
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

GUILLAUME SAGNOL, MARCO BLANCO, THIBAUT SAUVAGE

The Cone of Flow Matrices:
Approximation Hierarchies and Applications

ZIB Report 17-32 (June 2017)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

The Cone of Flow Matrices:

Approximation Hierarchies and Applications

Guillaume Sagnol12, Marco Blanco1, Thibaut Sauvage3

July 3, 2017

Abstract

Let G be a directed acyclic graph with n arcs, a source s and a sink t. We introduce
the cone K of flow matrices, which is a polyhedral cone generated by the matrices 1P1

T
P ∈

Rn×n, where 1P ∈ Rn is the incidence vector of the (s, t)−path P . We show that several
hard flow (or path) optimization problems, that cannot be solved by using the standard
arc-representation of a flow, reduce to a linear optimization problem over K. This cone
is intractable: we prove that the membership problem associated to K is NP-complete.
However, the affine hull of this cone admits a nice description, and we give an algorithm
which computes in polynomial-time the decomposition of a matrix X ∈ spanK as a linear
combination of some 1P1

T
P ’s. Then, we provide two convergent approximation hierarchies,

one of them based on a completely positive representation of K. We illustrate this approach
by computing bounds for the quadratic shortest path problem, as well as a maximum flow
problem with pairwise arc-capacities.

Keywords Flows in graphs, Approximation hierarchies, Copositive programming

1 Introduction

Throughout this paper we denote by Sn the set of n×n−symmetric matrices, and by S+
n the set

of n× n−symmetric positive semidefinite matrices, that is,

S+
n = conv({xxT : x ∈ Rn}) = cone({xxT : x ∈ Rn, ‖x‖2 = 1}),

where conv(S) and cone(S) stand for the convex hull and the conic hull of a set S, respectively.
We also introduce the notation C∗n for the set of completely positive matrices of size n× n:

C∗n := conv({xxT : x ∈ Rn+}),

where R+ is the set of nonnegative real numbers. The space Sn is equipped with the inner product

〈A,B〉 := traceAB, and the associated Frobenius norm ‖X‖F =
√
〈X,X〉 =

(∑
i,j X

2
i,j

)1/2
. The

ith vector of the canonical basis of Rn is denoted by ei. The cardinality of S is denoted by |S|.

Let G = (V,E) be a directed acyclic graph (DAG) with n arcs and m vertices. Let s ∈ V and
t ∈ V denote two designated vertices of G, respectively called source and sink. Throughout we
assume that s has no incoming arcs, t has no outgoing arcs, and for all v /∈ {s, t} there exists an
(s, t) path that goes through v. We call a graph satisfying the above properties a proper DAG.

1Zuse Institute Berlin, Berlin, Germany.
2Technical University Berlin, Berlin, Germany.
3École Polytechnique, Palaiseau, France.

1

We denote the set of (s, t)−paths in G by P. Unless expressly stated otherwise, the word “path”
is always used to denote an (s, t)−path P ∈ P.

We say that f ∈ R|P|+ is a P−flow (for path-based flow) of value u ≥ 0 if
∑
P∈P fP = u. A

vector x ∈ Rn+ is called an A−flow (for arc-based flow) of value u ≥ 0, or simply a flow of value
u when there is no ambiguity, if it satisfies the following flow conservation equations:

∀v ∈ V,
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe =

 −u if v = s
u if v = t
0 otherwise.

(1)

The set of all A-flows of value u is denoted by A(u), and we use the notation A := ∪u≥0A(u)
for the set of all A−flows (of any nonnegative value). Since G is a DAG, it is well known that
A(1) = conv({1P : P ∈ P}) and A = cone({1P : P ∈ P}), where 1P is the incidence vector of the
path P , that is, the elements of 1P ∈ {0, 1}|E| satisfy (1P)e = 1 if e ∈ P and (1P)e = 0 otherwise.
This comes from the fact that every A−flow x ∈ A can be decomposed as x =

∑
P∈P fP1P for

some f ∈ R|P|+ ; see, e.g. [AMO93]. Note that xe =
∑
P3e fP represents the amount of flow that

goes through arc e (the summation indexed by “P 3 e” goes over all paths P ∈ P that include
arc e).

Many optimization problems over graphs –such as the maximum flow problem or the minimum
cost flow problem– can be solved using the arc-representation of a flow, which has the great
advantage of being compact, while the number of paths might grow exponentially with the size of
the graph. However, for some problems, some interactions exist between the arcs visited by the
same “particle of flow”. Such problems cannot be solved by the arc-representation, which just
counts the amount of flow on each arc without tracking the path followed by each infinitesimal
particle. This article presents a new scheme for deriving relaxations of certain flow problems,
when the path of each individual particle in the graph matters.

In this paper, we propose to study the following polyhedral cone:

K := cone({1P1TP : P ∈ P}),

which we call the cone of flow matrices. If X ∈ K, it can be decomposed as X =
∑
P∈P fP1P1

T
P

for some flow f ∈ (R+)|P|. The motivation for studying the cone K is that it introduces a certain
amount of coupling between the arcs of a path. Indeed, Xij =

∑
P⊇{i,j} fP , is the amount of

flow going through both arcs i and j. In particular, the vector of diagonal elements of X is
diagX =

∑
P∈P fP1P , and corresponds to the standard arc-representation of the flow. As

before, we denote by K(u) the set of flow matrices of value u ≥ 0, that is,

K(u) := {X ∈ K :
∑

i∈δ+(s)

Xii = u}. (2)

It is easy to see that X =
∑
P∈P fP1P1

T
P ∈ K(u) if and only if

∑
P fP = u. In particular,

K(1) = conv({1P1TP : P ∈ P}).

Related work We are not aware of any article that studied the cone K before. However, this
paper is related to a series of results that use lift-and-project methods (see, e.g. [Lau03]) to obtain
relaxations of hard combinatorial problems over graphs, or to reformulate them as completely
positive programs, see [Dür10]. Such reformulations often rely on geometrical arguments, such as
characterization of the extreme points of some polytopes. A particularity of the present article
is that the proof of our completely positive result is purely combinatorial.

This paper is also related to several articles that study some flow- or path-optimization prob-
lems on directed graphs, with interactions between the arcs of each path. This is the case of

2

the NP-hard Shortest Path Problem with Forbidden Pairs (SPPFP) or the quadratic shortest
path problem (QSPP) [RCH+16], which play a central role in the present study, see Sections 2
and 3. We also mention the work of Baier et al. [BEH+10] who study the problem of sending
the maximal amount of flow on paths of bounded lengths, and show (among many other results)
that this problem is NP-complete in general, but can be solved in polynomial time when the arcs
are of unit length. For this problem, an arc-based representation of the flow cannot be used.
In fact, the authors also show that unless P=NP, there is no polynomial-time algorithm that
can transform an arc-representation of a length-bounded flow to a path-representation that only
sends particles on paths of bounded length. A slightly more general version of this result was
also discovered independently in [CSSM07], in the context of congestion games. Here, the cost of
an arc is interpreted as the travel time (also called latency), and depends on the number of users
that take this arc. The problem of computing a fair flow, that is, a flow of users that minimizes
the maximal latency over the network, is shown to be NP-complete.

We also mention some work about the set of {0, 1}−completely positive matrices, that is, the
set of integer-valued matrices X ∈ Zn×n that admit a factorization of the form X = UUT , where
U ∈ {0, 1}n×r. The set of {0, 1}-completely positive matrices was first studied in [BX05], and
the problem of computing a decomposition X = UUT is studied in [BR06]. This problem is very
close to the problem of decomposing an integer-valued flow matrix as X =

∑r
k=1 1Pk

1TPk
, except

that we have an additional restriction that the columns of U must form an (s, t)−path in a given
graph.

Organization and contribution We will see in this article that several hard combinatorial
problems can be formulated as linear optimization problems over K. A important example is
the quadratic shortest path problem (cf. Section 2), which appears naturally in the definition of
the dual cone K∗, see Section 3. The main result of this section (Theorem (3.5)) states that the
problem of deciding whether a matrix X belongs to the cone K is NP-complete. An intermediate
result, which we need to project K onto its affine hull, is also interesting per se: A symmetric
matrix X ∈ Sn is called a signed flow matrix if it satisfies certain equality constraints (for
example, the columns of X must be flow vectors, but there is no nonnegativity constraints on
the elements of X). We give a polytime algorithm that decomposes a signed flow matrix X as
X =

∑
P fP1P1

T
P , where the fP are real numbers of arbitrary signs.

Tractable approximations of K yield relaxations for linear optimization problems over K. We
propose two convergent approximation hierarchies in Section 4. The second one is based on
a completely positive representation of K, as the intersection of C∗n and a compact polyhedral
cone. An alternative completely positive representation of K could also have been derived from
a general result of Burer [Bur09]. We compare the two representations in Section 4.3, and show
that our characterization of K leads to tighter bounds. Then, we show in Section 5 that the
results of Section 4 do not hold anymore if we remove the assumption that the graph G is acyclic.
The quality of our relaxations is evaluated for instances of the quadratic shortest path problem
(QSPP) and for the maximum flow problem with pairwise arc-capacities in Section 6. Finally, we
mention some other potential applications of the proposed framework and further perspectives
in Section 7.

2 The quadratic shortest path problem

Given a cost vector c ∈ Rn, where ca is the cost of arc a, the shortest path problem is to find
the path P ∈ P minimizing

∑
a∈P ca = cT1P . Since the graph G is a DAG, it is well known

that this problem can be solved efficiently by dynamic programming, even if c has some negative
components.

Analogously, assume there is a cost Qi,j if one chooses a path going through both i and j.
This is the quadratic shortest path problem (QSPP):

qspl(Q) = min
P∈P

1TPQ1P , (3)

3

where the symbol qspl(Q) stands for the quadratic shortest path length associated with the cost
matrix Q. The QSPP was recently shown to be NP-hard to approximate, and APX-hard in
the special case where the cost matrix Q is positive semidefinite [RCH+16]. Here, we point out
that the authors of [RCH+16] study a slightly different version of the QSPP in which there is a
separate linear cost cT1P in the objective function. However, one can always assume that the
QSPP is of the form (3), by putting all linear costs on the diagonal of the matrix Q. Now, we
claim that the QSPP can be formulated as a linear optimization problem over K(1):

qspl(Q) = min
X∈K(1)

〈X,Q〉. (4)

Indeed, for a feasible X =
∑
P∈P fP1P1

T
P , with

∑
P fP = 1, it is straightforward that 〈X,Q〉 =∑

P∈P fP1
T
PQ1P , and so the optimal solution only gives a positive weight fP > 0 to paths solving

the QSPP.
The above example already shows that, unless P=NP, we have no hope of finding a compact

representation of the cone K (i.e., a description of K relying on a polynomial number of linear
inequalities). Otherwise, the QSPP could be solved in polynomial time by linear programming
(LP). In the next section, we show an even stronger negative result: it is NP-hard to check
whether a given symmetric matrix X belongs to K.

3 The membership problem

We study the following question:

MEM(K) : Given X ∈ Sn, does X belong to K?

A certificate for the membership X ∈ K can be given as a decomposition of the form X =∑
P fp1P1

T
P . Note that from Carathéodory’s theorem (see, e.g. [HUL12]), there always exists

such a decomposition involving no more than n(n+1)
2 + 1 paths. This already shows that the

membership problem for K is in NP.
Below, we will show that the problem MEM(K) is NP-complete, by reasoning on the dual

cone K∗ of K. In fact, we also have a direct proof of this result not relying on K∗, but the proof
we present here is shorter, and we think it sheds more light on the problem. We first show that
K∗ is the set of cost matrices for which the quadratic shortest path length is nonnegative. By
definition,

K∗ = {Y ∈ Sn | ∀X ∈ K, 〈X,Y 〉 ≥ 0} ={Y ∈ Sn | ∀p ∈ P, 1TPY 1P ≥ 0}
={Y ∈ Sn | qspl(Y) ≥ 0}.

We will now show that the weak membership problem for K∗ is NP-hard. The weak mem-
bership problem WMEM(S), where S ⊂ RN has nonempty interior, is defined as follows:

WMEM(S) : Given x ∈ RN and ε > 0, assert either (i) B(x, ε) ∩ S 6= ∅;
or (ii) B(x, ε) * S,

where B(x, ε) := {z ∈ Rn : ‖z − x‖ ≤ ε}. Note that both conditions (i) and (ii) may be valid
for points x that are close to the boundary of S. In particular, x ∈ S implies (i) and x /∈ S
implies (ii). It follows that any algorithm that solves MEM(S) also solves WMEM(S); cf. [DG14].
Therefore, the NP-hardness of WMEM(S) implies that MEM(S) is also NP-hard.

Proposition 3.1. The weak membership problem WMEM(K∗) is NP-hard.

Proof. The convex cone K is clearly closed, and pointed (it contains no line, i.e., X ∈ K,−X ∈
K =⇒ X = 0) because elements of K only have nonnegative components. Therefore, K∗ has a
nonempty interior (see e.g. [BV04]).

4

Now, consider the problem WMEM(K∗). Asserting that (X, ε) ∈ Sn × R++ satisfies condition
(i) means that there exists a matrix Y ∈ Sn such that ‖Y −X‖F ≤ ε and ∀P ∈ P, 1TPY 1P ≥ 0.
Hence,

∀P ∈ P, 1TPX1P ≥ 1TP (X − Y)1P ≥ −
∑
i,j

|Xij − Yij | ≥ −n‖X − Y ‖F ,

where the last inequality follows from Cauchy-Schwarz. So if (X, ε) satisfies condition (i), we
must have qspl(X) ≥ −nε. Using an analogous reasoning, we can show that if (X, ε) satisfies
condition (ii), we must have qspl(X) < nε.

Now, we use a result from [RCH+16]. The authors give a polynomial reduction from the
path with forbidden pairs problem (PFPP), which is known to be NP-complete [GMO76], to the
QSPP: given an instance I of the PFPP, a matrix QI is constructed (in polynomial time) in such
a manner that I is a yes-instance if and only if qspl(QI) = 0, and I is a no-instance if and only
if qspl(QI) ≥ 2. By adding an arc of cost −1 after t, we obtain an instance Q′I of the QSPP
such that I is a yes-instance (no-instance) if and only if qspl(Q′I) = −1 (≥ 1). According to
the discussion above, (X, ε) = (Q′I ,

1
2n) satisfies condition (i) for WMEM(K∗) if and only if I is

a no-instance, and it satisfies condition (ii) if and only if I is a yes-instance. This shows that
WMEM(K∗) is NP-hard.

It is shown in [FL16, Theorem 5.3] that if K is a proper cone (i.e., closed, convex, pointed,
and with nonempty interior), then the WMEM problem for K∗ is polynomial-time reducible to
the WMEM problem for K. In our case, K is not proper, because it has an empty interior. This
means that the problem WMEM(K) is ill-defined. Indeed, since K has an empty interior, every
X ∈ Sn satisfies condition (ii): ∃X ′ ∈ B(X, ε) : X ′ /∈ K. So we must reason relatively to the
affine hull of K, which, since 0 ∈ K, coincides with the linear envelope

spanK = {
∑
P∈P

fp1P1
T
P : ∀P ∈ P, fP ∈ R}.

A variant of the WMEM problem for the case of a set S ∈ RN contained in an affine space
of dimension less than N is proposed in [FL16]: Let H denote the affine hull of S, that is, the
smallest affine subspace of RN that contains S. The weak membership problem for S relatively
to H is

WMEM(S;H) : Given x ∈ RN and ε > 0, assert either (i) (x ∈ H) ∧
(
B(x, ε) ∩ S 6= ∅

)
;

or (ii) (x /∈ H) ∨
(
B(x, ε) ∩H * S

)
.

We will now state an extension of the result of Friedland and Lim [FL16, Theorem 5.3], for the
case in which K is not full dimensional, but a basis for the linear envelope of K is given. Then,
we will give a compact description of the linear space spanK, which will allow us to conclude
that MEM(K) is NP-complete.

Theorem 3.2. Let K ⊆ RN be a closed, convex, pointed cone, and let H denote the linear enve-
lope of K. If an orthonormal basis U = [u1, . . . ,ur] ∈ RN×r of H is known, then WMEM(K∗)
is polynomial-time reducible to WMEM(K;H).

Proof. We first observe that K∗ has a nonempty interior (because K is pointed), so WMEM(K∗)
is well-defined.

Let us define the following cone: K ′ := {x′ ∈ Rr : Ux′ ∈ K}. We will start by proving a few
properties on K ′ and its dual cone K ′∗:

(P1) K ′ is proper

(P2) K ′ = {UTx : x ∈ K}

(P3) K∗ = {y : UTy ∈ K ′∗}

5

(P4) K∗ = UK ′∗ ⊕ kerUT = {Uy′ + z : y′ ∈ K ′∗, UTz = 0}

For the property (P1), note that K ′ is closed, convex, and full-dimensional by construction.
Moreover it is pointed. Indeed, if x′ ∈ K ′ and −x′ ∈ K ′,then Ux′ ∈ K and −Ux′ ∈ K, so
Ux′ = 0 because K is pointed, and x′ = 0 because U has full-rank.

To prove Property (P2), let x′ ∈ K ′. By definition, x := Ux′ ∈ K. So we have x′ = UTUx′ =
UTx. Conversely, if x′ = UTx for some x ∈ K, then Ux′ = UUTx. But, UUT is the orthogonal
projector over H, and x ∈ H, so Ux′ = UUTx = x.

For (P3), note that y ∈ K∗ if and only if

∀x ∈ K, yTx = 0

⇐⇒ ∀x ∈ K, yTUUTx = 0

⇐⇒ ∀x′ ∈ K ′, yTUx′ = 0,

where the last equivalence comes from Property (P2), and means that UTy is in the dual cone
of K ′.

It remains to prove Property (P4), where the symbol ⊕ denotes a direct sum, which means
that the decomposition of some y ∈ K∗ as Uy′ + z with y′ ∈ K ′∗ and z ∈ kerUT is unique.
Note that the unicity of the decomposition follows from the fact that the nullspace of UT and
the range of U are orthogonal.

Let y = Uy′ + z, with y′ and z as above, and let x = UUTx ∈ K. We have:

xTy = xTUy′ + xTU UTz︸︷︷︸
=0

= (UTx︸ ︷︷ ︸
∈K′

)T y′︸︷︷︸
∈K′∗

= 0.

Conversely, assume that y ∈ K∗. We can decompose y on H and its orthogonal complement, as
follows:

y = UUTy + (I − UUT)y.

The vector z := (I − UUT)y is in kerUT because (I − UUT) is the orthogonal projector over
kerUT , and the vector y′ := UTy is in K ′∗ by Property (P3).

To prove the theorem, we will show that, if the matrix U is given, then we have

WMEM(K∗)
(R1)
==⇒WMEM(K ′∗)

(R2)
==⇒WMEM(K ′)

(R3)
==⇒WMEM(K;H),

where A =⇒ B means that A is polynomial-time reducible to B.

(R1). To show this reduction, we will show that

(y, ε) satisfies (i) for WMEM(K∗) ⇐⇒ (UTy, ε) satisfies (i) for WMEM(K ′∗)
and

(y, ε) satisfies (ii) for WMEM(K∗) ⇐⇒ (UTy, ε) satisfies (ii) for WMEM(K ′∗)

Let y0 ∈ RN satisfy ‖y − y0‖ ≤ ε. This implies that ‖UT (y − y0)‖ ≤ ε, because since the
columns of U are orthonormal, the spectral norm of UT is 1. By Property (P3), we have

y0 ∈ K∗ ⇐⇒ UTy0 ∈ K ′∗, (5)

which proves the implications in the direction (⇒) for both the conditions (i) and (ii).
Conversely, let y′0 ∈ Rr be a vector such that ‖UTy − y′0‖ ≤ ε. We define y0 := Uy′0 + (I −

UUT)y, so that ‖y − y0‖ = ‖U(UTy − y′0)‖ = ‖UTy − y′0‖ ≤ ε. Now, we claim that

y0 ∈ K∗ ⇐⇒ y′0 ∈ K ′∗, (6)

which will prove the implications in the direction (⇐) for both the conditions (i) and (ii). The
claim is a direct consequence of Property (P4), because z := (I − UUT)y ∈ kerUT , and the
decomposition of the form y0 = Uy′0 + z is unique.

6

(R2). Since K ′ is a proper cone (Property (P1)), this reduction follows from the aforemen-
tioned result of Friedland and Lim [FL16, Theorem 5.3].

(R3). To show this reduction, we will show that

(x′, ε) satisfies (i) for WMEM(K ′) ⇐⇒ (Ux′, ε) satisfies (i) for WMEM(K;H)
and

(x′, ε) satisfies (ii) for WMEM(K ′) ⇐⇒ (Ux′, ε) satisfies (ii) for WMEM(K;H).

Let x0 ∈ H be a vector satisfying ‖Ux′ − x0‖ ≤ ε. We have x0 = Ux′0 for some vector
x′0 ∈ Rr. So, ‖Ux′ − x0‖ = ‖U(x′ − x′0)‖ = ‖x′ − x′0‖ ≤ ε. We now use the fact that

x′0 ∈ K ′ ⇐⇒ x0 = Ux′0 ∈ K, (7)

which simply follows from the definition of K ′. This proves the implications in the direction (⇐)
for both the conditions (i) and (ii).

Conversely, let x0
′ ∈ Rr be a vector such that ‖x′ − x′0‖ ≤ ε. We have Ux′ ∈ H, Ux0

′ ∈ H,
and ‖Ux′−Ux′0‖ ≤ ε. So we use again the property of Equation (7), which proves the implications
in the direction (⇒) for both the conditions (i) and (ii).

Now, we give a nice description of the subspace

spanK = {
∑
P∈P

fp1P1
T
P : ∀P ∈ P, fP ∈ R}.

This will allow us to construct a basis of this subspace, and the proof is also interesting per se:
It is constructive and shows how to decompose a matrix from spanK as a signed P-flow, that is,
a flow {fP : P ∈ P} in which the flow on a path is not restricted to be nonnegative. This means
that if an optimization problem can be formulated as a linear optimization problem over K, the
relaxation that one obtains by dropping the constraints fP ≥ 0 can be solved in polynomial time,
by linear programming (LP).

Let D ⊆ E × E be the set of pairs of arcs (i, j) such that no path P ∈ P uses both i and j.
Let V be the linear subspace defined by the set of equations

V :=

X ∈ Sn :

∀v /∈ {s, t},
∑
e∈δ+(v)Xee −

∑
e∈δ−(v)Xee = 0

∀v /∈ {s, t},∀i ∈ E,
∑
e∈δ+(v)Xie −

∑
e∈δ−(v)Xie = 0

∀i, j ∈ D, Xi,j = 0.

 .

Note that V is a linear space (in particular, the Xij ’s are not required to be nonnegative). Then
we have:

Theorem 3.3. The linear space spanned by the matrices 1P1
T
P ’s (∀P ∈ P) is equal to V:

spanK = V.

Moreover, given a matrix X ∈ V, a decomposition of the form
∑
P∈P̂ fp1P1

T
P , where P̂ is a

subset of P, can be computed in polynomial time by Algorithm 1.

The inclusion spanK ⊆ V is trivial, and we give a constructive proof of the reverse inclusion:
It suffices to prove that Algorithm 1 terminates and returns the correct decomposition to prove
the theorem.

To do so, we will need one technical lemma, which deals with the decomposition of a signed
flow vector. It can be seen a variant of the flow decomposition theorem, when flow-values are
allowed to be negative in a DAG. The lemma is proved in the appendix.

7

Lemma 3.4. Let x ∈ Rn be a signed flow vector, i.e., a vector satisfying

∀v /∈ {s, t},
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = 0.

Then, we can compute in polynomial time a decomposition x =
∑k
i=1 fi1Pi , where ∀i, Pi ∈

P, fi ∈ R.

We can now prove the correctness of Algorithm 1:

Proof of Theorem 3.3. By construction, the decomposition returned by the algorithm necessarily
satisfies X =

∑
i fi1Pi1

T
Pi

. So we must only show that the algorithm terminates.

We first admit that the iterations are well defined, and we claim that at the beginning of each
iteration, the matrix X0 and the graph G0 satisfy the following three properties:

(a) X0 ∈ V.

(b) j /∈ E0 =⇒ X0ej = 0, where E0 is the set of arcs of G0: the jth column of X0 is 0
whenever arc j has already been removed.

(c) If there exists no (s, t)-path in G0 using both arcs i and j, then (X0)ij = 0.

These properties clearly hold at the beginning of the algorithm, by definition of V. So we
must show that the iterations –assuming they are well defined– produce an updated matrix
X+

0 := X0 −
∑r
k=1 fk1Pk

1TPk
and an updated graph G+

0 which still satisfy the properties (a)-(c).
Property (a) follows from the fact that at each iteration, X0 is updated by a linear combination
of some 1P1

T
P ’s, and it is clear that each matrix 1P1

T
P is an element of V.

For (b), note that the paths Pk’s involved during some iteration only use the remaining arcs
E0 of G0. So the jth column of 1Pk

1TPk
is 0 for all j /∈ E0, and the columns of X+

0 corresponding
to arcs already removed from G0 will remain equal to 0 after the update. Now, we look at the
value of the column a after the update (where a is the arc selected during the iteration):

X+
0 ea = (X0 −

r∑
k=1

fk1Pk
1TPk

)ea = x−
r∑

k=1

fe1Pk
(1TPk

ea) = x−
∑

k∈{1,...,r}
Pk3a

fk1Pk
= 0

where the last equality comes from the fact that each Pk uses arc a, and
∑r
k=1 fk1Pk

is a
decomposition of the signed flow vector x = X0ea. Similarly the column e of X+

0 , where e is an
arc such that all paths using a also use e, is equal to 0. Indeed, we know that (X+

0)ia = 0 for all
i ∈ E, and the vector {(X+

0)ij |j ∈ E} is a signed flow vector (by property (a)), so in particular
(X+

0)ia = (X+
0)ie = 0. Hence, at the end of an iteration, all columns of (X0)+ corresponding to

arcs not present in G+
0 are equal to 0.

For (c), let v be the vertex returned by the BFS, and let u be one of its direct predecessors.
By construction there is a single path from s to u, and either there are at least two paths from s
to v, or v = t. Let i and j denote two arcs such that there is no path using both i and j in G+

0 .
The updated value of (X0)ij is

(X+
0)ij = (X0)ij −

∑
k∈{1,...,r}
Pk⊇i,j

fk (8)

If there was already no path using i and j in G0, then we had (X0)ij = 0, and (X+
0)ij remains

equal to 0. Otherwise, all paths using the arcs i and j were also using arc a. Let us assume
(without loss of generality) that i ≺ j for some topological ordering ≺ of the arcs of G0. We
claim that we must have i ≺ a. Indeed, the case a ≺ i ≺ j can be excluded. This is clear if v = t,

8

Algorithm 1 Signed flow matrix decomposition

Input: X ∈ V
Output: A set of paths P1, . . . , P` ∈ P and real numbers f1, . . . , f` such that X =

∑
k fk1Pk

1TPk
.

1: G0 ← G
2: X0 ← X
3: Initialize an empty decomposition of X.
4: while X0 6= 0 do
5: . Perform a BFS (Breadth First Search) of the graph G0, starting at s, until a vertex v is

found such that, either v = t, or v has already been visited by the BFS.
6: . a← (u, v), where u is a direct predecessor of v
7: . Let x := X0ea denote the ath column of X0

8: . Decompose the vector x, which is a signed flow vector, as

x =

r∑
k=1

fk1Pk
,

where each Pk is an (s, t)−path in G0 that goes through arc a.
9: . Append (Pk, fk) (∀k = 1, . . . , r) to the decomposition of X

10: . X0 ← X0 −
∑r
k=1 fk1Pk

1TPk

11: . Remove from the graph G0 all the arcs e ∈ E such that ∀P ∈ P, (e ∈ P ⇐⇒ a ∈ P)
12: end while
13: return the decomposition of X

and otherwise there are at least two paths from s to v, so the removal of a would leave at least
one path in G+

0 using both i and j.
Now, i ≺ a implies that i is located on the single path from s to u, so each Pk must use the

arc i. Thus we have ∑
k∈{1,...,r}
Pk⊇i,j

fk =
∑

k∈{1,...,r}
Pk3j

fk = xj = (X0)ja, (9)

because the (fk, Pk)’s are a decomposition of the signed flow x = X0ea. Finally, we use the fact
that {(X0)je|e ∈ E} is a signed flow, supported by the paths of G0 that use arc j. Since all
paths of G0 using both i and j also use the arc a, this implies that (X0)ja = (X0)ji = (X0)ij .
Combining this with the equations (8) and (9), we get: (X+

0)ij = 0.

With the above properties, it is easy to show that the algorithm terminates. Indeed, at least
one arc is removed at each iteration, so after at most n iterations the graph G0 is empty, and
by property (b) we must have X0 = 0. It remains to show that the iterations are well defined.
Indeed, we must show how to compute the decomposition of line 8.

This decomposition follows from Lemma 3.4, but we must show that it is possible to decompose
the signed flow vector x by using paths of G0 that all go through the selected arc a. Let G′ be
the directed graph obtained by keeping only arcs e ∈ E′ := {e ∈ E : xe = (X0)ae 6= 0}. By
property (c), G′ is the union of all (s, t)−paths of G0 that use arc a. Hence, G′ is a proper DAG,
and it is easy to see that all (s, t)-paths in G′ must use arc a. We can now apply Lemma 3.4
to get a decomposition of the signed flow vector x′ := {xe|e ∈ E′} over the graph G′. This
decomposition has the required property: all paths of the decomposition go through a, and use
edges of E′ ⊆ E0 only.

We can finally prove the main result of this section:

Theorem 3.5. The membership problem MEM(K) is NP-complete.

9

s t

1

4

2

5

3

6

X =


1 1 1 0 0 0
1 1 0 0 0 1
1 0 1 0 1 0
0 0 0 1 1 1
0 0 1 1 1 0
0 1 0 1 0 1


Figure 1: Example of a matrix X ∈ K2 \ K, with the corresponding graph G. We have X /∈ K,
because X1,1 = X1,2 = X1,3 = 1 implies that all the infinitesimal particles of flow going through
arc 1 also pass through arcs 2 and 3, but this contradicts X2,3 = 0.

Proof. We already know that MEM(K) is in NP, so it suffices to prove that MEM(K) is NP-hard.
Theorem 3.3 tells us that the linear envelope H = spanK of K is equal to the set of solutions

of a system of O(n2) equations. We can hence construct (in polynomial time) an orthonormal
basis u1, . . . ,ur for H = V, which we rearrange to form a n2 × r matrix U with orthonormal
columns. Then, by Theorem 3.2, we know that WMEM(K, H) is NP-hard. Finally, MEM(K) is
NP-hard, because for all ε > 0, X ∈ K implies that (X, ε) satisfies condition (i) of WMEM(K, H),
and X /∈ K implies that (X, ε) satisfies condition (ii).

4 Approximation Hierarchies

4.1 A Tensor-based hierarchy

Let X ∈ K. We already observed that diagX is a flow, i.e., diagX ∈ A. It is easy to see
that columns of X are flows, too: if X =

∑
P∈P fP1P1

T
P , then Xei = [X1i, X2i, . . . , Xni]

T =∑
P3i fP1P is the subflow of all particles that go through arc i, which is a flow of value

∑
P3i fP =

Xii. Hence,

K ⊆ K2 := {X ∈ Sn : diagX ∈ A, Xei ∈ A(Xii), ∀i ∈ {1, . . . , n}} .

In words, K2 is the polyhedron containing all symmetric matrices such that the diagonal is a flow,
and the ith column is a flow of value Xii. Of course, the converse inclusion does not hold, since
we know that K does not admit a compact description (unless P = NP). A counter-example is
depicted in Figure 1.

For u ≥ 0 we also introduce the set K2(u), which consists of all matrices X ∈ K2 such that
the diagonal of X is a flow of value u ≥ 0:

K(u) ⊆ K2(u) :=

X ∈ K2 :
∑

i∈δ+(s)

Xii = u

 .

The above inclusion already shows how to construct one relaxation of optimization problems
over K. For example, a lower bound for the QSPP (see Section 2) can be computed by replacing
the constraint X ∈ K(1) (which is polyhedral but involves one variable for each path P ∈ P) in
Problem (4) by the compact constraint X ∈ K2(1). It is also easy to see that a matrix X is of
the form 1P1

T
P for some path P ∈ P if and only if

X ∈ KMIP
2 =

{
X ∈ K2 : ∀i ∈ {1, . . . , n}, Xii ∈ {0, 1}

}
.

10

Therefore, the QSPP can be reformulated as the following mixed integer programming (MIP)
problem:

qspl(Q) = min 〈Q,X〉 (10)

s.t. X ∈ KMIP
2 .

More generally, we can extend this approach by considering the equalities that must be satis-
fied by the tensor T f = {T f

i1,...,ik
}1≤i1,...,ik≤n, where T f

i1,...,ik
=
∑
P⊇{i1,...,ik} fP is the amount of

flow using all arcs from the set {i1, i2, . . . , ik}. By definition, T f belongs to the set Tnk ⊂ Rn×···×n
of setwise symmetric tensors, that satisfy the property that Ti1,...,ik only depends on its set of
indices {i1, . . . , ik} (e.g., for k = 3 we have Tijj = Tiij). For ease of notation, we can hence
index the elements of T ∈ Tnk as TJ , where J belongs to the set Ik of all nonempty subsets of
{1, . . . , n} with at most k elements:

Ik := {J ⊆ {1, . . . , n} : 1 ≤ |J | ≤ k}.

For T ∈ Tnk and J ∈ Ik−1, we further introduce the notation

diag T = [T{1}, . . . , T{n}]
T ∈ Rn

mat T = {T{ij}}1≤i,j≤n ∈ Sn
beamJ(T) = [TJ∪{1}, . . . , TJ∪{n}]

T ∈ Rn.

Now, for k = 1, 2, . . . , we construct the following sets:

Tk = {T ∈ Tnk : diag T ∈ A, ∀J ∈ Ik−1, beamJ(T) ∈ A(TJ)}.

Note that T1 is isomorphic to A and T2 is isomorphic to K2. By construction, if X =∑
P∈P fP1P1

T
P ∈ K, then the tensor

T f =
∑
P∈P

fP 1P ⊗ · · · ⊗ 1P︸ ︷︷ ︸
k times

is such that T f ∈ Tk, and matT f = X. Hence, for all k ≥ 2 we have

K ⊆ Kk := {matT : T ∈ Tk}.

For some k ≥ 2, let T ∈ Tk+1 and define T ′ = {TJ}J∈Ik ∈ Tnk . We clearly have T ′ ∈ Tk and
matT ′ = matT , which shows Kk+1 ⊆ Kk. Hence, we have:

K ⊆ · · · ⊆ K3 ⊆ K2. (11)

In fact, we can even show that the hierarchy converges after a finite number of steps: It holds
that K = KN , where N is the length of the longest (s, t)−path in G. We point out that Kk is
defined by a set of |Ik|+ 1 flows on a graph with m vertices; its description involves O(mnk−1)
linear equations on O(nk) variables.

Proposition 4.1. Let N = max{|P | : P ∈ P} denote the length of the longest (s, t)−path in G.
Then, we have the following approximation hierarchy for K:

K = KN ⊆ KN−1 ⊆ · · · ⊆ K3 ⊆ K2.

Proof. The inclusions K ⊆ Ki+1 ⊆ Ki hold for all i ≥ 2, by construction. So the only thing to
show is the inclusion KN ⊆ K. Let X ∈ KN . By definition, there exists a tensor T ∈ TN such
that X = matT . For all P ∈ P, P is a nonempty set of arcs of cardinality bounded by N , so
P ∈ IN and TP is well defined.

11

We first need to prove an intermediate result: we claim that if J is a subset of {1, . . . , n} such
that no path contains all arcs of J , then TJ = 0. Let J be such a set of arcs. Then, there exist
two arcs i, j ∈ J such that ∀P ∈ P, (i /∈ P or j /∈ P). Now, let S = J \ {j}, and consider the
vector x = beamS(T), which must be a flow of value TS . Moreover, we have TS ≥ xi + xj (since
no path traverses both i and j), with xi = TS∪{i} = TS and xj = TS∪{j} = TJ . This means:
TS ≥ TS + TJ , from which we deduce TJ = 0.

We will now show by induction on k = N,N − 1, . . . , 1 that the equality

TJ =
∑

P∈P:P⊇J

TP (12)

holds for all J ∈ IN of cardinality k. For k = 2, this property shows that X ∈ K. We initiate the
induction at k = N . Let J be a subset of {1, . . . , n} of cardinality N . Then either J is a path,
or there is no path P such that J ⊆ P . In both cases, the equality (12) holds.

Now, assume that the property holds for k = j+ 1, . . . , N , and let J be a subset of {1, . . . , n}
of cardinality j. We distinguish three cases: (i) if J is a path, then the sum on the right-hand-
side of (12) reduces to TJ , so the equality holds; (ii) if no path contains J , then we know that
TJ = 0, and the sum the right-hand-side of (12) goes over the empty set; (iii) Otherwise, J can
be augmented to form a path. So there exists a vertex v 6= s with a single predecessor in J and
no successor in J , or a vertex v 6= t with a single successor in J and no predecessor in J . Let
us assume the former case (the second case can be handled similarly), and let δ−(v) ∩ J = {i},
δ+(v) ∩ J = ∅. The vector x = beamJ(T) is a flow, so

∑
e∈δ−(v) xe =

∑
e∈δ+(v) xe. There is no

path using two arcs from δ−(v), so TJ∪{e} = 0 for e ∈ δ−(v) \ {i}, and the left hand side reduces
to TJ∪{i} = TJ . For an arc e ∈ δ+(v), J ∪ {e} is of cardinality j + 1, so we can use the induction
hypothesis: xe = TJ∪{e} =

∑
P∈P:P⊇J∪{e} TP . Finally, since no path can use two arcs of δ+(v),

the sets {P ∈ P : P ⊇ J ∪ {e}} form a partition of {P ∈ P : P ⊇ J}, and the right-hand side of
the flow conservation at v becomes

∑
P∈P:P⊇J TP .

4.2 A completely positive representation

Observe that all flow matrices X ∈ K are positive semidefinite by construction, and even com-
pletely positive because 1P1

T
P ∈ C∗n ⊂ S∗n. It follows that

K ⊆ K∗2 ⊆ K+
2 ⊆ K2

where we defined K∗2 := K2∩C∗n and K+
2 := K2∩S+

n . In fact, we next show that the first inclusion
holds with equality.

Optimization problems over C∗n are in general intractable, but the set of completely positive
matrices can be approximated by simpler cones. In particular, there exist several inner and outer
nested approximation hierarchies converging to C∗n, see e.g. [Dür10, Las14].

Theorem 4.2. A symmetric matrix X ∈ Sn is a flow matrix if and only if it belongs to K2 and
is completely positive, i.e., K = K∗2.

Proof. Let X ∈ K2, and assume that X ∈ C∗n, that is, X =
∑q
k=1(xk)(xk)T for some vectors

x1, . . . ,xq ∈ Rn+. We are going to prove that X ∈ K, which shows K∗2 = K2 ∩ C∗n ⊆ K.
For all (i, k) ∈ {1, . . . , n} × {1, . . . , q}, denote by xki the ith element of xk, and denote by xi

the vector of dimension q with elements (x1
i , . . . , x

q
i). Observe that Xij = xTi xj =

∑
k x

k
i x

k
j .

Consider a vertex v ∈ V \ {s}, and let i be an arc incident to v. We have X ∈ K2, so the ith

column of X is a flow of value Xii, and the amount of this flow passing through vertex v cannot
exceed Xii: ∑

e∈δ−(v)

Xei ≤ Xii.

Since i ∈ δ−(v) and the Xei’s are nonnegative, the inequality above must be an equality. Hence,∑
e∈δ−(v)\i

∑
k x

k
ex

k
i = 0. All terms of this sum are nonnegative, which implies that xki x

k
j = 0

12

whenever two distinct arcs i and j are incident to the same vertex v. To summarize, for all k
and for all v ∈ V \ {s}, there exists at most one arc e ∈ δ−(v) such that xke > 0. Similarly, for all
v ∈ V \ {t} there is at most one arc e ∈ δ+(v) satisfying xke > 0.

Now, consider a vertex v ∈ V \ {s, t}. We define K− =
{
k ∈ {1, . . . , q} : ∃e ∈ δ−(v) : xke > 0

}
and K+ =

{
k ∈ {1, . . . , q} : ∃e ∈ δ+(v) : xke > 0

}
. For k ∈ K− (k ∈ K+) we denote by i−k

(i+k) the unique arc e ∈ δ−(v) (e ∈ δ+(v)) such that xke > 0. Let us write the flow conservation
equation at v, for the flow corresponding to the ith column of X:

∀i ∈ [N],
∑

e∈δ−(v)

∑
k

xkex
k
i =

∑
e∈δ+(v)

∑
k

xkex
k
i .

For each k, each sum over e ∈ δ−(v) and e ∈ δ+(v) has at most one nonzero term, so the equation
simplifies to:

∀i ∈ [N],
∑
k∈K−

xk
i−k
xki =

∑
k∈K+

xk
i+k
xki . (13)

Summing Eq. (13) over all i ∈ δ−(v) (respectively over i ∈ δ+(v)), we obtain:∑
k∈K−

(xk
i−k

)2 =
∑

k∈K−∩K+

xk
i+k
xk
i−k

=
∑
k∈K+

(xk
i+k

)2.

From the Cauchy-Schwarz inequality applied to the vectors u,v ∈ Rq, where uk = xk
i−k

if k ∈ K−

and uk = 0 otherwise, and vk = xk
i+k

if k ∈ K+ and vk = 0 otherwise, we see that u = ±v. Since

the xki ’s are nonnegative, we have xk
i−k

= xk
i+k

for all k ∈ K+ = K−. From this, we deduce that

for all k the vector xk is a flow that is supported by a single (s, t)−path Pk (because for each
non-terminal vertex v,

∑
e∈δ− x

k
e = uk = vk =

∑
e∈δ+ x

k
e). Finally, we have xk = αk1Pk

for some

αk ∈ R, so it holds that X =
∑
k fk 1Pk

1TPk
∈ K, where we have set fk = α2

k ≥ 0.

4.3 Relation with the completely positive representation of Burer

There is another way to obtain a completely positive representation of the cone K. Indeed, Burer
showed in [Bur09] that all binary quadratic optimization problems can be reformulated as a linear
program over the cone of completely positive matrices. In particular, one result shown in the
Section 3 of this article can be stated as follows: Denote by L0 the set of {0, 1} vectors satisfying
Ax = b, where A ∈ Rm×n and b ∈ Rm, and assume that (Ax = b =⇒ x ∈ [0, 1]n). We further
assume that there exists a vector y ∈ Rm such that α := ATy ∈ Rn+ and bTy = 1. Then, we
have

conv
{
xxT : x ∈ L0

}
= C∗n ∩M,

where

M =
{
X ∈ Sn : Xα = diagX, AXα = b, diag(AXAT) = b ◦ b, αTXα = 1

}
. (14)

In the above equation, the symbol ◦ denotes the Hadamard product, so b◦b is the m−dimensional
vector with coordinates (b◦b)i = b2i . A direct application of this result yields a completely positive
representation of the cone K:

Proposition 4.3. Let Ā ∈ Rm−2×n be the matrix such that the flow conservation equations (1)
at all nodes v /∈ {s, t} can be written as Āx = 0. Let α be the n−dimensional vector with
coordinates αi = 1 if i ∈ δ+(s), and αi = 0 otherwise. Then, we have K = C∗n ∩ KBURER, where

KBURER =
{
X ∈ Sn : Xα = diagX, ĀXα = 0, diag(ĀXĀT) = 0

}
.

13

Proof. Let A be the incidence matrix of G, and let b be the vector of dimension m such that
bs = −1 and bt = 1, so the flow conservation equations (1) can be written as Ax = b for a flow
of value u = 1. It is well known that the (s, t)-paths P ∈ P are exactly the binary solutions of
the equations Ax = b, that is,

∃P ∈ P : x = 1P ⇐⇒
{
Ax = b
x ∈ {0, 1}n.

This means that we can use the result of Burer to obtain a completely positive representation of
K(1) = conv{1P1TP : P ∈ P}. Indeed, let y ∈ Rm be the vector such that ys = 0 and yv = 1
(for all v ∈ V \ {s}). Then, we have ATy = α ≥ 0 and bTy = 1. So we have K(1) = C∗n ∩M,
where M is the polyhedral set defined as in (14). Finally, the result of the proof is obtained by
removing the constraints that impose that the flow is of unit value.

It can easily be seen that we have K2 ⊆ KBURER, while the converse inclusion does not hold
(even if we include the inequalities Xij ≥ 0 in the definition of KBURER). As a result, relaxations
relying on the set K2 will yield tighter bounds than the relaxations one would have obtained from
the general result of [Bur09].

5 The cone of flow matrices in general graphs

So far, we have assumed that the underlying directed graph is acyclic. In this section, we will
show that this condition is indeed necessary, as relaxing it invalidates the natural generalizations
of Proposition 4.1 and Theorem 4.2. Nevertheless, we will see that it is still possible to use the
hierarchy (11) to obtain lower bounds for optimization problems such as the QSPP.

The theory we presented is based on the fact that an (s, t)-flow on a DAG can be decomposed
into a set of flows on (elementary) (s, t)-paths. In the presence of cycles, the equivalent property
is given to us by the well-known Flow Decomposition Theorem, which states that an (s, t)-flow
on a general directed graph can be decomposed into a set of flows on elementary (s, t)-paths and
on cycles. That is, x ∈ Rn+ satisfies the flow conservation constraints if and only if

x =
∑
P∈P

fP1P +
∑
C∈ξ

fC1C

for some fP , fQ ≥ 0, where ξ is the set of cycles in G.
Following the approach in the introduction, the natural extension of K to the general case is

to define

K := cone({1P1TP : P ∈ P} ∪ {1C1TC : C ∈ ξ}) =

∑
P∈P

fP1P1
T
P +

∑
C∈ξ

fC1C1
T
C

∣∣∣fP , fC ≥ 0

 .

Defining K(u) exactly as in (2), it is once again easy to see that

K(u) =

∑
P∈P

fP1P1
T
P +

∑
C∈ξ

fC1C1
T
C

∣∣∣fP , fC ≥ 0,
∑
P∈P

fP = u

 .

Furthermore, following an argument analogous to that used in Section 4.1, we can see that
the inclusions

K ⊆ · · · ⊆ K3 ⊆ K2

still hold. In fact, it is easy to see that Kr = Kn for each r ≥ n, because the elements of a tensor
T ∈ Tnk are indexed by sets J ∈ Ik ⊆ {1, . . . , n}. So, to prove convergence as in Proposition
4.1, we would need K = Kn to be satisfied. Unfortunately, this does not always hold. To see

14

this, consider the very simple example of a directed graph G = (V,E) with V = {s, t} and
E = {(s, t), (t, s)}. We have P = {{(s, t)}} and ξ = {{(s, t), (t, s)}}, and so it holds that

K = cone

({(
1 0
0 0

)
,

(
1 1
1 1

)})
=

{(
a b
b b

) ∣∣∣a ≥ b ≥ 0

}
.

On the other hand, by definition of K2, we have

Kn = K2 =

{(
a b
b c

) ∣∣∣a ≥ b ≥ c ≥ 0

}
,

which proves that the hierarchy does not converge.
Similarly, the generalization of Theorem 4.2 cannot be proven in this case. That is, the

equality
K = K2 ∩ C∗n

does not hold. To see this, consider the same example as before, and note that C∗2 = S+
2 ∩Rn×n+

(it is known that the cone of completely positive matrices coincides with the cone of doubly
nonnegative matrices for n ≤ 4, see [BSM03, DA13]). So, we have

K2 ∩ C∗n =

{(
a b
b c

) ∣∣∣ a ≥ b ≥ c ≥ 0, ac− b2 ≥ 0

}
,

which again does not equal K. We observe however that the constraint X � 0 improved the
situation, since it reduced the interval in which the variable b must lie (now we have a ≥

√
ac ≥

b ≥ c ≥ 0).
Fortunately, the study of K2 does give us insight on some optimization problems. For example,

consider the quadratic shortest path problem (QSPP) as defined in Section 2:

qspl(Q) = min
p∈P

1TPQ1P .

As is done with various shortest path problems on graphs with cycles, we assume that there exist
no cycles with negative (quadratic) length. That is,

1TCQ1C ≥ 0 ∀C ∈ ξ.

Then, we have

min
P∈P

1TPQ1P = min
fP ≥ 0∑
P fP = 1

∑
P∈P

fP1PQ1TP

= min
fP , fC ≥ 0∑
P fP = 1

∑
P∈P

fP1PQ1TP +
∑
C∈ξ

fC1CQ1TC

= min
fP , fC ≥ 0∑
P fP = 1

〈
Q,
∑
P∈P

fP1P1
T
P +

∑
C∈ξ

fC1C1
T
C

〉

= min
X∈K(1)

〈Q,X〉 ≥ min
X∈K2(1)

〈Q,X〉.

The last inequality follows from the inclusion K ⊆ K2. Since the last expression is an LP, it can
be used to obtain lower bounds for the QSPP.

15

6 Computational results

6.1 Bounds for the Quadratic Shortest Path Problem

In this section, we compute some lower bounds for the QSPP, of the form

qspl(Q) = min
X∈K(1)

〈Q,X〉 ≥ min
X
〈Q,X〉

s.t.
∑

i∈δ+(s)

Xii = 1

X ∈ K,

where K is one of the following cones: K2,K3,K+
2 . This gives bounds that can be computed

in polynomial time, by using either a Linear Programming (LP) or Semidefinite Programming
(SDP) solver.

We will compare these bounds to the bound proposed in [RCH+16, Section 4.2], which we
denote by RBGL for Reformulation-based Bound of the Gillmore-Lawler type. This bound can
be computed very efficiently: it reduces to solving n min-cost flow problems.

We solved instances on square (d = 2) and cubic (d = 3) grids of size `, that is, a graph
Gd,` = (V,E), where V = {1, . . . , `}d, and E = {(u,v) ∈ V 2 : ‖u− v‖ = 1,v ≥ u}. The source
of Gd,` is s = [1, . . . , 1] ∈ Rd and its sink is t = [`, . . . , `] ∈ Rd. We also consider instances
on the bidirected grids Ḡd,` = (V,E), which we construct from Gd,` by adding an arc (v, u)
for each existing arc (u, v). The cost matrices are generated at random, with linear costs Qii
drawn uniformly at random in the interval [0, 4], and interaction costs Qij = Qji (i 6= j) drawn
uniformly in [0, 1]. The nonnegativity of the costs ensures that there are no cycles of negative
quadratic length, so as seen in the previous section, the relaxations over K2,K3, or K+

2 are still
valid over the general directed graphs Ḡd,`.

We solved the LPs with CPLEX 12.6 [CPL09] over a PC with 8 cores at 3.6 GHz and with 32
GB RAM under Linux. The relaxation over K+

2 is an SDP, but we solved these problems with
the LP solver of CPLEX, too, by using a basic cutting plane strategy (see [KM06]): we start by
computing the solution of the LP relaxation X∗ over K2. Then, at each iteration, we compute
the smallest eigenvalue λmin of X∗ and its associated eigenvector u. If λmin ≥ 0, X∗ is a solution
of the SDP relaxation over K+

2 . Otherwise, we add the linear cut inequality uTXu ≥ 0 to the LP
and we iterate. For the instances we considered, this cutting-plane strategy was more effective
than using a commercial SDP solver.

Our results are displayed in Table 1. Each row of the table gives summary information for 20
instances on one particular graph, corresponding to 20 randomly generated cost matrices. The
first three columns give a ratio of the form P/N , which means that we were able to solve N
relaxations out of the 20 instances (all failures were due to memory overflow), and P of them
have no gap. The next columns show the mean gap (averaged over the N instances where the
relaxation could be solved) between the computed lower bound and the optimal solution. We
computed the RBGL bound from [RCH+16], and its gap is also shown in the table. The last
columns show the CPU time required to compute the bounds (in seconds), as well as the optimal
solution by using the MIP (10) over KMIP

2 .
We observe that the bounds from the relaxations over K = K2,K3,K+

2 are of a much better
quality than the bound RGBL of [RCH+16]. For example, the mean gap for the K+

2 -relaxation is
always less than 1%. However, the computing cost of our bounds are much higher, especially for
large instances. We also already mentioned that the proposed relaxations are very demanding in
terms of memory. Finally, we observe that the bounds from our relaxation over the bidirected
graphs Ḡd,` are excellent, and even better than for the instances on the acyclic graphs Gd,`.

16

Instances without gap mean gap CPU (s)

Graph K2 K3 K+
2 K2 K3 K+

2 RBGL KMIP
2 K2 K3 K+

2 RBGL
G2,6 20/20 17/17 20/20 0.00% 0.00% 0.00% 16.40% 0.03 0.01 0.07 0.01 0.09
G2,8 18/20 20/20 19/20 0.17% 0.00% 0.02% 23.18% 0.27 0.10 6.08 0.11 0.31
G2,10 12/20 0/0 15/20 0.46% – 0.03% 27.28% 3.37 2.29 – 2.33 0.86
G2,12 5/20 0/0 10/20 0.73% – 0.10% 30.44% 142.20 33.03 – 179.12 1.95
G2,14 0/20 0/0 0/19 1.90% – 0.76% 31.97% 2263.48 697.28 – 1623.91 3.89
G3,3 20/20 20/20 20/20 0.00% 0.00% 0.00% 15.10% 0.01 0.00 0.02 0.00 0.06
G3,4 19/20 20/20 20/20 0.01% 0.00% 0.00% 24.91% 0.21 0.05 1.26 0.05 0.40
G3,5 19/20 0/0 20/20 0.03% – 0.00% 32.07% 17.95 14.62 – 14.85 1.76
Ḡ2,4 20/20 20/20 20/20 0.00% 0.00% 0.00% 8.59% 0.01 0.00 2.47 0.00 0.05
Ḡ2,6 20/20 5/5 20/20 0.00% 0.00% 0.00% 15.07% 0.20 0.16 9739.66 0.16 0.35
Ḡ2,8 15/20 0/0 20/20 0.11% – 0.00% 23.32% 8.72 4.98 – 5.15 1.33
Ḡ2,10 12/20 0/0 19/20 0.22% – 0.00% 27.47% 132.89 97.17 – 99.57 3.79
Ḡ2,12 6/20 0/0 8/9 0.24% – 0.00% 30.47% 8232.74 869.54 – 6105.35 8.84
Ḡ3,3 20/20 20/20 20/20 0.00% 0.00% 0.00% 15.67% 0.08 0.02 1003.11 0.03 0.24
Ḡ3,4 19/20 0/0 20/20 0.01% – 0.00% 28.87% 14.17 11.24 – 12.09 1.89
Ḡ3,5 19/20 0/0 20/20 0.01% – 0.00% 33.37% 781.29 705.66 – 732.19 8.59

Table 1: Results for 20 random instances of the QSPP for each considered graph.

6.2 Maximum flow problem with pairwise arc-capacities

The relaxation scheme proposed in this paper is not restricted to problems in which a single path
must be computed, such as the the QSPP. In this section, we study a special flow problem that
can also be formulated as an optimization problem over K. This is a variant of the maximum
flow problem, in which, for all pairs (i, j) ∈ E × E, there is a paired capacity Cij that limits the
amount of flow sent across both arcs i and j. Such a problem could arise in a telecommunication
network with interference between the arcs i and j. The Maximum Flow problem with Paired
Arc-Capacities (MFPAC) is to send the maximum amount of flow

∑
P∈P fP from s to t, subject

to the pairwise capacity constraints∑
{P∈P:i∈P,j∈P}

fP ≤ Cij (∀i, j ∈ E × E).

When all paths can be enumerated, MFPAC can be formulated as the following linear program
(LP):

max
f∈R|P|+

∑
P∈P

fP (15)

s. t. X =
∑
P∈P

fP1P1
T
P ≤ C,

where the inequality X ≤ C is componentwise, i.e., Xij ≤ Cij . If the enumeration of all paths
is prohibitive, we can also design a column generation procedure to solve Problem (15), but it
can be seen that the pricing problem reduces to solving a QSPP: At each iteration, we solve the
restricted master problem, which corresponds to Problem (15), where P is replaced by a subset
P̂ ⊂ P. Then, we compute the quadratic shortest path P ∗ for the cost matrix Y , where Y is
the optimal dual variable of the constraint X ≤ C. The column generation procedure ends if
qspl(Y) ≥ 1. Otherwise, we add P ∗ into P̂ and we iterate.

It is straightforward that MFPAC can be reformulated as a linear optimization problem
over K:

max
X∈Sn

∑
e∈δ+(s)

Xee

s. t. X ≤ C
X ∈ K.

In what follows, we solve the LP relaxations obtained by replacing the constraint X ∈ K by
X ∈ K2 or X ∈ K3, and the semidefinite programming (SDP) relaxation obtained by using the

17

Instances without gap mean gap worse gap
Graph K2 K3 K+

2 K2 K3 K+
2 K2 K3 K+

2
G2,2 20/20 20/20 20/20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
G2,3 20/20 20/20 20/20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
G2,4 17/20 20/20 17/20 0.77% 0.00% 0.77% 7.75% 0.00% 7.75%
G2,5 10/20 13/14 10/20 2.98% 0.00% 2.45% 15.67% 0.05% 11.62%
G2,6 12/20 19/20 12/20 3.26% 0.01% 3.07% 11.94% 0.15% 11.94%
G2,7 7/20 20/20 7/20 5.29% 0.00% 5.11% 16.27% 0.00% 16.26%
G2,8 7/20 18/20 7/20 5.22% 0.08% 4.87% 27.15% 0.88% 20.58%
G2,9 9/20 0/0 9/20 3.44% – 3.43% 15.08% – 15.06%
G2,10 10/20 0/0 10/20 3.75% – 3.71% 17.39% – 16.81%

G3,2 20/20 20/20 20/20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
G3,3 15/20 16/16 15/20 0.46% 0.00% 0.46% 3.79% 0.00% 3.78%
G3,4 9/20 18/18 9/20 1.29% 0.00% 1.29% 8.96% 0.00% 8.95%
G3,5 19/20 0/0 19/20 0.07% – 0.07% 1.48% – 1.47%

H3,5 14/20 20/20 14/20 4.04% 0.00% 2.59% 27.26% 0.00% 14.19%
H3,6 8/20 19/20 8/20 5.29% 0.14% 4.72% 18.45% 2.75% 14.01%
H3,7 7/20 17/20 7/20 6.49% 0.39% 5.96% 28.87% 5.82% 25.85%
H3,8 7/20 18/20 7/20 6.10% 0.11% 4.50% 28.70% 1.93% 14.01%
H3,9 6/20 16/19 6/20 11.33% 0.31% 8.39% 37.79% 2.93% 23.21%
H3,10 2/20 17/20 2/20 13.69% 0.15% 9.95% 40.69% 2.09% 24.28%
H3,11 3/20 17/20 3/20 13.37% 0.36% 10.37% 41.17% 5.92% 28.41%
H3,12 5/20 18/20 5/20 11.18% 0.22% 7.61% 48.37% 2.92% 26.23%
H3,13 4/20 18/20 4/20 11.03% 0.19% 9.04% 40.88% 3.76% 28.20%

Table 2: Results for 20 instances of each considered graph. Each row gives the results for three relaxations of
the MFPAC problem (15), with K ∈ K replaced by K ∈ K2, K ∈ K3, or K ∈ K+

2 .

constraint X ∈ K+
2 , that is, X ∈ K2, X � 0. This gives upper bounds for Problem (15) that

can be computed in polynomial time. In addition to instances defined over grid graphs Gd,`, we
also computed bounds for the MFPAC on the series-parallel graph H3,`, which is a graph with
` vertices and 3 parallel arcs from i to i + 1 (i = 1, . . . , ` − 1). Obviously, for this graph we set
s = 1 and t = `.

As for the QSPP, we generated 20 random instances for each considered graph. The capacity
matrix C ∈ Sn have been generated with diagonal elements drawn from the uniform distribution
U([0, 4]), and off-diagonal elements follow U([0, 1]). Table 2 shows, for each graph and each
relaxation, the number of instances for which the relaxation yields the optimal solution. In the
table, P/N means that we were able to solve N relaxations out of the 20 instances (within a
time-limit of 15 minutes, all failures were due to memory overflow), and P of them have no gap.
The other columns give the mean gap and the worse gap across the N solved relaxations, where
the gap is defined as δ = val(relaxation)/ val(Problem (15))− 1 and val(P) denotes the optimal
value of Problem P .

From the table, we see that K2 already yields pretty good upper bounds, although the gaps are
not as good as for the QSPP. The approximation based on K3 gives excellent results, especially
for grid graphs, where it almost always found the optimal solution. However, many attempts
to solve instances over K3 failed because of memory issue. The non-polyhedral approximation
K+

2 is better than K2, and does not have the disadvantage to require a huge amount of memory.
Finally, we observe that the quality of the relaxations decreases as the graph grows, but the gaps
seem to reach a plateau and stabilize for the instances we considered.

7 Perspectives

We have presented some approximation hierarchies for the cone of flow matrices K, that can be
used to obtain relaxations for several hard flow-optimization problems that can not be handled
by the standard arc-representation of a flow. We think that the cone of flow matrices K could be
used for a variety of other applications.

We mentioned in the introduction the problem of computing a maximum flow supported by

18

paths of length ≤ L [BEH+10]. Let ci denote the length of arc i, so that the length of a path
reads cT1P : Then, a feasible flow x necessarily satisfies cTx ≤ L, because cTx represents the
average length of the path followed by an infinitesimal particle of flow:

cTx =
∑
i

cixi =
∑
i

ci
∑
P3i

fP =
∑
P∈P

fP 1TP c︸︷︷︸
≤L

.

Similarly, if we lift the problem over the space of flow matrices, the matrix X =
∑
P fP1P1

T
P

associated with the flow must satisfy

eTi Xc ≤ L ∀i ∈ {1, . . . , n}, (16)

because the sub-flow of particles using arc i is also supported by paths of length ≤ L. Such
inequalities can be used to obtain tighter bounds for the L-bounded maximum flow problem.

Another potential application is in the field of optimal design of experiments (DoE). Here, the
goal is to decide which proportion wi of a total number of experimental runs should be performed
under the conditions xi, when the aim is to estimate an unknown vector of parameters θ ∈ Rn. It
is assumed that an experimental run at xi provides an observation of the form yi = f(xi)

Tθ+ εi,
where the measurement errors are identically and independently distributed (i.i.d.). This leads
to optimization problems of the form

max
w≥0,

∑
i wi=1

Φ

(∑
i

wif(xi)f(xi)
T

)
,

where Φ : S+
n → R is a concave function, such as the D-criterion ΦD : M 7→ (detM)

1
n , or the

A-criterion ΦA : M 7→ (1
n traceM−1)−1, see e.g. [Puk93]. In some applications, the f(xi)’s can

correspond to incidence vectors of paths in a graph. Assume for example that we want to measure
the delay θi of each link e ∈ E in a telecommunication network. We assume that it is possible to
measure the ping time on each route from s to t, that is, we can measure yP = 1TPθ+ ε; A similar
problem was studied in [TN05]. Then, the problem of selecting the optimal proportion wP of
pings to perform on route P can be formulated as a compact, convex optimization problem over
K(1):

max
w≥0,

∑
P wP =1

Φ

(∑
P∈P

wP1P1
T
P

)
= max
X∈K(1)

Φ(X).

Another possible application in the field of DoE is for the model of spring balance weighing
designs [JN83, Gra11, FHK11]: The goal is to determine the weight θi of n items, and it is
possible to measure the sum of the weights of any subset of the articles (by placing these items
in the spring balance): yS =

∑
i∈S θi + εS . If the measurement errors are independently and

identically distributed, the DoE problem can be written as

max
w≥0,

∑
S wS=1

Φ

(∑
S

wS1S1
T
S

)
,

where the sum goes over all subsets S of {1, . . . , n}, and 1S is the incidence vector of S. Now,
consider the graph H2,n+1, which has n + 1 vertices and 2 parallel arcs between i and i + 1
(i = 1, . . . , n), and where we set s = 1 and t = n+ 1. For an appropriate order of the 2n arcs of
this graph, the incidence vector of an (s, t)−path is of the form [1TS ,1

T
S̄]T , where S is a subset

of {1, . . . , n} and S̄ = {1, . . . , n} \ S is its complement. It follows that the DoE problem for the
spring balance design model can be formulated as a convex optimization problem over K(1) for
the graph G = H2,n+1:

max
X11,X12,X22

Φ(X11)

s.t.

(
X11 X12

XT
12 X22

)
∈ K(1)

19

where X11, X12 and X22 are the n×n blocks of a flow matrix. This formulation has the advantage
of being compact, and does not require the enumeration of all subsets of {1, . . . , n}. We point out
that analytic formulas for some optimal designs of the spring balance model are known [JN83],
but the present approach could be used to compute optimal designs in the presence of additional
restrictions. For example, we can impose a limit on the proportion of weighings that involve
item i by using a constraint of the form Xii ≤ α, or we can obtain bounds for the problem in
which the number of items to use in each weighting is bounded, by adding constraints of the
same form as (16).

So far, our relaxations can only be used to obtain bounds for some optimization problem.
In particular, we have only worked with the outer approximation C∗n ⊆ S+

n ∩ Rn×n+ , but inner
approximations of C∗n also exist [Las14]. If we solve the relaxation obtained by replacing the
constraint X ∈ K by the constraint X ∈ Kinner, where Kinner ⊂ K, we will obtain a matrix
X ∈ K, but it is unclear how to obtain a decomposition of the form X =

∑
P fP1P1

T
P , with

fP ≥ 0. A possibility would be to apply the decomposition algorithm 1, but there is no guarantee
that the returned fP are nonnegative. Maybe it is possible to design a procedure that transports
some weight from a set of backward paths to a set of forward paths, in order to get a decomposition
where each fP is nonnegative.

Another open question is whether there exists a combinatorial algorithm to solve linear op-
timization problems over K2,K3, Alternatively, we would like to investigate decomposition
methods in order to solve problems over K3 or K3 without the need of considering O(n2) or O(n3)
variables, respectively.

References

[AMO93] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows: theory, algorithms, and
applications. Prentice hall, 1993.

[BEH+10] G. Baier, T. Erlebach, A. Hall, E. Köhler, P. Kolman, O. Pangrác, H. Schilling,
and M. Skutella. Length-bounded cuts and flows. ACM Transactions on Algorithms
(TALG), 7(1):4, 2010.

[BR06] A. Berman and U.G. Rothblum. A note on the computation of the cp-rank. Linear
Algebra and its Applications, 419(1):1–7, 2006.

[BSM03] A. Berman and N. Shaked-Monderer. Completely positive matrices. World Scientific,
2003.

[Bur09] S. Burer. On the copositive representation of binary and continuous nonconvex
quadratic programs. Mathematical Programming, 120(2):479–495, 2009.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[BX05] A. Berman and C. Xu. {0, 1} completely positive matrices. Linear algebra and its
applications, 399:35–51, 2005.

[CPL09] IBM ILOG CPLEX. V12. 1 users manual for cplex. Technical report, International
Business Machines Corporation, 2009.

[CSSM07] J.R. Correa, A.S. Schulz, and N.E. Stier-Moses. Fast, fair, and efficient flows in
networks. Operations Research, 55(2):215–225, 2007.

[DA13] H. Dong and K. Anstreicher. Separating doubly nonnegative and completely positive
matrices. Mathematical Programming, pages 1–23, 2013.

20

[DG14] P.J.C. Dickinson and L. Gijben. On the computational complexity of membership
problems for the completely positive cone and its dual. Computational optimization
and applications, 57(2):403–415, 2014.

[Dür10] M. Dür. Copositive programming–a survey. In Recent advances in optimization and
its applications in engineering, pages 3–20. Springer, 2010.

[FHK11] L. Filová, R. Harman, and T. Klein. Approximate e-optimal designs for the model
of spring balance weighing with a constant bias. Journal of Statistical Planning and
Inference, 141(7):2480–2488, 2011.

[FL16] S. Friedland and L.-H. Lim. The computational complexity of duality. arXiv preprint
arXiv:1601.07629, 2016.

[GMO76] H.N. Gabow, S.N. Maheshwari, and L.J. Osterweil. On two problems in the generation
of program test paths. IEEE Transactions on Software Engineering, 2(3):227–231,
1976.

[Gra11] M. Graczyk. A-optimal biased spring balance weighing design. Kybernetika,
47(6):893–901, 2011.

[HUL12] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of convex anal-
ysis. Springer Science & Business Media, 2012.

[JN83] M. Jacroux and W. Notz. On the optimality of spring balance weighing designs. The
Annals of Statistics, 11(3):970–978, 1983.

[KM06] K. Krishnan and J.E. Mitchell. A unifying framework for several cutting plane meth-
ods for semidefinite programming. Optimization methods and software, 21(1):57–74,
2006.

[Las14] J.B. Lasserre. New approximations for the cone of copositive matrices and its dual.
Mathematical Programming, 144(1-2):265–276, 2014.

[Lau03] M. Laurent. A comparison of the sherali-adams, lovász-schrijver, and lasserre relax-
ations for 0–1 programming. Mathematics of Operations Research, 28(3):470–496,
2003.

[Puk93] F. Pukelsheim. Optimal Design of Experiments. Wiley, 1993.

[RCH+16] B. Rostami, A. Chassein, M. Hopf, D. Frey, C. Buchheim, F. Malucelli, and M. Go-
erigk. The quadratic shortest path problem: complexity, approximability, and solution
methods. Technical report, Technical Report available at www. optimization-online.
org, 2016.

[TN05] Y. Tsang and R. Nowak. Optimal network tomography. In IEEE INFOCOM 2005
Student Workshop, Miami, FL, USA, 2005.

A Proof of Lemma 3.4

Proof. Let x be a signed flow on G. We can see x as a standard (nonnegative) flow over the
directed graph G′ = (V ′, E′), which has an arc from i to j if xij > 0, and an arc from j to i
if xij < 0 (note that G′ might have cycles). We denote by |x| the vector of absolute values of
x. By the flow decomposition theorem (see [AMO93]), we can compute (in polynomial time) a
decomposition of the form

|x| =
∑
P∈P′

fP1P +
∑
C∈C′

fC1C ,

21

with fP ≥ 0, fC ≥ 0, P ′ is a set of (s, t)−paths in G′, C′ is a set of cycles in G′, and 1C is
the arc-incidence vector of cycle C. We can multiply (elementwise) the above equations by the
vectors of signs of xe. This yield an equality of the form

x =
∑
P∈P′

fP 1̃P +
∑
C∈C′

fC 1̃C , (17)

where the element e of 1̃P is 1 if e ∈ P and xe > 0, −1 if e ∈ P and xe < 0, and 0 otherwise.
Now, we shall see that the flow on each path and cycle of G′ can be decomposed as a sum of

positive and negative flows over paths of G.
We only handle the case of paths, the construction for cycles is similar. We recall that G is

a proper graph, which means that there is a path P (s, v) from s to v and a path P (v, t) from
v to t for all v ∈ V . Let P be a path in G′. The path P can decomposed as an alternating
sequence of forward subpaths, where the arcs of P have the same direction as in G, and backward
subpaths, where the arcs of P have the opposite direction as in G. We denote this sequence as
(P+

1 , P
−
1 , P

+
2 , . . . , P

−
k−1, P

+
K), where each P+

i is a forward subpath and each P−i is a backward

subpath. We denote the extremities of P−i by ui and vi, so the extremities of P+
i are vi−1 and

ui, and we have s = v0, t = uk.
Now we claim that we can write 1̃P =

∑k
i=1 1Q+

i
−
∑k−1
i=1 1Q−i

, where the Q+
i (Q−i) are paths

in G, defined by

Q+
i = P (s, vi−1) ∪ P+

i ∪ P (ui, t)

Q−i = P (s, vi) ∪ P [i ∪ P (ui, t),

where P [i denotes the set of arcs (u, v) such that (v, u) ∈ P−i (so P [i ⊆ E). Indeed,

k∑
i=1

1+
Qi
−
k−1∑
i=1

1−Qi
=

k∑
i=1

(
1P (s,vi−1) + 1P+

i
+ 1P (ui,t)

)
−
k−1∑
i=1

(
1P (s,vi) + 1P [

i
+ 1P (ui,t)

)
=1P (s,v0) +

k∑
i=1

1P+
i
−
k−1∑
i=1

1P [
i

+ 1P (uk,t)

=1P (s,s)︸ ︷︷ ︸
=0

+1̃P + 1P (t,t)︸ ︷︷ ︸
=0

A similar construction can be done for cycles. Then, in (17) we can replace each 1̃P and each
1̃C by a sum of forward paths and backward paths in G, to obtain the desired decomposition.

22

