a first-order reaction of species Sl,

αk(n) = γknl = V γk
nl
V

= V γkcl

where cl := nl
V is the concentration in moles per unit volume; for a second-order reaction of two

different species Sl and Sl′ ,
αk(n) = γk

V
nlnl′ = V γkclcl′ .

Thus, by defining the volume-scaled propensities

α̃k(c) := αk(n)
V

for the vector of concentrations c = (cl)l=1,...,L, a multiplication of (7) by 1
V leads to

dC(t) =
∑
k

α̃k(C(t))νk dt+
∑
k

1√
V

√
α̃k(C(t))νk dWk(t)

which, for V →∞, reduces to a simple system of ODEs for the concentrations,

dC(t) =
∑
k

α̃k(C(t))νk dt,

see Refs. [38], [40] and [42] for details. A scalar transformation back to numbers rather then
concentrations gives the reaction-rate equation (RRE)

dN(t) =
∑
k

αk(N(t))νk dt, (8)

- a deterministic equation characterizing the dynamics in the large population/large volume limit
where the fluctuations become negligible.

Figure 1 shows trajectories of the dynamics characterized by the CME and its approximation
equations for a simple system of binding and unbinding.

Approximation properties. Formally, the approximation of Markov jump processes by
Langevin dynamics or deterministic dynamics can be obtained by the Kramers-Moyal expansion
[37, 44, 46]: In the first order one gets the deterministic dynamics, and in the second order the
Langevin dynamics. For linear reaction networks, it is well known that the first-order moments
of all three approaches (CME, RRE, CLE) match, that the CME and CLE match to the second
moment, and that all approaches diverge at third order moments [19].

Although the relation between the discrete stochastic model and its continuous approximations
has been understood in every detail, the applicability is limited to systems with uniform population
scaling. If only part of the system scales with the volume while some relevant species appear in low
copy numbers independent of the volume, more sophisticated models are necessary. These hybrid
models will be presented in Section 3. To further motivate the relevance of multiscale molecular
populations, we now present a common extension of the CME to systems with spatial resolution.
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Figure 1: Gillespie simulation of the CME (red/blue), Euler simulation of the corresponding CLE
(grey) and deterministic time-evolution determined by the RRE (black dashed) for system of bind-
ing A+B → C and unbinding C → A+B of the chemical species S1 = A, S2 = B, S3 = C. Initial
state NC(0) = 0 and NA(0) = NB(0) = V with V = 102 (left) and V = 103 (right).

2.4 Spatial extension: the spatiotemporal CME

Modelling a reaction system by means of a CME (or by the approximative CLE or RRE) assumes
the dynamics to be “well-mixed” in space which means that the diffusion of the molecules is fast
compared to their reaction propensities. This implies that the spatial positions of the molecules are
negligible and the state of the system is fully described by total numbers of molecules. If this well-
mixed condition is broken, models with spatial resolution are required. The most detailed standard
approach consists of individual molecule tracking where molecules are typically modelled as points
or spheres undergoing spatially continuous Brownian motion and bimolecular chemical reactions
occur when reactive molecules pass within specified reaction-radii [5, 48, 52]. Alternatively, there
exist approaches which discretize the space into a collection of non-overlapping compartments and
approximate diffusion by jumps between the compartments. Interpreting the jumps as first-order
reactions, this leads to an extended CME where the states have an additional spatial interpretation
[53, 16, 29, 31, 32]. This second type of approach is considered in the following.

As in the setting of the CME there are L species S1, ..., SL which are governed by K reaction
channels R1, ..., RK . Given a space discretization

Ω = Ω1 ∪̇ ... ∪̇ ΩM

into M ≥ 2 compartments, let Nlr(t) ∈ N0 denote the number of molecules of species Sl in
compartment Ωr at time t ≥ 0. We use the notation N r(t) := (N1r(t), ..., NLr(t)) and identify the
overall state of the system by the matrix N(t) = (N r(t))r=1,...,M ∈ NL,M0 containing the number of
molecules of each species in each compartment. This state is affected both by chemical reactions
and by diffusive transitions between the compartments.

Assuming that within each compartment the dynamics actually behave well-mixed, a local
description by a CME is appropriate. Denoting again the net effect of reactionRk onto the molecular
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population by νk = (ν1k, ..., νLk) ∈ ZL, the emergence of this reaction in the r’th compartment
given the actual state N(t) = n ∈ NL,M0 refers to the transition

n→ n+ νk1r

where 1r ∈ NM is a row vector with the value 1 at entry r and zeros elsewhere. (νk1r is a
L×M -matrix whose r’th column is equal to νk while all other columns contain zeros and simply
indicates that N(t) changes in compartment Ωr.) The reaction propensities may now depend on
the compartment and are given by functions αrk(n) which denote the probability per unit of time
for reaction Rk to occur in compartment Ωr given that N r(t) = nr, i.e. it depends αrk(n) only on
the values of n referring to compartment Ωr.

These local reaction dynamics are combined with diffusive jumps of the molecules between the
compartments. A jump of a molecule of species Sl from compartment Ωr to compartment Ωs,
s 6= r, given the actual state N(t) = n ∈ NL,M0 is described by the transition

n→ n+ 1ls − 1lr

where 1lr is a matrix whose elements are all zero except the entry (l, r) which is one. Let λlrs denote
the rate for each individual molecule of species Sl to perform this jump. Since all molecules are
assumed to diffuse independently of each other and jumps are treated as first-order reactions, the
probability per unit of time for such a jump to occur at time t is λlrsNlr(t).

As in the setting of the CME, let

P (n, t) = P (N(t) = n|N(0) = n0)

be the probability that the process is in state n ∈ NL,M0 at time t given an initial state N(0) = n0.
Analogously to (4), the time evolution of P (n, t) is now characterized by

dP (n, t)
dt

=
M∑

r,s=1
r 6=s

L∑
l=1

(
λlsr(nls + 1)P (n+ 1ls − 1lr, t)− λlrsnlrP (n, t)

)
(9)

+
M∑
r=1

K∑
k=1

(αrk(n− νk1r)P (n− νk1r, t)− αrk(n)P (n, t)) ,

where the first line refers to the diffusive part while the second line describes the chemical reac-
tions within the compartments. This system of ODE’s is called reaction-diffusion master equation
(RDME) or spatiotemporal chemical master equation (ST-CME) - depending on the underlying
coarse-graining of space. The latter term indicates that the spatial discretization is not given by
a regular Cartesian lattice but decomposes the state into areas of metastability, assuming that
the considered reaction-diffusion process naturally exhibits a metastable behaviour [53]. A typical
example is given by reaction-diffusion systems within eukaryotic cells with a natural split-up into
into nucleus and cytoplasm; this setting will be considered in Section 4.4.

No matter which type of coarse-graining is chosen, the main insight is that Equation (9) - even
if it looks more complex than the CME (4) - actually is just a CME with increased dimensionality.
Both the simulation tools of Section 2.2 and the approximation by chemical Langevin equations
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may directly be transferred to this spatial setting. The consideration of the thermodynamic limit
to obtain deterministic dynamics, however, is based on a scaling by the volume which - in such a
spatial consideration - gets a new and more concrete meaning. Relating the volume to the size of the
spatial compartments means that an increasing volume affects the transition rates λlsr between the
compartments. The simple interpretation of jumps as first-order reactions with rates independent
of the volume is not sustainable any more and a general statement about how these rates scale with
the volume is impossible. Here, a more specific analysis is required. On the other hand, the RRE
as a limit model to describe the evolution of a reaction system also makes sense for systems with
spatial interpretation. With regard to a fixed volume, the RRE simply provides an approximative
description of the dynamics defined by the spatiotemporal chemical Master equation as long as the
considered compartments and their respective molecular populations are not too small.

The possible presence of multiple scales within the dynamics becomes even more evident in such
a spatially inhomogeneous environment: While a huge molecular population in one compartment
may permit approximations by Langevin dynamics or RRE’s, a small population in another com-
partment may require the maintenance of the stochastic, discrete nature of a Markov jump process.
Also the spatial inhomogeneity of reaction propensities easily leads to cascades of reaction speeds
- asking for hybrid methods to handle multiscale dynamical systems.

3 Hybrid models for multiscale systems

The approximation of the CME (4) by the RRE (8) requires all species to appear in high copy
numbers. If some species remain in small copy numbers, an equal scaling of the whole system
is inappropriate and the approach may fail. A typical example is given by the process of gene
expression in single cells where the produced proteins may appear in large copy numbers while
the template for transcription, the DNA, is present only in one or two copies. By describing the
whole system in terms of RRE’s the stochastic nature of the system completely gets lost. For
such situations multiscale approaches are requested. One prominent example of such multiscale
approaches is given by piecewise deterministic Markov processes which consider the large copy
number limit for parts of the molecular population only while other parts are kept stochastic and
discrete (the low copy number species). We give a short introduction to PDMP’s, followed by an
extension to hybrid diffusions where the high copy number species are described by CLE’s rather
then by RRE’s.

3.1 Piecewise deterministic Markov processes

Special case: Piecewise deterministic reaction processes. As in Section 2 we consider
a system of L chemical species S1, ..., SL undergoing K reaction channels R1, ..., RK which are
specified by their state-change vectors ν1, ...,νK . Given the system’s volume V > 0, let N (V )

l (t) ∈
N0 denote the number of molecules of species Sl at time t ≥ 0. In contrast to the derivation of the
RRE (8), we assume that only part of the molecular population scales with the system’s volume,
while some of the species appear in low copy numbers independent of V . Without loss of generality
let S1, ..., Sd for some d < L be these low copy number species. For partially approximating the
dynamics, only the components N (V )

d+1(t), ..., N (V )
L (t) referring to the large copy number species
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are scaled by 1/V while the others are left unscaled, i.e. we consider the process Y (V )(t) =(
Y

(V )
l (t)

)
l=1,...,L

defined by

Y
(V )
l (t) :=

{
N

(V )
l (t) , l = 1, ..., d

1
V N

(V )
l (t), l = d+ 1, ..., L.

Analogically to the time-change representation (3) of the unscaled process, the dynamics of the
partially scaled process (Y (V )(t)) are characterized by

Y (V )(t) = Y (V )(0) +
K∑
k=1
Pk
(∫ t

0
α

(V )
k

(
Y (V )(s)

)
ds

)
ν

(V )
k (10)

for suitable partially scaled state-change vectors ν(V )
k defined by

ν
(V )
lk :=

{
νlk , l = 1, ..., d
1
V νlk, l = d+ 1, ..., L

and adapted reaction propensity functions α(V )
k . As before, Pk, k = 1, ...,K, denote independent,

unit-rate Poisson processes.
Let now K ⊂ {1, ...,K} be the subset of those indices belonging to reactions which do not affect

the low copy number species, i.e.

K := {k ∈ {1, ...,K}| νlk = 0 ∀l = 1, ..., d} .

Given this separation of reaction channels, there exist non-zero limit vectors ν̃k with

V · ν(V )
k

V→∞−−−−→ ν̃k for k ∈ K (11)

and
ν

(V )
k

V→∞−−−−→ ν̃k for k /∈ K. (12)

Assuming that also for the propensity functions there exist suitable limits α̃k with 1
V α

(V )
k

V→∞−−−−→ α̃k

uniformly on compacts for k ∈ K and α(V )
k

V→∞−−−−→ α̃k uniformly on compacts for k /∈ K, it has been
shown in Ref. [17] that the sequence

(
Y (V )

)
V≥1

of scaled Markov jump processes solving (10)
converges to a stochastic process given by

Y (t) = Y (0) +
∑
k/∈K
Pk
(∫ t

0
α̃k(Y (s)) ds

)
ν̃k +

∫ t

0
F (Y (s)) ds (13)

in the sense of Y (V )(t) V→∞−−−−→ Y (t) almost surely for each t ≥ 0, with the vector field F : RL → RL
given by

F (y) :=
∑
k∈K

α̃k(y)ν̃k. (14)
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That is, we have

Y (t) = Y (0) +
∑
k/∈K
Pk
(∫ t

0
α̃k(Y (s)) ds

)
ν̃k +

∑
k∈K

∫ t

0
α̃k(Y (s))ν̃k ds, (15)

in comparison to (3) which clearly shows that it is a mixture of jump process and deterministic
dynamics: The process Y (t) exhibits a piecewise deterministic behaviour; after starting at time
t = 0 in Y (0), it follows a deterministic motion determined by the vector field F until t reaches
the first jump time of any of the Poisson processes Pk, k ∈ {1, ...,K} \ K. Then the respective
Poisson process jumps and the deterministic evolution restarts with a new initial state. Note that
by definition of K it holds (F (y))l = 0 for l = 1, ..., d and any y ∈ RL which means that the
deterministic flow is constrained to the components Yl, l = d + 1, ..., L, of large copy number
species.

Equation (15) defines the piecewise deterministic reaction process as a hybrid Markov process
using time-change representations. In another branch of the literature, the corresponding CME
was discussed and derived, see e.g. Refs. [33] and [42]. It can be shown that the reduced CME
associated with (15) allows for approximation of expectation values of the probability distribution
governed by the full CME (4) up to an error of order 1/V [42]. This implies that a statistically
representative path ensemble of the process given by (15) would allow for the same order of accuracy
(if one can control the additional statistical error originating from the fact that one can compute
a finite sample of the path ensemble only).

General case: Piecewise-deterministic Markov processes. The process Y (t) character-
ized by (13) or (15) belongs to a general class of hybrid processes, called piecewise deterministic
Markov processes (PDMP), that are defined in a more general setting[13, 14, 17]: The state of a
PDMP at some time t ≥ 0 is given by a couple Y (t) = (I(t),C(t)) containing a discrete variable
I(t) ∈ Nd0 and a continuous variable C(t) ∈ Rn. As the name suggests, the process Y (t) follows
a deterministic motion which is interrupted by random jumps. The lengths of the time intervals
between two successive jumps are random variables that will be called waiting times τj . The jump
times (tj)j∈N0 are recursively defined by t0 = 0 and tj+1 = tj +τj . Within each of the time intervals
[tj , tj+1) the discrete variable remains constant, while the continuous variable evolves according to
a given ODE. More precisely, the dynamics of the PDMP Y (t) = (I(t),C(t)) within the state
space

S = Nd0 × Rn

are determined by the following characteristics.

1. The deterministic flow: For each i ∈ Nd0 there is a continuous vector field f (i) : Rn → Rn
defining the deterministic flow of the continuous variable C(t) by the differential equation

dC(t) = f (i)(C(t)) dt. (16)

2. The jump rate function λ : S → [0,∞) which determines the distribution of waiting times of
the process within a branch {i} × Rn of the state space.
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3. The transition kernel Q : S × B(S) → [0, 1] specifying the distribution of the process after
a jump. We assume Q(y, {y}) = 0 for all y ∈ S which means that only “proper” jumps are
considered as jumps.

With these ingredients, a sample path (Y (t))t≥0 = (I(t),C(t))t≥0 of the PDMP, given an
initial state y0 = (i0, c0) ∈ S at time t0 = 0, is recursively constructed as follows. Given the state
Y (tj) = (ij , cj) ∈ S of the process at time tj , j ∈ N0, let Φij (cj , t) be the solution of the initial
value problem

dΦij (cj , t) = f (ij)(Φij (cj , t)) dt, Φij (cj , 0) = cj . (17)

We assume this solution to exist and to be unique for t ≥ 0. Define the next jump time by
tj+1 := tj + τj , where the waiting time τj has the distribution

P(τj > t) = exp
(
−
∫ t

0
λ(ij ,Φij (cj , s)) ds

)
.

The deterministic evolution within the time interval [tj , tj+1) is given by

I(tj + s) := ij , C(tj + s) := Φij (cj , s) for s ∈ [0, τj).

Then, the post-jump state Y (tj+1) = (ij+1, cj+1) at time tj+1 = tj + τj is selected independently
according to the distribution

P(Y (tj+1) ∈ A) = Q
(
(ij ,Φij (cj , τj)), A

)
, A ∈ B(S).

Thus, on the time interval [tj , tj+1] the process Y (t) is defined by

Y (tj + s) = (I(tj + s),C(tj + s)) =
{

(ij ,Φij (cj , s)), s ∈ [0, τj)
(ij+1, cj+1) , s = τj ,

with the post-jump value cj+1 of the continuous component serving as initial value for the next
time interval.

At the jump times tj , both the discrete and the continuous variable can instantaneously change
their values by the transitions

ij → ij+1, Φij (cj , τj)→ cj+1.

If cj+1 = Φij (cj , τj) for all j ∈ N0, the trajectories of the continuous variable are globally continuous
and the only effect of a jump is a change in the regime by a new value of the discrete variable. If,
on the other hand, cj+1 6= Φij (cj , τj), the trajectories of the continuous variable are only piecewise
continuous.

Relation. The relation between the general construction and the special case given by
(13) for reaction processes is as follows. The discrete process I(t) is given by the first d (un-
scaled, integer-valued) components (Y1(t), ..., Yd(t)), while the continuous process is given by
C(t) = (Yd+1(t), ..., YL(t)) ∈ Rn with n = L − d. For short, we denote states as y = (i, c).
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The vector field f (i) which works on the subspace of the continuous component is related to the
vector field F via

F (y) = F ((i, c)) = (0, f (i)(c)).

The jump rate function λ is determined by the reaction propensities α̃ via

λ(y) =
∑
k/∈K

α̃k(y) (18)

and the transition kernel Q is given by

Q(y, {y + ν̃k}) = α̃k(y)∑
k′ /∈K α̃k′(y) (19)

for each k ∈ {1, ...,K} \ K. This relation connects the considerations for piecewise deterministic
reaction processes to the more general literature on piecewise deterministic Markov processes and
opens up the manifold of deep results on convergence and numerical approximation.

3.2 Hybrid diffusion

Between two consecutive jump times tj and tj+1, the continuous variable C(t) of a PDMP is given
by the deterministic flow C(t) = Φi(c, t) with I(tj) = i and C(tj) = c and satisfies the ODE
dC(t) = f (i)(C(t)) dt, see equation (16). In Ref. [12], Crudu et al. propose to consider an Itô
stochastic differential equation instead of this ODE, thus adding a diffusion term to produce noise
in the flow of the continuous variable, which leads to processes called hybrid diffusion. Similar to a
PDMP, such a hybrid diffusion is given by a process Y (t) = (I(t),C(t)) which consists of a discrete
component I(t) ∈ Nd0 and a continuous component C(t) ∈ Rn. Both components have piecewise
continuous trajectories interrupted by jumps at jump times tj , j ∈ N0. Again, the jump dynamics
are specified by a rate function λ and a transition kernel Q. Instead of the deterministic flow (16)
between two jump times, however, the dynamics of the continuous variable C(t) are given by the
stochastic differential equation

dC(t) = f (i)(C(t)) dt+ ξ(i)(C(t)) dW (t) (20)

where W (t) is an m-dimensional Wiener process, f (i) : Rn → Rn is a continuous vector field and
ξ(i) : Rn → Rn,m is a diffusion matrix for each i ∈ Nd0.

Sampling the PCLD follows the same procedure as sampling the PDMP, with the deterministic
flow (16) replaced by the randomized flow (20). I.e., in between two jump times tj , tj+1, the process
is defined by

I(tj + s) := ij , C(tj + s) := Φij (cj , s) for s ∈ [0, τj)

where Φij (cj , s) is now the solution of

dΦij (cj , t) = f (ij)(Φij (cj , t)) dt+ ξ(ij)(Φij (cj , t)) dW (t), Φij (cj , 0) = cj . (21)

Equation (21) is the analogue to (17) which defines the dynamics of the continuous variable in the
piecewise deterministic setting.
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In the context of a multiscale reaction system described by the special kind of PDMP (13), a
nearby approach is to replace the deterministic flow of the species arising in high copy numbers
by chemical Langevin dynamics as defined in (7). Again, we assume a two-scale separation of the
species’ abundance and subdivide the given reaction channels R1, ..., RK according to their effect
onto the classes of species, with the index subset K ⊂ {1, ...,K} separating those reactions which
affect only high copy number species. Without loss of generality, we here assume that this subset
K consists of the first m indices 1, ...,m (m ≤ K), which will simplify the notation in the following
description. As a direct analogue to the time-change representation (13) of the related piecewise
deterministic reaction process, we define the piecewise chemical Langevin equation (PCLE)

Y (t) = Y (0) +
∑
k/∈K
Pk
(∫ t

0
α̃k(Y (s)) ds

)
ν̃k +

∫ t

0
F (Y (s)) ds+

∫ t

0
Ξ(Y (s)) dW (s) (22)

with F (y) :=
∑
k∈K α̃k(y)ν̃k as in (13), W (s) denoting an m-dimensional Wiener process and the

diffusion matrix Ξ : RL → RL,m given by

(Ξ(y))lk :=
√
α̃k(y)ν̃lk, l = 1, ..., L, k = 1, ...,m. (23)

In between the random jump times which are determined by the Poisson processes Pk, the dynamics
of Y (t) follow an Itô diffusion process given by the last two summands of (22). These two summands
are just an integral version of a chemical Langevin equation like (7).

The process defined by the piecewise chemical Langevin equation (22) is a special type of
hybrid diffusion. Just as in the setting of piecewise deterministic dynamics, the first d components
of Y (t) referring to low copy number species define the discrete variable I(t) while the remaining
components define the continuous variable C(t). By definition of K, the first d rows of Ξ(y) contain
only zeros; the other rows form the diffusion matrix ξ(i)(c) for y = (i, c), i.e. we have

Ξ(y) = Ξ((i, c)) =
(

0
ξ(i)(c)

)
.

The vector fields are again related by F (y) = F ((i, c)) = (0, f (i)(c)) and the jump rate function and
the transition kernel are given by equations (18) and (19). In contrast to the piecewise deterministic
process, the dynamics defined by this piecewise chemical Langevin equation keep some randomness
also for the species arising in high copy numbers.

3.3 Joint equation

We note that hybrid diffusions contain piecewise deterministic Markov processes as a special case
of the diffusion intensities ξ(i) vanishing to zero. This means, that - without further work - we
can also consider a hybrid model that mixes all three approaches: the description by discrete
jump processes for low copy number species, chemical Langevin dynamics containing stochastic
fluctuation for medium copy number species, and deterministic reaction kinetics for large copy
number species. We arrive at the joint equation (1) that was announced in the introduction. In
direct analogy to the partition of reactions considered for the two-scale systems before, the index
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set Khigh is given by those reactions whose effect is restricted to high copy number species (i.e.
νlk = 0 for l referring to a low or medium copy number species), while reactions in Kmedium may
affect both medium and high copy number species (but not low copy number species), and Klow
contains the remaining reactions which affect at least one low copy number species.
The underlying idea is that the medium copy number species possess a volume scaling different
from the one of the high copy number species. E.g., given that the high copy number species scale
linear in V (as assumed in in the preceding sections), the medium copy number species could scale
like
√
V . An adapted definition of the partially scaled process Y (V ) - in this specific case

Y
(V )
l (t) :=


N

(V )
l (t) , l = 1, ..., d

1√
V
N

(V )
l (t), l = d+ 1, ..., d′

1
V N

(V )
l (t) , l = d′ + 1, ..., L

where S1, ..., Sd are the low copy number species and Sd+1, ..., Sd′ are the medium copy number
species for some 1 < d < d′ < L - and likewise for the corresponding state-change vectors ν(V )

k then
again leads to suitable limit vectors ν̃k, in this case given by

ν̃k :=


limV→∞ V · ν(V )

k , k ∈ Klow
limV→∞

√
V · ν(V )

k , k ∈ Kmedium
limV→∞ ν

(V )
k , k ∈ Khigh.

By the multiple scaling, the limit state-change vectors ν̃k of reactions k ∈ Kmedium have zero entries
for high copy number species (i.e. ν̃lk = 0 for l = d′ + 1, ..., L, k ∈ Kmedium), such that the noise
induced by the diffusion matrix Ξ is restricted to the medium copy number species, see its definition
(23). The dynamics of the high copy number species are thus solely defined by the third line of
(1), which is an ODE describing deterministic dynamics, but with coefficients that possibly depend
not only on the discrete state of the low copy number species but also on the continuous stochastic
flow of the medium copy number species.

The explicit form of the limit state-change vectors ν̃k and the corresponding propensity func-
tions α̃k depends on the concrete scaling of the different classes of species, which in turn depends
on the application at hand. The joint equation (1) is quite general in the sense that its concrete
shape and the resulting dynamics depend on the chosen scaling. In particular, it comprises the two
hybrid models of PDMP and PCLE as special cases.

All these hybrid models enable to reduce the complexity of a given reaction system while
keeping its stochastic nature at a characteristic level. This is demonstrated in the next section by
an application to a multilevel gene expression system.

4 Application: autorepressive genetic system

A set of meaningful examples for multiscale reactive systems is given by gene regularity networks
[8]. While the template for transcription, the DNA, is present only in one or two copies which
can be active or inactive, the synthesized mRNA and protein molecules may reach high population
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levels. There exist many network models for the interactions between the involved species and the
regulation of gene activity (see e.g. Ref. [12] for a set of more or less complex gene network models).
In Refs. [17], [55], [54] an autocatalytic network of gene expression is investigated as an example
for PDMP’s. In such a network, the proteins regulate the transcription by a positive feedback law,
i.e. the proteins activate the gene by binding to its binding sites. It has been shown that for such a
system the proteins become extinct in finite time; and the point mass in zero is the only stationary
distribution of the system.

However, many genes are controlled by negative self-regulating transcription factors, especially
in prokaryotes like e.g. E. coli organisms [50]. For such autorepressive genetic systems, gene
expression typically occurs in bursts. Bursts can only appear when part of the system (at least
the DNA) is treated as a discrete random variable. In the limit of describing the whole system by
ODE’s, the bursts naturally get lost (because the DNA’s activity is averaged). Bursting of gene
expression can arise at the transcriptional or the translational level [8], or the bursts are modelled as
individual stochastic events by which a certain number of products are instantaneously introduced
to the system [18]. We will here describe the transcriptional bursting where the gene switches
between activity and inactivity.

4.1 Model

We consider the gene expression system depicted in Figure 2. If the gene (DNA) is active, messenger
RNA (mRNA) is transcribed at rate γ1 and translated into proteins P at rate γ2. Each protein
can interrupt this stepwise production by repressing the gene and causing its inactivity at rate γ3.
The gene is activated again at a rate γ4. Both within time periods of gene activity and within time
periods of gene inactivity, mRNA is degraded at rate γ5 and proteins are degraded at rate γ6. All
individual reactions are displayed in the reactions scheme (24) with DNA0 denoting the repressed
(inactive) gene.

DNA γ1−→ DNA + mRNA,
mRNA γ2−→ mRNA + P,

DNA + P γ3−→ DNA0

DNA0
γ4−→ DNA + P (24)

mRNA γ5−→ ∅
P γ6−→ ∅

For the CME we denote the state of the gene expression system at time t by N(t) =
(D(t),M(t), P (t)) ∈ {0, 1} × N2

0 with D(t) ∈ {0, 1} referring to the number of active DNA and
M(t) ∈ N0 resp. P (t) ∈ N0 giving the number of mRNA resp. proteins. The net change vectors of
the reactions listed in (24) are given by

ν1 =

 0
1
0

 , ν2 =

 0
0
1

 , ν3 =

 −1
0
−1

 , ν4 =

 1
0
1

 , ν5 =

 0
−1
0

 , ν6 =

 0
0
−1

 , (25)
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DNA         Protein
transcription

      mRNA
DNA →DNA + mRNA

translation

mRNA →mRNA + P

degradation

∅

repressing

DNA + P ↔ DNA

degradation

∅

Figure 2: Gene expression with negative self-regulation: By transcription, the active gene (DNA)
produces messenger RNA (mRNA) which is translated into proteins. Both mRNA and proteins
degrade with time. The proteins repress the production by deactivating the gene. Repressing is
reversible: The gene is activated again at constant rate.

and the related propensity functions read

α1(n) = γ1n1, α2(n) = γ2n2, α3(n) = γ3
V
n1n3,

α4(n) = γ4(1− n1), α5(n) = γ5n2, α6(n) = γ6n3.

For the PDMP we consider DNA as the stochastic, discrete variable and mRNA as well as
proteins as deterministic, continuous. The state space of the PDMP is given by

S = {(i, c) : i ∈ {0, 1}, c ∈ R2}.

For each t ≥ 0, the state of the PDMP is denoted by (I(t),C(t)) ∈ S with I(t) ∈ {0, 1} defining
the activity of the DNA and C(t) = (C1(t), C2(t)) ∈ R2 defining the concentration of mRNA and
proteins. The index set K of reactions that do not affect the low copy number “species” DNA
is given by K = {1, 2, 5, 6}. After the suitable partial scaling of the state-change vectors, given
by ν(V )

1 =
(
0, 1

V , 0
)
, ν(V )

2 =
(
0, 0, 1

V

)
, ν(V )

3 =
(
−1, 0,− 1

V

)
, ν(V )

4 =
(
1, 0, 1

V

)
, ν(V )

5 =
(
0,− 1

V , 0
)
,

ν
(V )
6 =

(
0, 0,− 1

V

)
, the limit vectors defined by (11) and (12) read

ν̃1 =

 0
1
0

 , ν̃2 =

 0
0
1

 , ν̃3 =

 −1
0
0

 , ν̃4 =

 1
0
0

 , ν̃5 =

 0
−1
0

 , ν̃6 =

 0
0
−1

 .
The limit propensities depending on the state y = (i, (c1, c2)) are given by

α̃1(y) = γ1i, α̃2(y) = γ2c1, α̃3(y) = γ3ic2,

α̃4(y) = γ4(1− i), α̃5(y) = γ5c1, α̃6(y) = γ6c2.
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By definition (14), we obtain

F (y) = γ1i

 0
1
0

+ γ2c1

 0
0
1

+ γ5c1

 0
−1
0

+ γ6c2

 0
0
−1

 ,
such that, depending on the DNA activity I(t) = i ∈ {0, 1}, the deterministic flow for the mRNA
and protein concentration is given by the vector field

f (i) : R2 → R2, f (i)(c) =
(
γ1i
0

)
+
(
−γ5 0
γ2 −γ6

)
c. (26)

The rate function for jumps of the DNA takes the form

λ(i, c) = γ3ic2 + γ4(1− i),

and the transition kernel is deterministic in the sense of Q((i, c), ((1− i), c)) = 1 for i ∈ {0, 1}, c ∈
R2. This means that for each time t the stochastic repressing reaction takes place at rate γ3I(t)C2(t)
while activation takes place at rate γ4(1− I(t)), giving

d

dt
P(I(t) = 1) = γ4P(I(t) = 0)− γ3C2(t)P(I(t) = 1) = − d

dt
P(I(t) = 0).

With m = |K| = 4, the diffusion function of the corresponding piecewise chemical Langevin
dynamics turns out to be

ξ(i)(c) =
( √

γ1i 0 −√γ5c1 0
0 √

γ2c1 0 −√γ6c2

)
,

meaning independent noise in the flows of mRNA and proteins. In this special case, the resulting
flow equation (20) for the continuous component C(t) can be written as a coupled set of stochastic
differential equations

dC1(t) = (γ1I(t)− γ5C1(t)) dt+
√
γ1I(t) + γ5C1(t) dW1(t)

for mRNA and

dC2(t) = (γ2C1(t)− γ6C2(t)) dt+
√
γ2C1(t) + γ6C2(t) dW2(t) (27)

for proteins, with independent Wiener processes W1(t), W2(t). Here, we used the fact that, given
two independent Wiener processes W1(t), W2(t), the weighted sum aW1(t)+bW2(t)√

a2+b2 is another Wiener
process.
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4.2 Simulation results and model comparison

We compare the dynamics defined by the three models (CME, PDMP, PCLD) for the self-regulated
gene expression system with rates

γ1 = 10−2, γ2 = 0.5, γ3 = 0.1, γ4 = 10−2, γ5 = 5 · 10−3, γ6 = 0.2 (28)

and a large volume V = 100. These are artificial values without any claim to capture reality. Any-
way, the parameter values in gene expression systems vary a lot and depend on the organism under
consideration. The rates proposed here induce high population levels for both mRNA and proteins
and comparatively long time periods of active DNA and are thereby well suited to demonstrate the
relation between the three models under consideration - which is the main purpose of this Section.

Sample paths of the CME are generated computationally by the stochastic simulation algorithm
(see Section 2.2). For the PCLD resp. PDMP the Euler-Maruyama method resp. Euler method is
used, combined with a check-up for a switch in DNA in each iteration step. Trajectories of all three
models are given in Figure 3. One can observe comparatively long periods of time with active DNA
(marked by grey areas) where both populations show a positive trend, while a repressed DNA
(white areas) induces negative trends. The Gillespie simulation of the CME shows fluctuations
around the trends which are well reproduced by the PCLD. The high population levels of mRNA
and proteins induce long run times for the simulations of the CME; the approximations by PDMP
or PCLD significantly reduce the computational effort.
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Figure 3: Independent simulations of the CME (left), the PCLD (middle) and the PDMP (right)
for parameter set (28) and initial state given by active DNA and absence of mRNA and proteins
(D(0) = I(0) = 1, M(0) = C1(0) = 0, P (0) = C2(0) = 0). The grey areas indicate the time periods
of active DNA. In the interest of comparability with the CME, we plot the abundance V · C1(t)
and V · C2(t) for the PCLE and PDMP (V = 100).

In order to reveal the differences in the approximation properties of PDMP and PCLD we con-
sider not only first and second order moments but also the distribution of the molecular populations
and their local maxima - referring to protein bursts - which are typical for gene expression systems
with negative self-regulation. What concretely do we consider as a burst? In the stochastic systems
(CME and PCLE) “bursts” (large numbers of molecules) can appear by chance at any time. It
is the piecewise deterministic model which clarifies what kind of bursts we are interested in: the
maxima in the protein population after each individual repressing reaction, see right panel of Figure
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3. This motivates to define the burst size as the maximum number of protein molecules within one
time period of repressed DNA. Note that thereby also small peaks in the molecular population are
counted, namely if repressing takes place although the number of proteins is comparatively small
(which can occur in all three models).

While the average long-run dynamics of all three models agree very well (see Table 1), the size
of the protein bursts is much better reproduced by the PCLD than by the PDMP (see Table 2)
which is due to the lack of noise in the PDMP.

CME PCLD PDMP
1 average DNA activity 0.34 (± 0.47) 0.34 (± 0.47) 0.34 (± 0.47)
2 mean mRNA 67.60 (± 30.76) 67.51 (± 31.20) 67.52 (± 29.83)
3 mean proteins 169.03 (± 77.64) 168.71 (± 78.74) 168.80 (± 74.41)
4 mean active time 52.19 (± 43.15) 51.37 (± 43.16) 51.30 (± 42.77)
5 mean passive time 101.46 (± 101.49) 101.05 (± 101.78) 100.63 (± 100.01)

Table 1: Averages (± sample standard deviation) over long-run simulation (T = 106) for gene
expression system with parameter set (28). Lines 4-5: mean duration of active time periods and
passive time periods. Size of time step for PCLD and PDMP: 0.1

CME PCLD PDMP
mean burst size 250.43 250.08 223.13
maximum burst size 500 500.55 420.84
minimum burst size 39 32.16 20.25

Table 2: Protein bursts: Results of long-run simulation (T = 106) for gene expression system with
parameter set (28).

Next, we compare the time-dependent evolution of the system starting with initial state given
by active DNA and absence of mRNA and proteins (D(0) = 1, M(0) = 0, P (0) = 0). Based on
Monte Carlo simulations (104 runs for each model) we draw histograms of the protein population at
different points in time (Figure 4) and calculate the average dynamics depending on time (Figures
5 and 6).

While the average dynamics agree very well for all three approaches, the histogram of the PDMP
reveals a clear deviation from the histograms of the other two approaches, see the spike at ∼ 190
in the left panel of Figure 4. The reason for this deviation is the following. At time t = 100 there
are about 35% of trajectories with “non-stop” gene activity (i.e. the DNA has never been repressed
within the time interval [0, 100]), see Figure 6 (left panel). For the PDMP - due to its determinism
within this period of time - all these trajectories are completely consistent on the time interval
[0, 100]. Especially, the populations of mRNA and proteins agree with a value of ∼ 190 proteins at
time t = 100, see Figure 6 (middle panel). For the CME and the PCLE the proportion of non-stop
activity at time t = 100 is the same, but the number of molecules varies for these non-stop activity
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Figure 4: Empirical distribution of proteins at time t = 100 (left), t = 200 (middle), t = 500 (right)
taken from 104 Monte Carlo simulations of each model, all with initial state D(0) = 1, M(0) = 0,
P (0) = 0 (resp. I(0) = 1, C1(0) = 0, C2(0) = 0).

trajectories due to randomness. The stochastic noise is able to create protein abundance up to 250
at time t = 100 which is simply impossible in the setting of PDMP. As time passes, the deviation
of the PDMP vanishes because the gene activity reaches equilibrium.
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Figure 5: Average dynamics after starting at time t = 0 in state D(0) = 1, M(0) = 0, P (0) = 0
(resp. I(0) = 1, C1(0) = 0, C2(0) = 0). Monte Carlo simulation with 104 runs for each model.
Activity given by proportion of runs with D(t) = 1 resp. I(t) = 1 (left). Average abundance of
proteins (middle) and mRNA (right).

4.3 Small volume failure

The preceding investigations demonstrate that for high levels of mRNA and protein populations
both the PDMP and the PCLD deliver good approximations of the CME in terms of long-term
averages, and that the PCLD is also able to properly reproduce bursts and distributions of the
number of molecules. In case of parameter values which do not induce high population levels for
mRNA and proteins, however, both approximation methods may fail. The failure is caused by
the only second-order reaction contained in the reactions system: the repressing reaction DNA+
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Figure 6: Average dynamics conditioned on “non-stop” activity. Monte Carlo simulation with 104

runs for each model, starting at time t = 0 in state D(0) = 1, M(0) = 0, P (0) = 0 (resp. I(0) = 1,
C1(0) = 0, C2(0) = 0). Left: Proportion of runs with non-stop active DNA (i.e. D(s) = 1 resp.
I(s) = 1 for all s ∈ [0, t]). Middle and right graphic: average number of molecules conditioned on
non-stop active DNA.

P → DNA0. Although, even in this small volume setting, the conditioned dynamics within time
periods of constant DNA agree for all three approaches with respect to the first-order moments,
the switching times between these periods diverge - and with it the overall population averages.
The following short analysis clarifies this aspect.

Consider at first the PDMP with initial state I(0) = 1 (active DNA) and C(0) =
(C1(0), C2(0)) = c0 ∈ R2

+. Let TPDMP denote the random time of first repression, i.e.

TPDMP := inf{t > 0|I(t) = 0}.

It is TPDMP exponentially distributed with time dependent rates λPDMP
t ≥ 0 given by λPDMP

t :=
γ3c2(t) where c2(t) is the deterministic flow of the protein concentration during the active period
of time [0, TPDMP ] given the initial state c0. More precisely, it holds

P
(
TPDMP ≤ t

)
= 1− e−ΛPDMP

t

with ΛPDMP
t :=

∫ t
0 λ

PDMP
s ds =

∫ t
0 γ3c2(s) ds. As for the PCLD , the rates for repression are

not only time dependent but also random, given by λPCLEt := γ3C2(t) with C2(t) denoting the
random flow of proteins defined in (27) given some initial state I(0) = 1, C(0) = c0 ∈ R2

+. The
corresponding distribution of the first repressing time is given by

P
(
TPCLE ≤ t

)
= 1− E

(
e−ΛPCLEt

)
with ΛPCLEt :=

∫ t
0 λ

PCLE
s ds =

∫ t
0 γ3C2(s) ds. Equivalently, for the CME the time TCME of first

repression has the distribution

P
(
TCME ≤ t

)
= 1− E

(
e−ΛCME

t

)
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with ΛCME
t :=

∫ t
0 λ

CME
s ds and λCME

t := γ3
V P (t) where P (t) ∈ N0 gives the number of proteins at

time t in the jump process defined by the CME, again with initially active DNA, i.e. D(0) = 1.
Now, although the first-order moments of the number of proteins agree for all three models, i.e.

it holds
c2(t) = E(C2(t)) = E

(
P (t)
V

)
for all t ∈ [0, T ], the distributions of the repressing time diverge due to the general inequality

e−ΛP DMP
t 6= E

(
e−ΛP CLE

t

)
6= E

(
e−ΛCME

t

)
.

The fluctuations in the protein abundance have a non-linear impact on the repression times such
that their zero averages are not carried over. Note that in the small volume setting, the PCLD
is even likely to produce negative molecule numbers - which is not only inappropriate for inter-
pretations of the underlying real-world application but also has a disproportional impact on the
repressing propensities.

In summary, the different quality of fluctuations in the number of proteins during DNA-activity
(no fluctuations for PDMP, white noise for PCLD, Poisson-like variance for the CME) cause the
deviations in the repressing times. However, for large population levels of proteins, fluctuations
become proportionally small and their impact vanishes - and with it the deviations in the repressing
times.

4.4 Extension to eukaryotes

When considering the process of gene expression modelled in Fig. 2 within a eukaryotic cell
containing a nucleus, the well-mixed assumption on the level of the overall cell is naturally broken.
At least a minimal spatial differentiation is necessary because the reduced permeability of the
nuclear membrane restricts the free flow through the cell and decomposes it into two metastable
compartments: the nucleus and the cytoplasm. Moreover, some of the involved reactions (displayed
in (24)) are restricted two either one of the compartments: while transcription takes place in the
nucleus, translation typically arises within the cytoplasm. The time it takes first for the mRNA
to leave the nucleus and second for the produced proteins to enter the nucleus induces a delayed
repressing of the DNA. The protein population still shows bursts, but these bursts occur with time
delay.

In order to demonstrate that the hybrid methods of Section 3 can directly be applied to the
spatial extensions of the CME presented in Section 2.4, we consider this setting of self-repressed gene
expression in a eukaryotic cell and approximate parts of the system by chemical Langevin dynamics
or RRE’s. In contrast to Section 4.2 where we intended to uncover the differences between the two
approximation methods, we now choose more realistic parameter values based on the data given in
Refs. [50], [43]. Especially we take into account that the number of proteins typically exceeds the
number of mRNA by several orders of magnitude.

Based on the split-up into two compartments, the state of the ST-CME is given by the matrix
N(t) ∈ N3,2

0 with the entry Nlr(t) denoting the number of molecules of species l (l = 1: DNA,
l = 2: mRNA, l = 3: proteins) in compartment r (r = 1: nucleus, r = 2: cytoplasm). Although it
holds N11(t) ∈ {0, 1} and N12(t) = 0 for all t (because there is at most one active DNA which is
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located in the nucleus), we use this larger state space in order to stick to the general notation of
Section 2.4. The net change vectors of the reactions are as in (25) and the compartment-dependent
reaction propensities are

αr1(n) =
{
γ1n11, r = 1
0 , r = 2. αr2(n) =

{
0 , r = 1
γ2n22, r = 2. αr3(n) =

{
γ3
V1
n11n21, r = 1

0 , r = 2.

αr4(n) =
{
γ4(1− n11), r = 1
0 , r = 2. αr5(n) =

{
γ5n21, r = 1
γ5n22, r = 2. αr6(n) =

{
γ6n31, r = 1
γ6n32, r = 2.

where V1 is the volume of the nucleus set to V1 = 1 and the rate constants are

γ1 = 0.1, γ2 = 0.1, γ3 = 10−2, γ4 = 10−2, γ5 = 5 · 10−3, γ6 = 2 · 10−4. (29)

As for the transition rates we assume that nuclear mRNA-molecules enter the cytoplasm at rate
λ2

12 = 10−3, while their return to the nucleus is precluded (λ2
21 = 0). Vice versa, proteins switch

from cytoplasm to nucleus at rate λ3
21 = 10−3 but not back (λ3

12 = 0). For DNA we naturally have
λ1

12 = λ1
21 = 0. We assume these transition rates to be independent of the volume.

Simulations of the resulting ST-CME reveal that for the chosen rates the number of mRNA-
molecules in both compartments is much smaller than the number of proteins. This suggests to
keep the discrete, stochastic nature for mRNA while approximating only the proteins by continuous
dynamics. The state space of the PDMP and the hybrid diffusion is given by

S = {(i, c) : i ∈ N2,2
0 , c ∈ R2}

with i11 ∈ {0, 1} denoting the DNA activity, i21 ∈ N0 resp. i22 ∈ N0 denoting the number of
mRNA-molecules in nucleus resp. cytoplasm, and c ∈ R2 describing the protein concentration in
nucleus and cytoplasm. (It is i12 = 0 as this refers to DNA in the cytoplasm.)

The resulting index set of reactions keeping the discrete species unchanged then reduces to
K = {2, 6}. By interpreting again the jumps as first-order reactions, also the jumps of proteins
belong to this group of reactions.

This time, the deterministic flow of the two-component protein concentration c ∈ R2 depends
on the number i22 ∈ N0 of mRNA-molecules in the cytoplasm and is given by the vector field

f (i) : R2 → R2, f (i)(c) =
(

0
γ2i22

)
+
(
−γ6 λ3

21
0 −γ6 − λ3

21

)
c.

The jump rate function is given by

λ(i, c) = γ1i11 + γ3i11c1 + γ4(1− i11) + γ5i21 + γ5i22 + λ2
12i21

and the transition kernel is determined by the respective fractions.
Individual simulations of the jump process defined by the ST-CME and the approximative PCLE

and PDMP with spatial split-up are given in Figure 7. In contrast to the dynamics considered in
Section 4.2, the time periods of active DNA are very short, such that an illustration by grey
background areas is inappropriate. Instead, the trends of the protein populations within both
compartments are determined by the actual random and discrete number of mRNA-molecules. A
comparison of the statistics in Table 3 shows again a very good agreement of all three modelling
approaches with respect to long-term averages.
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Figure 7: Independent simulations of the ST-CME (left), the spatial PCLD (middle) and the spatial
PDMP (right) for parameter set given in (29) and initial state given by active DNA and absence
of mRNA and proteins.

ST-CME spatial PCLD spatial PDMP
1 average DNA activity 0.03 (± 0.17) 0.03 (± 0.17) 0.03 (± 0.17)
2 mean mRNA (nucleus) 0.49 (± 0.84) 0.49 (± 0.84) 0.49 (± 0.84)
3 mean mRNA (cytoplasm) 0.10 (± 0.32) 0.10 (± 0.32) 0.10 (± 0.32)
4 mean proteins (nucleus) 40.21 (± 19.31) 40.30 (± 19.34) 40.89 (± 19.07)
5 mean proteins (cytoplasm) 8.04 (± 11.91) 8.09 (± 11.83) 8.15 (± 11.68)
6 mean active time 2.99 (± 3.69) 3.14 (± 3.98) 3.05 (± 3.76)
7 mean passive time 100.05 (± 100.16) 99.88 (± 100.15) 100.55 (± 100.22)

Table 3: Averages (± sample standard deviation) over long-run simulation (T = 107) for gene
expression system in eukaryote with parameter set given in (29). Lines 6-7: mean duration of
active time periods and passive time periods. Step size for PCLD and PDMP: 0.1

5 Conclusion

The CME is of crucial importance for accurately modelling discrete stochastic reaction kinetics.
However, with increasing dimension, its complexity renders existing solution methods infeasible.
This motivates the construction of reduced systems for approximating the dynamics. We presented
several hybrid approaches for modelling multiscale reaction dynamics based on rescaling methods.
We considered hybrid diffusions as an extension of piecewise deterministic Markov processes and
formulated both models within the specific framework of two-scale reaction dynamics. Moreover, we
showed how theses approaches can be combined to a generalized joint model for systems with more
than two population scales. In order to complete the model overview, we also mentioned spatial
extensions of the CME which are suitable for systems that do not fulfil the central well-mixed
condition. The main insight is that each of the approximation methods can as well be transferred
to this more complex setting of spatio-temporal dynamics.

We applied some of the hybrid approaches to a multiscale genetic network, considering both
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a well-mixed system within a prokaryotic cell and a two-compartment system within a eukaryotic
cell described by the spatiotemporal CME. Due to a negative feedback law, the produced proteins
repress their own transcription by deactivating the DNA, such that the overall system switches
between time periods of active DNA with positive trends for the gene products and time periods
of inactive DNA with negative trends for the gene products. In contrast to uniform approximation
methods, the hybrid approaches are able to maintain this characteristic behaviour. For the case of
large copy numbers of the products, a comparison of simulation statistics revealed good approxi-
mation properties of the hybrid models in terms of first-order moments. By the additional noise
of the piecewise chemical Langevin dynamics, also protein bursts and empirical distributions have
accurately been reproduced. We showed that in the small volume setting the hybrid models under
consideration fail by distorting the repression event: although the conditioned dynamics within the
time periods of active or inactive DNA are still congruent with respect to averages, the switching
times between them follow different distributions.

This paper gives a coherent overview of several modelling approaches for stochastic reaction
kinetics and reveals their interrelation as well as possible recombinations. We only considered
time-homogeneous systems where the classification of species according to their copy number levels
is fixed for all times. In many applications, however, also switches between different levels - induced
by the occurrence of reactions - are plausible. For the future, an investigation of flexible, time-
adaptive model combinations, as proposed e.g. in Ref. [15], will be of special interest.
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