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GENERAL INFORMATION CONSTRAINTS IN STOCHASTIC PROGRAMS

MARC C. STEINBACH

ABSTRACT. Scenario tree models of stochastic programs arise naturally under standard
nonanticipativity assumptions. We demonstrate how tree-sparse programs cover the gen-
eral case, witharbitrary information constraints. Detailed examples and intuitive interpre-
tations illuminate the basic thoughts behind the abstract but elementary construction.

0. INTRODUCTION

Information constraints—ononanticipativityconditions—play a fundamental role in
decision processes under uncertainty: they model precisely when and to what extent the
decision maker acquires information on the outcomes of random events. In probabilistic
terms nonanticipativity is expressed by measurability requirements with respetietds
that vary over time, typically forming a filtration. These concepts provide the theoretical
foundation for any kind of stochastic decision model and are indispensable in situations
that involve continuous distributions; see, e.g., [3]. In the narrower area of discrete-time
stochastic programming models with finitely many scenarios, the theoretical background is
unnecessarily general and inconvenient to work with. Nonanticipativity is either modeled
by explicit equality constraints or by scenario tree representations (where it is implicit in
the tree topology). Such formulations are well suited for computation; they arise naturally
under the standard assumption that the acquired information is always up-to-date; cf. [10,
13, 14]. However, the more abstract probabilistic perspective proves again useful when a
scenario tree formulation is ultimately desired but the random data and observed data (the
information available to the decision maker) are related in a nontrivial way, as in situations
involving delayed observations or foresight. General information constraints in this sense
are considered by Rockafellar and Wets in [12] (where nonanticipativity is enforced by
explicit projections and a probabilistic perspective is deliberately avoided), and in [11]
where informationo-fields model arbitrary nonanticipativity requirements in the context
of generalized linear-quadratic control [9]. These models remain on an abstract level in
that no concrete representations of the random data and variables are specified.

The present paper constructs natural scenario tree representations for stochastic pro-
grams with arbitrary random data and information fields. In the process we discuss the
role of standard assumptions within the generalized context and provide a couple of exam-
ples to illustrate important cases or subtle details. The presentation employs probabilistic
notation and language most of the time (until a direct translation into tree notation is possi-
ble), but interpretations are given throughout. Thus, rather than establishing fundamentally
new results, our emphasis is on exploring the rich possibilities arising in the general set-
ting and giving explanations in terms of the intuitive tree concept. The problem classes
used in the construction ateee-sparsgrograms as developed in [16, 17, 18]; they share
important structural properties with the generalized linear-quadratic problems of [11].

The material is organized as follows. §t& we recall the basic theoretic concepts and
establish their relation to scenario trees. Data and information fields are then introduced
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FIGURE 1. A finite filtration (left) and its associated scenario tree (right).

in §2 as the key ingredients in general stochastic decision models§3apdesents the
tree-sparse programs modeling the precise problem classes of interest. The transition from
abstract problem formulations to concrete scenario tree representations is devekhed in
followed by a brief comparison to the problem class of Rockafellar and Wets [$H.in
Some final remarks if6 conclude the paper.

1. PRELIMINARIES

1.1. Fields. The fundamental probabilistic concepts for modeling the evolution of infor-
mation and stochastic influences in decision processeg-fiEdds and filtrations. To
introduce the notation we recall basic definitions and facts that may be found in stan-
dard textbooks on measure theory and probability, such as Bauer [1, 2], Dudley [6], or
Shiryaev [15].

Let Q denote a set and2its power set. Recall thatafield # in Q is a collection of
subsets of2 that is closed under forming complements, countable unions, and countable
intersections. The sesc ¥ are called¥ -measurablethe C-minimal elementst € ¥
are called¥ -atoms A subo-field G C ¥ is a subset off that is also ao-field; G C F
is coarserthan & and ¥ finer than G. Theo-field o({Ai}ic) generatedby an arbitrary
collection of subset#; C Q is the unique coarsestfield containing every;. Likewise
o({ % }ier) denotes the unique coarsesfield containing everyf; as a subs-field. The
empty set and itself generate the trivias-field, o(0) = 6(Q) = {0,Q}.

Given ameasurable spacfQ, 7) and an ordered sé€t, <), afiltration F = { % }iel
in Q (in F) is a family ofo-fields inQ (in F) satisfying#; C % for all 1,t € | with T <t.

For instance, the set of all subfields of 7 (ordered by inclusion) is a filtration it .

A probability measuren (Q, F) is a monotonousg-additive functionP: ¥ — [0,1]
satisfyingP(0) = 0 andP(Q) = 1. The triple(Q, #,P) is a probability space In this
contextA € ¥ is called arevent w € Q anelementary evenandQ the sample space

A mappingf: (Q,F) — (Q', 7') is measurabléf f~1(A") € F for everyA' € F'. A
random variable Zon a probability spacéQ, #,P) is such a measurable mapping. A
stochastic procesgr random process = (& )il is a family of random variable< is
adaptedto the filtrationF if every §; is #-measurable. Theanonical(minimal filtration
associated witl§ consists of thes-fields a({&; }+<¢) generated by the pre-imag&s!(A')
of #'-measurable sets. It is the coarsest filtrationFirio which & is adapted. (Note that
measurability with respect to a coarsefield is astrongerrestriction.)

Every finite o-field ¥ (having finite cardinality| ¥ |) is completely characterized as
F =o0(4) = 27 where 4 denotes the (finite) set of atoms; herigg = 2% and every
measurable seA € ¥ is a union of F-atoms. Moreover, ifQ] is finite, then eveno-
field F corresponds to a partitioning 61 into mutually disjoint subsets (thg-atoms),
and G C ¥ holds if and only if everyG-atom is a union off -atoms. In that case we
assumef = 22 without loss of generality: iff c 2% (proper inclusion) the® contains
irrelevant or unobservable sub-atomic events and should be redefined as the sdbais.
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FIGURE 2. Flow of information in a stochastic dynamic decision process.

We then haved = Q andP = ¥ .o Pwd0w for suitable probabilitiepy, > 0, 3 weq Po = 1.
A filtration (with linearly ordered) now simply corresponds to a sequence of successively
finer partitionings oR2; see Fig. 1.

A random variabl&Z is G-measurable if and only Z is constant with respect to every
G-atomB € B. We write Z = (Zg)ges = (Zw)weo to refer to itsrealizations likewise
& = (&p)pes = (&p)te pe €1C. for arandom process.4ftakes values in a vector space, the
conditional expectatioe9 {Z} is the G-measurable random vectdrwhose realizations
are the convex combinatiog = 3 g pglpwzw with pg = ¥ ep Po- The mappingg 9
defines a projection, and the usual expectation is given as the speci&l{€&se= E.

1.2. Trees. Abstractly atreeis a connected, acyclic graph. We consider anlytedtrees
where the root is predecessor of all other nodesVLeé¢note the set of nodes (eertices,
L; CV the level set of nodes at dedthandL D Lt the set of leaves (whefgis the depth
of the tree). Further let @ Lo denote the rootj € L; the “current” nodei = 11(j) its unique
predecessor (if > 0), §(j) its set of successors, aft{j) = {0,...,i, j} the unique path
from the root toj. Expressing father-son relations byand S is more convenient than
using the standard graph-theoretic concept of an arc set. Other authors use similar tree
representations [10, 13, 14] or simply two indices (time and scenario) for every node.
In the probabilistic contexcenario treegalso known agvent tree®r decision trees
are often used as more convenient representations of finite filtrations $ighen(0,Q}.
Given such afiltratiod % }+¢, the tree’s level sets are formally defined as the sets of atoms,
L := 4, and the successors afe L; areS(a) := {B € Lir1: B Ca}. Apathl(a) (or
sometimes itself) is called astage-t scenaridor a € L, and ascenarioif a is a leaf.
Clearlyn(a) corresponds to a decreasing sequence of afdmsio D a1 D --- D 0y = 0.
(Thus each node is an atom; we just disregard that it is a sub$etofl write j for a.)
The scenario probabilities agg > 0, j € L. All other nodes also have probabilitigs
satisfyingp; = S kesj) Pk Hencey i, pj = 1 holds for allt, andpp = 1. The tree thus
defined has the special propertles- Lt andTt(j) € Ly_; for j € Lt, t > O; see Fig. 1.
Conversely, given a scenario tree with the properties just mentioned;rtiadoms are
defined as the singleton setg:= {j}, j € Ly, and thef-atoms fort < T are recursively
defined as the uniors; := Uycgj) Ok, | € Lt, yielding eventuallyoo = L. Thus we have
Q=L=Lry, F = F =29 andP(q;) = p;.

2. STOCHASTIC DECISION PROCESSES

Consider a sequential decision problem in discrete time over a fildtening horizon
I ={0,1,...,T} where thestates x of a dynamic process are influenced e@ntrols y,
the decisions to be made. The goal is to minimize some cost subject to constraints under
random influenceg; representing, for instance, external disturbances or process-inherent
uncertainty. Decisions react to observations of “past” random evesasyrsé while tak-
ing into account the known distribution of as yet unobserved “future” events, in a sense to
be made precise below. The flow of information is illustrated in Fig. 2.

2.1. Data and information fields. Suppose tha€ = (& )ic| is a stochastic process on
some finite probability spacg, F,P). The realizations o; generateo-fields Zx C 7.
We call & the data processand 7 the data fields For simplicity of exposition suppose
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further that; contains all random data elements that influence the process af §oeh as
matrix and vector elements in a linear stochastic progrdgimally let O := o({ Dy }r<t)
denote theo-field generated by all random events up to tim@andFy := {D; }iel the
associated minimal filtration igf , which we call thedata filtration

The central issue of the current paper relates to the question when and to what extent
the decision maker obtains information on the realizations of random events. Following
Rockafellar and Wets [11], we model the information available at tiseaninformation
field G; C F with respect to whichy must be measurable;, = ES{u}. This restriction
is the generahonanticipativity conditionAbstractly it means that decisiafn relies on the
observatiorof a Gi;-atom or, in other words, that the information available at tirpermits
the distinction ofG;-atoms. Practically observations are usually made by measuring the
values of certain data elements, state components, or functions thereof.

The standard setting in the stochastic programming literature asgulniegormation
in the sense that the observed data are precisely the randonjégddta; up to the cur-
rent time, and hencé&; = 2y for all t € 1. Thus the decision processs required to be
Fy-adapted, which implies the same property for the resulting state pracdssre we
consider instead the general case of arbitrary and independent data and information fields
Dy andG;. As will be seen, this covers situations whérés observed before or after tinhe
(or perhaps never) and where the time of observation may be scenario-dependent, or even
where previously acquired information may get lost.

2.2. Dynamics. The dynamic aspect of a discrete-time process is modeled by state transi-
tion equations. Decisions may take effect instantaneously (such as financial transactions)
or continously over an extended period of time (such as heating in a chemical process).
With extended action dynamic equations take the general form

1) X = B¢ (%—1,U—1).

If decisions take effect instantaneously one has different skateend ™ immediately
before and after decisian, yielding separate transition equations

) % =9 (x1y), X =90, w)

Depending on whetheg is chosen to meax; or %', those combine to one of the forms
®) X =0 (%-1,U-1) =9 (O (%-1.U-1)) (X =%),

@ X =6 (x—1,) =9 (9 (%-1),u) % =%").

The choice is a matter of taste unless one alternative offers an advantage in numerical

computations. Conceptually we prefer the latter form (which will be used throughout).
Uncertainty may enter all state transitions above, thai®;", 8 are elements of;

with (discrete) values in suitable function spaces. The precise meaning of the time index on

W, &; is therefore that these quantities enter the process at tieither through dynamics,

objective, or constraints. This is what we mean by saying that a deaigisrfmade” at

timet or that an evenf; “happens” at time.

3. STOCHASTIC PROGRAMS

In the following we focus orstochastic programavhere arexpecteatost is to be min-
imized. We assume that the objective is convex and smooth and that the constraints are
linear (polyhedral). Two closely related problem classes are considered; they correspond
to thetree-sparse programsf [18] but are stated in probabilistic notation with abstract fea-
sible sets, like the extended linear-quadratic control problems of Rockafellar and Wets [11].

lin practice one usually prefefactor modelavhere actual random parametérdiave just a few components
and all problem data are expressed as functiords.ofhe dependence is typically affine to preserve convexity.
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Theoutgoing controlvariant has dynamic equations in the form (1), (3), reading

T
®) min t;}E{cln(xt,ut)}
(6) s.t. Xt :GtXt_]_+EtU'[_]_+h[ Vt:07"'aT7
(7) (Xt,U[)E(XIXUt)ﬁYt Vt:O77T7
(8) ES{u}—u =0 vt=0,...,T,
T
9) %E{tht‘FDtUt‘FQ}:Oa
t=
whereas théncoming controlvariant has dynamic equations in the form (4), reading
T
(10) rL'"Xn t;E{q)t—l,t(xt—la U) + e (%) }
(11) S.it. X =GpX—1+Eu +h vt=0,...,T,
(12) (Xt_l,U'[) EYI—LI vt :07"'aTa
(13) (U, %) € U x % vt=0,...,T,
(14) ES{w}—u =0 vt=0,...,T,
T
(15) ZjE{DtutJrtht +e}=0.
t=

Here all quantities are understood as random variables on the probability(ShaEeP).
The data elements afg = (¢, G, Ei, hi, %, Ut, Vi, i, Dt, &) in the outgoing control case
and & = (Gr—1t, 01, Gt B, 1y, Ye—11,Ut, %, R, D¢, &) in the incoming control case, with
X, Ui, %8, Yi—11 denoting polyhedral sets in appropriate dimensfons.

Directly corresponding scenario tree formulations are obtained if the decision maker has
full current information,G; = 2. Random variableZ; are then simply replaced by their
realizationsZ;, j € Ly, where the scenario tree is constructed from the data filtrdtion
Thus, recalling the notational conventibs 11(j ), the outgoing control problem becomes

T
(16) min Pidi(xj,uj) = Pid; (X, uj)
%l jeZ/ t;)jezt

a7) s.t. Xj = Gjx +Ejui +h; Vjev,
(18) (Xj,Uj)E(X] XUj)ﬂYj Vj eV,
(19) .zpj[Fij—i_Djuj—'—ej]:O’

j€
and the incoming control problem becomes
(20) min ,-; P (@i (i, u) + 65 (xj)]
(21) s.t. Xj =Gjxi+Ejuj +h; Vj eV,
(22) (Xi,uj) €Yjj Vjev,
(23) (uj,Xxj) € Uj x X vjev,
(24) zpj[D,—uj+ijj+ej]:0.

je

These are precisely the tree-sparse programs studied in [18], except that the feasible sets are
kept in the more convenient abstract notation. Appropriate representations by hierarchies

2Since the probability space is finite, there is no conceptual difficulty with set-valued or “function-valued”
random variableX;, ¢; etc., and no integrability assumptions &-almost surely” specifications are required.
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of full-rank linear equations and inequalities are actually a key feature of the tree-sparse
modeling and solution framework. (This explains the presence of “unnecessanf,&&ts

in (7) andU; in (13): they represent certain inequalities in those hierarchies.) The underly-
ing natural classification of constraints will again play a significant role below.

4. SCENARIO TREE FORMULATIONS

We are now ready to construct scenario tree formulations of the discrete-time problems

(5)—(9) and (10)—(15) with arbitrary information constraints. Recall which items are given:
(a) afinite probability spaceQ, 7 ,P);
(b) adata procesE)ier on(Q, 7, P);
(c) asequence of information fields C F,t e l.

The reformulation proceeds in two steps. First, a filtration representing the finest rele-
vanto-fields is determined to construct the scenario tree. Second, decisions that must be
measurable with respect to coarsefields are mapped onto the tree. Artificial states or
extra nodes may have to be introduced and control variables may have to be reinterpreted in
the process so that information constraints are properly incorporated into the tree topology.
This provides the transition from the abstract viewpoint of [11] to a practical formulation.

Itis also possible to model information constraints explicitly within our problem classes,
asglobal equality constraints. This might even be advantageous in certain unusual situa-
tions, but in general it contravenes the very idea of a scenario tree formulation.

4.1. Assumptions. To get familiar with the probabilistic setting adopted here we discuss
some elementary assumptions that can be made without restriction of generality—even for
arbitrary (nonconvex, nonsmooth) problem functions and feasible sets.

Formal proofs are mostly omitted in the sequel. Almost all considerations rely directly
on the following well-known result (which is trivial in the finite case).

Theorem 1. Suppose that Z is a random vector@®, ¥,P) and that¥; C %> C ¥. Then
EN{ET2{Z}} = E®2{E"1{Z}} = E71{Z}. In particular, E{E72{Z}} = E{Z}. O

4.1.1. Global Constraints VectorsObserve first that the randomnessepfis irrelevant:
only the expectatioe = 5| (E{a} = E{3] ,&} enters the problem. That is, two prob-
lems differing only in the realizations & are equivalent whenever the valuesaigree.
Thus one may drop: from &, setting for instancey := eandeg := 0 fort > 0.

4.1.2. Probability Space. A common assumption under standard information constraints
is F = 1 where}; := D (data filtrationFq). Given a set of data scenarif,)wecq With
associated probabilitig,)weq, this is achieved by the natural definitiofis:= 2% and

P = Y wea Pudw. Under general information constraints thidields 2x and G; may be
totally unrelated—ever; ¢ Dy is possible. In this cas@ must be larger than the set
of data scenarios, that is, a probability space must be speaifetbri. The assumption

F = Fr now holds with no loss of generality for the refined filtrati®n= o ({ Dx, Gt }1<t):
every feasible solution is automaticalfff-measurable. Thug is unnecessarily fine if

F D Fr: there exist identical scenarios (having the same data elerfeatsl belonging

to the samej;-atoms throughout), an@, 7, P) should be replaced witt4r, Fr,P| 7).

Example.Consider a simple two-stage problem weth=L = {1,2,3,4},V = {0} U Q:

. 2 _ X1 =Xo—U, X3=Xp+Uxz
T.L(nj;pJXJ st Xo=Uo, {xz:xo—uzs, X4 =Xo+ U4 }
Theo-fields areDy = Go = {0,Q}, D1 = 0({1,2},{3,4}), andG1 = o({1},{2,3},{4});
henceD; = Di # F1 = F =22 If we haveQ' = {1,...,5} initially with xs = X + U3,

then the identical scenaries € {3,5} are replaced with the single (aggregated) scenario
w = 3 whereps = p;3+ p;, yielding the coarser model just discussed.
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FIGURE 3. Propagation of stochastic information. Left: incoming con-
trol; right: outgoing control(n);y refers to variable in Eq. (n) at stage.

4.1.3. Positive Probabilities.Another standard assumptionRs> 0. This means tha®

does not contain scenarios which the decision maker can rule out as impopgibtedj
based on the information availabletat 0. Apart from increasing the solution effort, such
scenarios might actually yieldwarong problem: they can obviously not contribute to the
objective or global constraints but are likely to generate a worse optimum by imposing
unjustified local constraints.

Example.Consider a simple tree with root and three leaves (scenarios) having probabilities
po =1, p1, p2 > 0, p3 = 0, with uncertainty occurring only in the constraints:

f’Qanpjxj St. Xo=ho, X1=X=X3=Xo+Uy, X1>0, X>1 Xx3>2
7]‘6

The unique solution igg = 2—hg, X; = X2 = X3 = 2, having coshg + 2. Without scenario 3
one obtains the better solutiog = 1 — hg, X3 = X2 = 1, having coshg + 1.

4.1.4. Initial Information Field. The last assumption i§o = {0,Q}. This simply means
that thehere-and-nowdecisionug is deterministic: it cannot depend on random events
since any event observed uptte= O is certain by construction of the decision model.

If optimization takes place before all those events are observed, then every oficome
requires a separate problem on the sg@cé Np, piBP|7m[3) of conditional probabilities.

4.2. Dynamic, global, and local data. A more detailed analysis of the information struc-
ture, specifically of the interplay between dynamic and stochastic aspects, will show that
the refined filtration o§4.1.2 is in general still unnecessarily fine. To recognize this par-
tition random elements intdynamic global, andlocal parts&; = (£¢,&,&}) according to

the natural constraints classification in [18]. Having dropgethe components are

(25) &= (G,Eh), &= (r10,06,D,R), & =Y 1t x U xX

in the incoming control problem, and

(26) &= (Gi,E,h), & =(d,R,D), &=xU)N¥

in the outgoing control problem, wheggis the local feasible set. The respectivdields
generated by{, &7, &l are denotedd, DP, D!, henceD, = o(DY, DE, D}).

Probabilistic information (uncertainty) enters the problem directly via data elerfents
and indirectly via decisions;. Whereas{ and&| are only relevant in the current stage,
information from&{! andu, is propagated forward in time by the states. This is illustrated
in Fig. 3, which suggests to study the filtration generated by states and controls together.
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We therefore introduce state fields(representing the measurability propertiexgfand
define’®k = o(&, G).

Consider first the outgoing control case. Singeepends on the preceding stage;,
preceding decision,_; (if t > 0), and on the data elemekft (but not &2 &!), it must be
measurable with respect md and %;_1. This yields the inductive definitions

(27) So=0(D§) =D, Fo=0(S,Go),
(28) So= O-(Dtdm{]:tfl)a ﬂ = O-(St,gt), t:177T

The incoming control case is analogous exceptthdepends on theurrentdecisionu.
Obviously this impliegf = S so that the appropriate definitions are

(29) Fo=S:=0(D§,Go)=D{, F=&:=0(D G,k 1), t=1,..T

Itis now easily verified thad?, & can be assumed to lfg-measurable, implying that the
filtration just constructed is in fact sufficiently fine for the desired scenario tree formulation.
Technically one has to replace thbal data elements by their conditional expectations
with respect tgf, and thdocal data elements (feasible sets) belonging to the saragom
by their intersection.

Theorem 2. Define&d := E% {£2}. For every%-atoma let &, := Nyeq & that is, take
intersections of feasible sets. Replackfgé} with & ! in problem(10)<(15) then yields
an equivalent problem. An analogous statement holds for the outgoing control case.

Proof. Let (u,x) be optimal for (10)—(15). Since_1,u;,% are all ;-measurable, we have
E{r-10(¢-1.t) + 0 (X)} = E{EF {0111 (X—1,U) + 0t (x) 1} }
= E{r-1t (X1, W) + Bt (%) }.

Thus the objectives are identical. A similar argument applies to the global constraints.
Next, by Fi-measurability ofy,

U el < Va e F:Vwe: Ug € Uy
= VYO E A Ua € [ Uw=Ua <= t €Uy

wea
Equivalence of the remaining local constraints is proved similarly, gigag, u;) € Vt,u
and(u,X) € Uy x X%. Analogous arguments apply to the outgoing control case.

Remark. The proof shows that some of the data elements can actually be assumed to be
measurable with respect to even coarsdields. With incoming control these-fields are

Gt for U, Dy, theno(—1, Gt) for ¢t—1¢,Yi—1t, and finally % for ¢, %, R. With outgoing
control they arej; for Uy, Dy and$; for ¢¢, %, Y, .

4.3. Examples. Before we proceed with the tree construction let us investigate the two
main phenomena that may occur under general information constraints: delayed decisions
(possibly caused by delayed observations, by the computing time spent on optimizations,
or by the time required to implement decisions), and foresight (the possibility to observe
random events before they have an effect on the dynamic process). Here we make the
simplifying assumptiond® = D = D} to obviate a distinction of the data fields. Full
technical details of the scenario tree formulations will be provided.

4.3.1. Information Delay.A common situation occurs when decisions are based on full
information up to thereviousstage G: = 7 ;. More generally decisions may be delayed
by & stagesG: = 7% .2 Information fields are then clearly coarser than the data fields, the
realization ofég is unknown at = 0, and the construction i§4.2 yields#; = 25 where

Fo #{0,Q} in general. Sincey 5 is Fi-measurable for € {0,...,T — &}, itis natural to

SFort—5<0we haveDy: 5 = {0,Q} and the actual delay is mid,t +1).
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FIGURE 4. Information delay stages. Left: data scenarios (no obser-
vations available in small nodesx &). Right: scenario tree (no control
variables in small nodes$:> T — §; fictitious stage-1 prepended).

place its realization§u|) jei, on levelt (rather than the realizations af). Controlsu] in
the final stages > T — & are then empty and a fictitious stagé is required whose con-
trol U, represents the deterministic decisiags. . ., us_;. Decisionu_1 (outgoing) on
(incoming) is passed forward to stagirough artificial statex’j. No random dat§_; ex-
ist, so stage-1 is deterministic. The scenario tree rootedfiny = {0,Q} is thus obtained
from theextended data filtratioff := {# }{__, = {Dy}__;; cf. Fig. 4.

The precise reformulation for outgoing control (5)—(9) with delay 1 reads

(30) (er}ml % Z pid;(xj, Px))
(31) sit. Xj =Gjx +EjPx +h; Viel, vt=0,....T,
(32) Xj=u4 Vj € Lo,
(33) X, = QX +RUl Vielk, vt=1,...T,
(34) (Xj,PjX/j)E(XjXUj)ﬂYj Vielk, vt=0,...,T,
(35) i Pj[Fjxj + DjPjx; +&j] =

j€

HereP;x; replacesj, andx_1,X_; are empty so that stagel contributes only; in (33).
The controlsu’j are formally unconstrained, anfipasses forward the previodslecisions.
Proper components are selected by (deterministic) matfic€y, R; where

I O
(36) [gJ = } 0 10| eRM e atntis)<(Mmtnsatitis) |y
] 0 0]l

Hereny' :=dim(w) andng, 5 :=n'+--- +n' 5. If 5= 1thenny, 14,5 4 clearly vanishes,
yielding P; = I, Qj =0, R; =1, and obvious simplifications in (30)—(35). (LikewiBe
and the unused matric€}, R; for j € Lt are always empty.)

The reformulation for incoming control (10)—(15) with delay> 1 is quite similar,

;
(37) u,r?xi';(‘,) Z) P[5 (%, PiX) + ¢ (x;)]

% t=0jcl
(38) st xj=Gjx+EPX+h; Vjel, w=0,...,T,
(39) X 1 =Uq,
(40) X = QX + RjU; VjeLl, wt=0,... T-1,
(41) (%, P;X) €Y vjelk, vt=0,...,T,
(42) (PX,x)) € Uj x X; Viel, Wwt=0,...,T,

T

(43) tzoj; p;[DjPjX + Fjx; +ej] = 0.

Now P;x; replacess; andx_1,X; are empty (time shift), so stagel contributes to several
conditions. Note in particular that = P;x appears in the local constraints for ak L;.
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FIGURE 5. Foresightd stages. Left: data scenarios (deterministic for
t < ). Right: scenario tree (no further branchestfor T — d).

That is, constraints (41), (42) can be writteq, PjX) € Njcsi Yij andPix € Njesi)Yj,
respectivelyt This feasibility issue illustrates a principal difficulty with information delays:
decisionu’j (made at timé) must satisfy all constraint realizations at tine o.

Ford =1 we have agaiR; =1, Q; =0, andR; =, implying x’j = u/j throughout. This
makes artificial states obsolete and we may switch to an outgoing control formulation: the
controls are simply shifted back to the previous stage; (u’j )il 1-

4.3.2. Foresight. The opposite case occurs when the decision maker can observe random
eventsd stagesheforethey actually influence the procesg, = Q){;5.5 This implies that
&o,...,&5 are deterministic (their realizations are knowrt at 0) and hencel = {0,Q}
for t < &. Information fields are now finer than the data fields and the construction in
§4.2 yields/ = Dy, 5. Thus the scenario tree is constructed fromittiermation filtration
F:={ % }te1 = { Gt }rer. With this tree one obtains a straightforward reformulation as usual,
except that duplicate data elemegfswill generally exist sinceD;" C Gi; see Fig. 5.

If the original problem has outgoing control one may alternatively switch to an incoming
control reformulation where the states and certain data elements are shifted back one stage:

;
(44) min t;j;{ Pjd; (X))

(45) st Xi=Gj¥+Ejuj+h} VvjelL, wt=0,..,T-1,

(46) (4, uj) €Y Viel, vt=0,...,T,

(47) uj € U; Vielk, wt=0,...,T,

(48) Xj € X] Viel, vt=0,....T-1,
Sy X+ S pi[Dju; + €] = 0.

(49) tZOje thF] . tZOjet S :

Herex and (G;j,E;,h;, X, )" are the respective realizations $f_;-measurable random
variablesx and (G, E;,h, X, R) fort > 0. The initial statexo = x'_; does not actually
appear in the problem: its fixed valbg is directly substituted in (44)—(46).

4.4. Mapping decisions onto trees.Returning to the filtration constructed 4.2, we
observe first that the initiad-field %y can be assumed to be trivial without restriction of
generality. Recall thafo = 0( DY, Go) = D§. If DY # {0,Q} then&d is uncertain at = 0:
the problem has an initial delay of information. Asti.3.1 we prepend a fictitious stage
t = —1 which containglp and possibly further deterministic decisions, but nothing else. A
time shiftt — t + 1 now yields the desired property. Thus a scenario tree can always be
constructed either from the filtratiof; }t< or from the extended filtratio@ﬁ}tT:’Bl. The
data procesg, decision process, and state processare all adapted to that filtration.

The states and data elements are naturally represented in terms of their realizations as

X = (%a)aca, and& = (§ta)aca, (OF (Xj)jer, and(&j)jeL, in tree notation), wheret is

4observe thaP;x; depends omonly (not onj) sinceP; is deterministic; cf. (36).
SFort+8&> T we have?y, s = D} = ¥ and the actual foresight is @& T —t).
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TABLE 1. Random data elements in the general example problem.

w 1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Ho 2 2 2 2 22222 2222%2%22=211111111111111131
E-1-1-1-1-17-1-1-1-1-1-1-1-1-1-1-1 1 1 1 1 111111111111

bh 333 3333333333333 33333333333332333
kR 11 1111111111111 3%¥2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2

H 0 0 0 O0OO0OOOOOOOO OO OOOOOOOOOOODOTOOSODOTODOTQO0ODO
E 1111111111111 1111111111111111113:1
by 17 17 17 17 17 17 17 17 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 417 17 17 17 17 17 17 17
F 00 O0OO0OO0OOOOO0OOOOOO0OOOOO0OOOOO0OOOOOO0OOOO0OO0O0
H 0 0 0 0O 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8151515151515 1515
Ep-1-1-1-1 1111111 12+>-1-1-1-1-1-1-1-1 1111111 11-1-1-1

b, 47 47 A7 47 AT A7 47 A7 A7 A7 AT A7 A7 AT A7 A7 AT A7 A7 AT A7 A7 47 A7 47 47 47 47 11 11 11 11
Fr 6 6 6 63-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-2-2-2-2-2-2-2-2

H; 55 9 9 99 99 9 999 9 9 999 9 9999 99 99 9 9 9 9 9 9
EE 11111 12-2-2-21111111 12-2-2-2-2-2-2-2-2-2-2-2-2-2

bg 7 7 7 7 7v 77 77 777 7 711111111111 1111111111112 7 7 7 7 7 7
FF 00 OOOOOOOOOOOOOOOOOOOO0OO0OOOOO0OO0 0-9-9

H, 3 3 3 44 3 3 3 3 443 3 4433 4433 44334433334
Eg-2-2-2-2 3 3333333333 32-2-2-2-2-23 333333333

by 42 24 24 24 42 42 42 24 24 24 24 24 24 24 24 42 42 42 42 42 42 42 42 42 42 42 42 42 42 24 24 24
R 22 2-1-1 2 2 2 2-1-1 2 2-1-1 2 2-1-1 2 2-1-1 2 2-1-1 2 2 2 2-1

the set off;-atoms. Both representations may have duplicate realizations, but this does not
cause any difficulties since neithenor § are subject to measurability restrictions.
Decisionsu; must beGi-measurable so that the direct representation as(Uia )ac
is perfect if G = %, which is the case if the realizations &, . . ., & are known at time.
Otherwiseg; is strictly coarser thaff; and there exists at least oge-atomp € B which is
a union of two or more atonts, € 4. In this case the representation is too fine: it requires
explicit equality constraints to ensure that all realizationg )qcg are indeed identical.
Hence the question arises in which node one should pigcd his is now easily decided.
Since{ %} is a filtration with 7o = {0,Q}, a unique largesb(p) € {1,...,t} exists such
thatp is contained in an atom € % _5g). We interpre®(p3) as thelocal delay of informa-
tion in B.% In tree notation the sefo, } (henceB) simply corresponds to a subsetC Ly
anda corresponds to the roof the unique smallest subtree containing all nofesB.
As in §4.3.1 we placeyg in nodei € Ly_5@) and pass decisions forward as artificial states
on all the paths fronmto j € B. This completes the problem reformulation.
Instead of inventing a general notation to write down complete technical details we pro-
vide an illustrative example problem. The reader should thus be able to apply the general
construction to any particular problem instance that he or she encounters.

4.5. General case exampleWe now study an artificial example which is constructed in
such a way that it exhibits all aspects discussed in the previous sections. (This results
in a perhaps surprisingly complex information structure.) Consider an outgoing control
problem withx;,, Ui, € R:

T T
rQLntZOE{HtXt }oost o x=%-1+EW-1, uwel0b], t;E{FtXt} =€

Random data elemengs = {H;, E;, by, R} for a 32-scenario instance with= 4 periods
(five stages) are listed in Table 1. Some data are deterministic here, sG¢ha®; and
the lower control bound (zero). Using abbreviated notatica {n} andmn:={m,...,n}

6Conversely, i3 € 4 then there exists a unique small&§B) < 0 such thaB € 4 _z,. ThusB is an atom of
H, - Fi—g(p), implying that no further branches occur up to staged(B) in the partial scenario corresponding
to B € 4. We interpret-3(B) as thelocal foresightin 3 (or 5(B) as the local delay of information).
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for the atoms, information fields are given as
Go=0(1:32) = {0,Q},
G1=0(1:1617:1819:2021:22 23:24 25:32),

(Note that information get lost in stages 3 and 4.) The dynamic data fields are obtained as
DY = 0(1:16,17:32), D = 0(1:6,11:18 7:10,19:32,
D¢ = 6(1:32) = {0,Q}, DY = 0(1:4,17:225:16 23:32.
DY = 0(1:4,13:2029:325:12, 21:29),

Observing thatDy has two atoms (initial information delay) it is easily seen that the data
filtration Fy = {2} corresponds to two regular binary trees with 16 scenarios each. It is
also seen that the probability space with= D5 = 2 is unnecessarily fine: the construc-
tion according tg4.2 (with trivial stage—1 prepended) yields the 22-scenario filtration

—{]:*1:{0)9}’ .'702@8, TlZGL
P =0(1:4,5:12,13:1617:18 19:2021,22,23,24,25:26 27:28 29:32),

On the other hand, this filtration is finer than the one obtained from dynamic data fields
alone; the information fields are indeed relevant. The associated 6-stage scenario tree has
1+2+6+12+18+22= 61 nodes whose data and variables are given in Table 2, where
P = 1/32 for allw € Q. HereH; andF; are the realizations of appropriate conditional
expectations wheredmy is always the minimum of the relevant realizations. The delay of
information ranges from-3 (foresight three stages) up to 5: decisionz = --- = uUs 20

must be made before any observations become available.

5. GENERALIZED LINEAR-QUADRATIC CONTROL

A comparison of the tree-sparse programs with the generalized linear-quadratic control
problems of Rockafellar and Wets [11] has been provided in [18] under standard informa-
tion constraints;; = 2. Here we consider again the smooth quadratic case (obtained with
V=R x ]R'j andQ := 0 in the notation of [11]; see also [9, Example 3.2]), but under
general information constraints. The stochastic prob|@,) [11, §4] then reads

(50) min tiE{;umwp:utcalxt}

(51) st X =AX_1+ B+ by w=0,...,T,
(52) W € Uy vt=0,...,T,
(53) Ef{u} = uw vt=0,...,T,
(54) E%{Clx_ 1} +Diw =gt Vt=1,...,T+1,
(55) EG{CP 1} +D?u > ¢f vi=1,.. T+1

(HereAg, X_1, D141, andur 1 are empty.) The data elememsp;,U;, Dy, g are assumed
to be Gi-measurable in [11] whereas no restrictions are imposed @, b, G, ¢;. Clearly
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TABLE 2. Mapping of data and variables to scenario tree in the general

example. Nodeg given byt and #-atoma; duplicate states indicated

by Si-atoms undex;; delayed decisions listed undey anduj, where

U3 25::32:= U3 25:2631:32 U4,25::31 .= U4,25 27,2931, U4 26::32 = U4 26,28 30,32,

local delay of information given undéx j); ‘—’ indicates empty items.
j=ta H  E b F X Xj uj 5(j)
-1,1:32 @ — — — — — Uo 1:32, Ua,13:20 0
0,1:16 2 -1 3 1 0,1:16 Uo.1:32,U4.13:20 — 1
0,17:32 1 1 3 -2 0,17:32 Uo.1:32,U4.13:20 U3 17:20 1
1,1:16 0 1 4 0 1,1:116 Ugiszo Uj,Uz1:16, U3 11:14, Ua,1:6, Ug 7:12 0
1,17:18 0 1 4 0 1,17:32 U317:20,U4.13:20 uj -3
1,19:20 0 1 4 0 1,17:32 U3 17:20, Us.13:20 uj -3
1,21:22 0 1 4 0 11732 — uj 0
1,23:24 0 1 4 0 117132 — uj 0
1,25:32 0 1 17 0 117:32 — Uj, U3 25::32, U3 27:30, U4,25::31, U4,26::32 0
2,1:4 0 -1 47 6 2,1:4 U21:16,U4,1:6 — 1
2,5:12 8 1 47 -3 2512 Uux116U311:14,Us1:6,Us7:12 — 1
2,13:16 8 -1 47 -3 2,13:16 U2.1:16,U3,11:14, U4,13:20 — 1
2,17:18 8 -1 47 -3 2,17:18 U3.17:20, Ua.13:20 uj -2
2,19:20 8 -1 47 -3 2,19:20 U3 17:20, Ua.13:20 Llj -2
2,21 8 1 47 -3 2,21:22 — uj -2
2,22 8 1 47 -3 221:22 — uj -2
2,23 8 1 47 -3 22324 — uj -2
2,24 8 1 47 -3 22324 — uj -2
2,25:26 15 1 47 -2 2,25:28 U325::32 Us25::31, Us 26::32 uj -1
2,27:28 15 1 47 -2 2,25:28 U3 27:30, U4, 25::31, U4, 26::32 Uj -1
2,29:32 15 -1 11 -2 2,29:32 Uzps::32,U327:30, U4 25::31, Us26:32  Uj 0
3,1:2 5 1 7 0 314 Us1:6 uj 0
3,314 9 1 7 0 314 Ug16 uj 0
3,5:6 9 1 7 0 3,56 Us1:6 uj 0
3,78 9 -2 7 0 3,710 ug712 uj 0
3,9:10 9 -2 7 0 3,710 w712 uj 0
3,11:12 9 1 7 0 3,11:12 U311:14,Us.7:12 — 2
3,13:14 9 1 7 0 3,13:16 U311:14,Us.13:20 — 2
3,15:16 9 1 11 0 3,13:16 ug13:20 uj 0
3,17:18 9 1 11 0 3,17:18 U3,17:20, U4,13:20 — 3
3,19:20 9 -2 11 0 3,19:20 u317:20,U4.13:20 — 3
3,21 9 -2 11 0 321 — uj -1
3,22 9 -2 11 0 322 — uj -1
3,23 9 -2 11 0 323 — uj -1
3,24 9 -2 11 0 324 — uj -1
3,25:26 9 -2 11 0 3,25:26 U3 25:32, Us 25:31, Us 26:32 — 2
3,27:28 9 -2 7 0 3,27:28 U327:30, Us.25::31, Ua 26::32 — 2
3,29:30 9 -2 7 0 3,29:32  U327:30,Us25::31, Us 26:32 — 2
3,31:32 9 -2 7 -9 3,29:32  Uz2s:32 Uq25::31, Us26::32 — 2
4,1:2 3 -2 24 2 412 Ug1:6 — 3
4,3:4 35 -2 24 05 434 Us1:6 — 3
4,5:6 35 3 42 05 456 use — 3
4,7:8 3 3 24 2 478 Us,7:12 — 3
4,9:10 35 3 24 05 4910 ug7a2 — 3
4,11:12 35 3 24 05 4,11:12 ug712 — 3
4,13:14 35 3 24 05 4,13:14 ug1320 — 5
4,15:16 35 3 24 05 4,15:16 ugi320 — 5
4,17:18 35 -2 42 05 417118 ugi320 — 5
4,19:20 35 -2 42 05 4,19:20 ug1320 — 5
4,21 3 -2 42 2 421 — uj 0
4,22 4 -2 42 -1 4,22 — uj 0
4,23 4 3 42 -1 423 — uj 0
4,24 3 3 42 2 424 — uj 0
4,25 3 3 42 2  4,25:26 U531 — 3
4,26 4 3 42 -1 4,25:26 Ugz6:32 — 3
4,27 4 3 42 -1 427:28 uyzs:31 — 3
4,28 3 3 42 2 4,27:28 Usz6:32 — 3
4,29 3 3 42 2 4,29:30 Uugzs:31 — 3
4,30 3 3 24 2 4,29:30 Ug26:32 — 3
4,31 3 3 24 2 4,30:31 ugos5:31 — 3
4,32 4 3 24 -1 4,30:31 wug26:32 — 3
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we have incoming control witg! = (A, By, 1), & = (R, pt, Cr11), andg} = (U, C, Dy, o).
Thus Gi-measurability of the specified data is not really a restriction: it holds without loss
of generality by the direct analogue of Theorem 2 (and likewismeasurability of;,1).”
However, constraints (54), (55) deserve closer inspection: the conditional expectations
Eg‘{C{xt_l} enforceGi-measurability of the tern@ti)q_l (which may then be assumed of

I.q as well). Without conditional expectations these constraints would represent poly-
hedraY; ;1 that could only be assumed to be measurable with respectfo s, Gi) C *.
This would allow slightly more general feasible sets, like in the tree-sparse programs.

6. CONCLUSIONS

The previous investigations demonstrate that tree-sparse programs provide natural sce-
nario tree formulations of stochastic programs with general information constraints. Given
a problem with arbitrary finite data and information fields, we have shown howlythe
namicdata fields together with the information fields generate a filtration that yields the
direct scenario tree reformulation, both for incoming and outgoing control models. Using
the relations between atoms of the variaufields, we have also interpreted nonstandard
information constraints, either as a local delay of information or as local foresight. A local
delayd at timet means that reliable information is only available on random events that
have influenced the process until titne & in the past. In other words, the current decision
could have been madeperiods earlier if full information had been available. Conversely,

a local foresight od at timet means that reliable information is already available on all
random events that will influence the process until timed in the future. In the extreme
case of an entirely deterministic process (i.e., with foresightT), all decisions can thus

be optimizedoff line—at the very beginning. This is also true for the other extreme case
(delayd = T) where no new information is acquired during the entire process.

Further we have shown that outgoing control problems with uniform foregightl
can be recast as incoming control problems, and incoming control problems with uniform
delayd = 1 can be recast as outgoing control problems. Considering the feasibility issues
associated with information delays, one may assume that models with dlelaly are
probably not reasonable in most practical situations (the time discretization is “too fine”).
Thus outgoing control naturally models delays while incoming control naturally models
immediate reactions or foresight. This is the reason for considering two versions of tree-
sparse programs: they cover almost all practically relevant situations directly. (Actually
there is a third variant with dynamic equations in implicit form; cf. [17, 18]. This variant
is similar to the standard formulation of stochastic programs [4].)

Of course, the trees constructed in this paper may be further modified to increase nu-
merical efficiency. In the general example problem, for instance, several nodes toward the
end of the horizon have empty controls. A smaller problem can be obtained by clustering
these nodes and eliminating the associated states.

To add concreteness and to allow finer distinctions of the measurability properties of
data elements, we have studieghvexstochastic programs ig4. However, none of the
considerations rely on this. The constructions carry over directly to the general case where
the dynamics (6), (11) involve arbitrary transition mappifigand where global constraints
(9), (15) have the general foriyy E{yt (%, u)} = O, with no restrictions whatsoever im-
posed on the problem functions or feasible sets. For instance, everything applies directly
to stochastic integer programs (see [13] and references therein), and the ideas extend to
other classes of stochastic optimization models (see, e.g., [5, 7, 8] for a general overview).
In any case, the generally applicable concept of distinguishing dynamic, global, and local
problem data is the key to a concise problem formulation based on the full understanding
of the relation between information structure and algebraic structure.

The Gi-measurable equality constraints rezd {Ctlx(,l}s + Dtlputﬁ = qtlB for all B € B (whereD{, = Dt1[3
andgl, = q}[3 for all w € B); similarly the inequalities.
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