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ABSTRACT

We present a Newton-like method to solve inverse problems and to quantify parameter uncertainties. We apply
the method to parameter reconstruction in optical scatterometry, where we take into account a priori information
and measurement uncertainties using a Bayesian approach. Further, we discuss the influence of numerical
accuracy on the reconstruction result.

Keywords: computational metrology, optical metrology, computational lithography, nanolithography, finite-
element methods, nanooptics

1. INTRODUCTION

Optical scatterometry is a method to measure the size and shape of periodic micro- or nanostructures on sur-
faces.1 For this purpose the geometry parameters of the structures are obtained by reproducing experimental
measurement results through numerical simulations. Such simulations are typically performed using parameter-
ized models and nonlinear optimization algorithms to find parameter settings which minimize differences between
the measurements and the numerically obtained result. Often also knowledge about experimental measurement
errors and model uncertainties is available, as well as prior knowledge obtained from additional measurements.
This can be used to also quantify uncertainties of the reconstructed parameter values.2–4
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Here we demonstrate an efficent method for parameter reconstruction and uncertainty quantification using
a Newton method to solve the inverse problem, an efficient finite-element based solver for the forward-problem,
and a Bayesian approach for relating measurement uncertainties and prior knowledge to the reconstruction
results. The paper is structured as follows: An optical scatterometry setup which serves as application example
is presented in Section 2. The reconstruction method is discussed in Section 3. Results are presented in Section 4.
Limits and caveats of using difference quotients to compute partial derivatives are addressed in the Appendix.

2. SCATTEROMETRIC SETUP

In order to test our method for solving the inverse problem we use an experimental scatterometry data set
obtained at PTB. Details of the measurement configuration have recently been reported.5 Briefly, in the ex-
periment, a silicon grating (1D periodic lines) with nominal pitch of px = 50 nm and nominal linewidth of
CD = 25 nm is used as scattering target in a goniometric setup with an inspection wavelength of λ = 266 nm. A
schematic of the measurement is shown in Figure 1 (left). A collimated light beam at well defined polarization
and angle of incidence (inclination angle θ, rotation angle φ) illuminates the target. The intensity of specular
reflection is recorded. Spectra depending on inclination angle θ are recorded for S- and for P-polarization, and
for rotation angles of φ = 0 and φ = 90.

The measured data set used in this study is plotted in Figure 2 (circles).
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Figure 1. Left: Schematics of the experimental 2θ setup with incidence angle θ and azimuthal orientation φ. Center:

Schematics of the model of a unit cell of the silicon line grating with free parameters line height, h, critical dimension at
h/2, CD, oxide thickness, hox, sidewall angle SWA, top and bottom corner roundings, rtop and rbot. Right: Visualization
of the triangular mesh for the FEM discretization.

3. RECONSTRUCTION METHOD

The reconstruction method described in the following employs a Bayesian perspective6 to compute not only the
most likely geometrical parameters describing the shape of the line grating, but also to quantify the uncertainties
inherent in the process. We start by describing the forward model, that is the modeling of the scattering signal
given a set of parameters x. We address some specifics of the electromagnetic field solver and finally give a
detailed insight into the Gauss-Newton method used to reconstruct the parameters.

Forward model. The forward model describes how the obtained measurements y ∈ R
m depend on the micro-

structure’s parameters x ∈ R
n. The computational model aims to describe the experimental setup outlined

in Section 2. The measurement of the various combinations of incidence angles, polarizations, and azimuthal



orientations are serialized and form the model evidence vector yM . Each entry corresponds to a solution of the
forward model for one of the given combinations. We parameterize the shape of the silicon line with a total of
n = 6 free parameters: the line height h, the line width (critical dimension) at h/2, CD, the oxide layer thickness,
hox, the sidewall angle, SWA, and the top and bottom corner roundings, rtop and rbot. Their definitions can be
found in Figure 1. In the reconstruction we allow for parameter values within large intervals describing a wide
range of line shapes. The bounds employed are listed as ranges in Table 1 for all free parameters. However, not
all combinations of parameters out of these intervals lead to meaningful line shapes. For example, we demand
that the corner rounding radius at the top of the line is smaller than half the width at the top. This restricts
the choice of parameter configurations as the parameters are no longer independent of each other.

The line grating is then modeled as a 2D unit cell in the cross section of an infinitely periodic array by
employing periodic boundary conditions at the boundaries in ±x direction, with a fixed periodicity of px = 50 nm.
The silicon substrate and air superstrate are modeled as infinite half-spaces by employing transparent boundary
conditions at the top and bottom of the computational domain shown in Figure 1.

The scattering of monochromatic light off the nanoscopic line grating is described by the linear Maxwell’s
equations in frequency domain. These lead to a single second order partial differential equation

∇× µ−1∇× E − ω2εE = 0 (1)

where ε and µ are the permittivity and permeability tensors, and ω is the time-harmonic frequency. Here,
impressed current sources are implicitely neglected. The materials are non-magnetic (µr=1.0) and refractive
indices for silicon, the top oxide layer and air of nSi = 1.967 + 4.443i, nox = 1.7212 + 0.113i and nair = 1.0,
respectively, are used.

Maxwell solver. Analytical solutions of Maxwell’s equations are not available on the complex parameterized
geometries under consideration. Therefore, a numerical simulation of the measurement process is necessary. We
employ the finite-element (FEM) electromagnetic field solver JCMsuite7, 8 which has been successfully used in
scatterometric investigations ranging from the optical9 to the EUV and X-ray regimes10, 11 on 2D (e.g., line
masks) and 3D (e.g., FinFETs, contact holes) scattering targets.

To solve the scattering problem outlined above, the computational domain is split into interior domain
ΩCD ⊂ R

3 and an exterior domain Ωext which hosts the incoming electromagnetic fields and the outgoing
scattered field. Waves incident on ΩCD are added to the right hand side of Equation (1) in the appriopriate
manner.8 Transparent boundary conditions are realized by the perfectly matched layer (PML) method. The
finite element method employs polynomials of order p with local support as ansatz functions over each element
with a mesh size h. Transforming Equation (1) into a weak formulation by multiplication with a test function
and subsequent integration leads to a linear equation

AE = f (2)

for the N coefficients E of the FEM ansatz functions. Here, A is a sparse matrix and f contains contributions
of incoming fields.

We use a workflow for the Maxwell solver starting and ending in the scripting language Matlab. Within a
typical Matlab function call, geometrical, material and source parameters are defined, program calls for mesh gen-
eration and solutions of the linear system, Eq. (2), are distributed to various computation cores of a workstation
or cluster, and the results are automatically collected and post-processed.

Inverse problem. For reconstructing likely parameters and quantifying the uncertainty of the reconstruction,
we take a Bayesian perspective.12 In this framework, the conditional probability π(x|y) of a certain parameter
vector x given the acquired measurement vector y, also known as posterior probability, is given by Bayes’ theorem
as the product of likelihood π(y|x) and prior probability π(x). With a sufficiently parameterized model capable



of representing the actual geometry, the likelihood describes essentially the measurement errors. Here we assume
independently normally distributed errors with zero mean and diagonal covariance Γl:

π(y|x) ∼ exp

(

−
1

2
(y − y(x))T Γ−1

l (y − y(x))

)

(3)

The parameters defining the geometric shape of the microstructure have to stay in an admissible bounded
region in order to avoid non-physical self-intersection. The admissible region can in general be defined as
X = {x ∈ R

m | gi(x) ≥ 0, i = 1, . . . , r} with smooth scalar valued functions gi. Imposing little bias within X ,
but assuming that parameters close to the boundary ∂X are less likely to occur in practice, we define a prior
density as

π(x) ∼ exp

(

r
∑

i=1

µi log gi(x)

)

(4)

for penalty factors µi > 0. The larger these factors are, the more bias towards the analytic center of the feasible
region is imposed by the prior density. To facilite the computation of derivatives of the prior, we rely heavily on
the use of automatic differentiation.13

From the resulting posterior density π(x|y) = π(y|x)π(x) reasonable point estimates can be computed. We
use the maximum posterior estimate xMAP = arg maxx∈X π(x|y). Taking the logarithm of π(x|y), this can be
computed by solving the minimization problem

xMAP = arg min
x∈X

F (x), F (x) =
1

2
(y − y(x))T Γ−1

l (y − y(x)) −

r
∑

i=1

µi log gi(x). (5)

Here we employ a Gauß-Newton like method14 for computing local minimizers of F . The objective’s first and
second derivatives are

F ′(x) = (y − y(x))T Γ−1
l y′(x) −

r
∑

i=1

µi

gi(x)
g′(x)

and

F ′′(x) = y′(x)T Γ−1
l y′(x) + (y − y(x))T Γ−1

l y′′(x) +

r
∑

i=1

(

µi

gi(x)2
g′i(x)T g′i(x) −

µi

gi(x)
g′′i (x)

)

.

For good data reproduction (i.e., small ‖y − y(x)‖) and parameters not close to the boundary of the admis-
sible region (i.e., small µi/gi(x)) the second order terms can be neglected, yielding a positive definite Hessian
approximation close to the minimizer:

F̂ ′′(x) = y′(x)T Γ−1
l y′(x) +

r
∑

i=1

µi

gi(x)2
g′i(x)T g′i(x) ≈ F ′′(x)

Starting at x0 ∈ X , the Gauß-Newton method suggests steps ∆xk = −F̂ ′′(xk)−1F ′(xk) which due to positivity of
F̂ ′′(x) are descent directions, and performs updates xk+1 = xk +αk∆xk with a step length αk ∈ ]0, 1] determined
by line search such that monotone decrease of the objective is guaranteed.

The Taylor approximation

F (x) ≈ F̂ (x) = F (xMAP) + F ′(xMAP)(x− xMAP) +
1

2
(x− xMAP)T F̂ ′′(xMAP)(x− xMAP) (6)

provides a local Gaussian approximation of the posterior by π(x|y) ≈ c exp(−F̂ (x)) and thus allows a local un-
certainty quantification in terms of the covariance Γ̂p = F̂ ′′(xMAP)−1. The corresponding variances F̂ ′′(xMAP)−1

ii

of the marginal posterior distributions of the individual parameters xi then give an idea of how reliably identified
the parameters are. A more concise information about how well parameters are identified can be inferred from
the eigenvalues and eigenvectors of the covariance Γ̂p, giving linear combinations of parameters that are more or
less reliably estimated.



4. RECONSTRUCTION RESULTS

We present the results of a performed reconstruction with a random starting point in section 4.1. In section 4.2
we study the effect of numerical discretization accuracy on the reconstruction results.

4.1 Geometry reconstruction using a Gauß-Newton method

We start the reconstruction algorithm outlined in the previous section at a randomly chosen starting point x0 with
CD = 23.8262nm, h = 43.1662nm, SWA = 89.2796°, t = 3.5963nm, rtop = 9.2135 nm and rbot = 2.9608 nm.
The measurement errors are assumed to be normally distributed with zero mean and relative standard deviation
of 2%, thus fixing Γl and the likelihood in (3). The bounds employed in the prior are given as ranges in Table 1
for all parameters. The coupled constraints on the corner rounding radii are also included in the prior as outlined
in Section 3, Equation (4).

The algorithm converges in just six Gauß-Newton iterations to the desired relative accuracy of 1 · 10−4 in the
differential. The resulting parameter values in the maximum posterior estimate xMAP are CD = 25.3785nm,
h = 48.0835nm, SWA = 86.9803°, t = 4.9392nm, rtop = 10.3685nm and rbot = 4.7940 nm (cf., Table 1). In
Figure 2 the experimental and simulated intensities in the 0th diffraction order are shown as function of inclination
angle θ. The four different angular spectra refer to the different polarizations and azimuthal orientations of the
illumiation. In Fig. 2 (left) the simulated data for the initial configuration x0 is shown together with a plot of
the differences between measured and simulated data points at the bottom. In Fig. 2 (right) the same is shown
with the simulations results for xMAP. We observe an almost perfect alignment of the simulated data for xMAP

and the measurements. Deviations are much smaller than in the initial case on the left. Note the different scales
of the y-axis in the deviation plots at the bottom.

From the local Gaussian approximation of the posterior distribution (cf., Equation (6)) we can quantify
the uncertainty of the reconstructed parameter values in terms of standard deviations. We find low standard
deviations of 0.3984 nm and 0.1615nm for the line width CD and the oxide layer thickness t. The side wall
angle SWA has a standard deviation of 0.9988°. The height h and the two corner rounding radii rtop and rbottom
show larger uncertainties of 2.4838nm, 4.2892nm and 3.2171nm respectively. These results agree also within
the uncertainty limits with a recent, different evaluation using a slightly different model.15

4.2 Numerical convergence study

In this section we study the impact of numerical accuracy of the forward model on the reconstructed parameter
values and their uncertainties. The numerical accuracy of the solution of the forward problem essentially depends
on the mesh width and on the polynomial degree of the ansatz functions p. The small features sizes and layer
thicknesses require a reasonably fine meshing of the unit cell geometry as shown in Figure 1 (right). This
constitutes a lower limit on the mesh finesse provided we aim for a quality mesh which fulfills the Delaunay
criterion. Hence in this study, we keep the mesh fixed and increase the polynomial degree p from 1 to 5. For
each p we perform the reconstruction using the same starting point x0 listed above and observe the computed
xMAP. The results of this study are shown in Table 1. The results for p > 2 seem very well converged and show
only small variations in xMAP as well as the standard deviations compared to p = 3.

CD [nm] h [nm] SWA [deg] t [nm] rtop [nm] rbot [nm]
Range (15, 35) (40, 60) (84, 90) (2.5, 6.5) (3.5, 18) (0, 10)
p=1 25.0365 (0.2121) 49.6280 (1.0519) 87.1857 (0.8990) 4.7531 (0.1295) 10.6567 (1.4282) 6.9962 (1.7699)
p=2 25.3741 (0.2840) 48.0863 (1.8411) 86.9918 (0.9447) 4.9368 (0.1367) 10.3858 (2.8578) 4.7964 (2.3854)
p=3 25.3786 (0.4006) 48.0828 (2.4917) 86.9801 (1.0002) 4.9392 (0.1621) 10.3688 (4.3045) 4.7927 (3.2360)
p=4 25.3785 (0.3993) 48.0833 (2.4873) 86.9803 (0.9994) 4.9392 (0.1618) 10.3687 (4.2965) 4.7933 (3.2252)
p=5 25.3785 (0.3984) 48.0835 (2.4838) 86.9803 (0.9988) 4.9392 (0.1615) 10.3685 (4.2892) 4.7940 (3.2171)

Table 1. Reconstruction results with estimated standard deviations (in parentheses) for numerical settings with increasing
accuracy of the forward-problem (p = 1 to p = 5). The admissible parameter regions in the reconstruction (Range) are
indicated for all parameters.

We distribute the independent forward problems on a parallel computing cluster. Hence the computation
time for all 168 data points considered in each iteration of the Gauß-Newton reconstruction method is limited by
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Figure 2. Left: Experimental data (circles and connecting lines) and simulated data for the random initial configuration
x0 (crosses). We observe a general qualitative alignment of simulated data and measured data. The plot at the bottom
shows the difference between measured and simulated signals. Largest deviations are observed for the S-polarization,
φ = 90° and large inclination angles θ. Right: Experimental data (circles and connecting lines) and simulated data for the
xMAP configuration (crosses). We observe a very good quantitative alignment of the data. Deviations are much smaller
than in the initial case. Note the different scales of the y-axis in the deviation plots at the bottom.
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Figure 3. Number of unknowns for increasing polynomial degree used in the forward-problem computations (p = 1 to
p = 5). The mean over all simulations in the reconstruction is shown in blue, yellow and orange mark the minimum and
maximum encountered.

the time of a single FEM evaluation. The average numerical effort required by the forward problems increases
from 2047 unknowns for p = 1 to 35863 for p = 5. In Figure 3 the number of unknowns is shown as a function
of the polynomial degree p. The mean of all 168 simulation is given by the blue line. The PML thickness is
automatically adjusted by the solver JCMsuite7 by considering the angle of incidence, the material distribution
in the exterior and the illumination wavelength. In combination with a remeshing for every iteration in the
reconstruction, this leads to differences in the number of degrees of freedom over the angle of incidence scan.
In Figure 3 orange and yellow lines mark the minimum and maximum the degrees of freedom observed in all



simulations performed during the reconstruction. The solution of these relatively small FEM problems including
post processing takes at most 7 seconds of CPU time. Based on these findings it seems reasonable to choose
p = 3 as a trade off between numerical accuracy and computation times of ≈ 3 seconds of CPU time.
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Figure 4. Pair-wise projections of the trajectories of the Gauß-Newton method in parameter space. Converged trajectories
for p >= 2 are shown in green whereas the trajectory for p = 1 is shown in red. The iterates are indicated by crosses
which for the green trajectories are almost identical. The location of xMAP is indicated by a black dot covering the last
iterates.

Investigating the influence of the polynomial degree in more detail, we look at the trajectories of the Newton
method in parameter space. These are shown as pair-wise projections in Figure 4. The graphs of the converged
trajectories for p >= 2 are shown in green whereas the trajectory for p = 1 is shown in red. We observe no visible
distinction between the converged results. All four trajectories include six data points respectively, indicated by
crosses in the plots. These are almost indistinguishable as all descent directions found by the Newton method
are virtually identical and only differ slightly in step length. In most subplots the last two steps taken are too
small to be resolved and are covered by the black circles marking xp=5

MAP. The trajectory for p = 1 (red, dotted
line) is distinctly different as it requires 9 steps and converges toward a different estimate.

5. CONCLUSION

The parameters describing the shape of a silicon line grating and associated uncertainties have been found by
means of an Bayesian inverse problem solved with a Gauß-Newton method. The agreement of experimental
measurements and the numerical model is very good. The Bayesian perspective and a quadratic approximation
of the posterior distribution allows for a quantification of the parameter uncertainties in terms of standard
deviations of a Gaussian centered at the reconstructed parameters. The employed Gauß-Newton method to
solve the inverse problem demonstrated good convergence properties and robustness. An in depth analysis of
the numerical reconstruction method will follow in a subsequent paper.
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Appendix

Pitfalls in using difference quotients to compute partial derivatives

Computation of partial derivatives of the electric field and derived quantities is required for both, the Newton
method for solving the inverse problem, and for local uncertainty quantification at xMAP. Here we compare two
methods of how to compute first and second order derivatives numerically, direct computation and computation
using finite differences, and we show the impact of insufficient computation of these on the reconstruction results.

For direct computation the system matrix can be employed to compute partial derivatives ∂E
∂xi

efficiently as

reported previously.16 This can be seen easily by differentiating the linear system AE = f which gives

∂E

∂xi

= A−1

(

∂f

∂xi

−
∂A

∂xi

E

)

. (7)

Similarly, higher-order partial derivatives are accessible recursively.

Alternatively, a finite-difference scheme can be used:

df

dxi

=
f(x + δxi) − f(x− δxi)

2δxi

. (8)

d2f

dx2
i

=
f(x + δxi) − f(x) + f(x− δxi)

(δxi)2
. (9)

d2f

dxidxj

=
f(x + δxi + δxj) − f(x− δxi + δxj) − f(x + δxi − δxj) + f(x− δxi − δxj)

4δxiδxj

. (10)

It can be shown that from a computational point of view it is generally more efficient to directly compute
the partial derivatives than to compute additional data points for difference quotients. Irregardless of their
computational efficiency we want to investigate the influence of finite difference approximations to the partial
derivatives. To this extent, we have repeated the study of Section 4 by replacing the computation of the second
order partial derivatives used to determine the standard deviations with a finite difference approximation.

CD [nm] h [nm] SWA [deg] t [nm] rtop [nm] rbot [nm]
p=1 25.0106 (-) 49.7642 (0.8392) 86.7925 (-) 4.7325 (-) 10.3226 (0.1500) 6.4657 (1.2493)
p=2 25.3728 (0.3429) 48.0927 (1.2692) 86.9852 (1.3253) 4.9361 (0.1858) 10.3824 (1.9281) 4.7951 (2.2815)
p=3 25.3788 (0.3472) 48.0824 (1.2579) 86.9810 (1.3285) 4.9393 (0.1867) 10.3694 (1.9056) 4.7939 (2.3644)
p=4 25.3787 (0.3481) 48.0827 (1.2572) 86.9811 (1.3309) 4.9393 (0.1871) 10.3690 (1.9111) 4.7945 (2.3680)
p=5 25.3787 (0.3493) 48.0829 (1.2575) 86.9811 (1.3344) 4.9393 (0.1876) 10.3689 (1.9234) 4.7952 (2.3685)

Table 2. Reconstruction results with estimated standard deviations (in brackets) for numerical settings with increasing
accuracy of the forward-problem. The standard deviations are not reliable in this case as they are computed in a not
sufficiently converged finite difference scheme.

The results of this scan are listed in Table 2. Unsurprisingly we get the same values for xMAP as the quasi
Newton iterations are not influenced by our change. The standard deviations however are changing. In case of
low numerical accuracy (p = 1) the standard deviations for the CD, the SWA and t are not reliably computed.
Even though we seem to observe convergence in this quantity with increasing p, we note difference to the values
found with exact second order partial derivatives listed in Table 1. The standard deviations for CD and t are
relatively similar whereas the larger standard deviations for h, rtop and rbot change drastically by factors of
almost two.

Convergence of first order derivatives: We studied the convergence of first order partial derivatives of
the 0th order intensity using equation (8) with respect to the ones obtained with equation (7) for one specific
setting of the forward problem (p = 5, θ = 45°). The results are shown in Figure 5. The convergence with
respect to the perturbation δxi is shown for both polarizations, the different colors indicate the parameters. For
both polarizations exponential convergence can be observed for larger values of δxi. At a relative accuracy of
approximately 1 · 10−5 the behavior changes and the relative errors remain at or sligthly below this value.
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Figure 5. Convergence of first order partial derivatives with perturbation δxi for S- and P-polarization.

Convergence of second order derivatives: We studied the convergence of second order derivatives in
the same setup as for the first order derivatives. The convergence with δxi is shown in Figure 5. All quantities
exhibit exponential convergence provied the perturbation δxi is larger than 1 · 10−1. The relative error for this

value is below 1 · 10−4 except for d2I
dSWA2 where it is sligthly larger for the P-polarization. However, instead

of decreasing further the relative error increases exponentially with smaller δxi. This can be explained by on
one hand by the smaller and smaller changes introduced in the measured signal (0th order reflected intensity)
which is captured by the numerators in equation (9) and (10). The scaling by the denominator then leads to the
exponential increase observed in Figure 6.
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Figure 6. Convergence of second order partial derivatives with perturbation δxi for S- and P-polarization.

These studies serve to explain the differences observed between the standard deviations in Tables 2 and 1: The
employed perturbations (δxi ∈ [1 · 10−2, 4 · 10−2] depending on the magnitude of the different parameters) are
large enough to provide accurate approximation of the first order partial derivatives thus ensuring the convergence
of the method. However, the computational accuracy of the second order partial derivatives are insufficient for
these perturbations, especially for those parameters with very small second order derivatives. The computed
standard deviations in Table 2 thus deviate more significantly from those listed in Table 1.


