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GENERAL INFORMATION CONSTRAINTS IN STOCHASTIC PROGRAMS

MARC C. STEINBACH

ABSTRACT. Scenario tree models of stochastic programs arise naturally under standard
nonanticipativity assumptions. We demonstrate how tree-sparse programs cover the gen-
eral case, witharbitrary information constraints. Detailed examples and intuitive interpre-
tations illuminate the basic thoughts behind the abstract but elementary construction.

0. INTRODUCTION

Information constraints—ornonanticipativityconditions—play a fundamental role in
decision processes under uncertainty: they model precisely when and to what extent the
decision maker acquires information on the outcomes of random events. In probabilistic
terms nonanticipativity is expressed by measurability requirements with respect toσ-fields
that vary over time, typically forming a filtration. These concepts provide the theoretical
foundation for any kind of stochastic decision model and are indispensable in situations
that involve continuous distributions; see, e.g., [3]. In the narrower area of discrete-time
stochastic programming models with finitely many scenarios, the theoretical background is
unnecessarily general and inconvenient to work with. Nonanticipativity is either modeled
by explicit equality constraints or by scenario tree representations (where it is implicit in
the tree topology). Such formulations are well suited for computation; they arise naturally
under the standard assumption that the acquired information is always up-to-date; cf. [10,
13, 14]. However, the more abstract probabilistic perspective proves again useful when a
scenario tree formulation is ultimately desired but the random data and observed data (the
information available to the decision maker) are related in a nontrivial way, as in situations
involving delayed observations or foresight. General information constraints in this sense
are considered by Rockafellar and Wets in [12] (where nonanticipativity is enforced by
explicit projections and a probabilistic perspective is deliberately avoided), and in [11]
where informationσ-fields model arbitrary nonanticipativity requirements in the context
of generalized linear-quadratic control [9]. These models remain on an abstract level in
that no concrete representations of the random data and variables are specified.

The present paper constructs natural scenario tree representations for stochastic pro-
grams with arbitrary random data and information fields. In the process we discuss the
role of standard assumptions within the generalized context and provide a couple of exam-
ples to illustrate important cases or subtle details. The presentation employs probabilistic
notation and language most of the time (until a direct translation into tree notation is possi-
ble), but interpretations are given throughout. Thus, rather than establishing fundamentally
new results, our emphasis is on exploring the rich possibilities arising in the general set-
ting and giving explanations in terms of the intuitive tree concept. The problem classes
used in the construction aretree-sparseprograms as developed in [16, 17, 18]; they share
important structural properties with the generalized linear-quadratic problems of [11].

The material is organized as follows. In§1 we recall the basic theoretic concepts and
establish their relation to scenario trees. Data and information fields are then introduced
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FIGURE 1. A finite filtration (left) and its associated scenario tree (right).

in §2 as the key ingredients in general stochastic decision models, and§3 presents the
tree-sparse programs modeling the precise problem classes of interest. The transition from
abstract problem formulations to concrete scenario tree representations is developed in§4,
followed by a brief comparison to the problem class of Rockafellar and Wets [11] in§5.
Some final remarks in§6 conclude the paper.

1. PRELIMINARIES

1.1. Fields. The fundamental probabilistic concepts for modeling the evolution of infor-
mation and stochastic influences in decision processes areσ-fields and filtrations. To
introduce the notation we recall basic definitions and facts that may be found in stan-
dard textbooks on measure theory and probability, such as Bauer [1, 2], Dudley [6], or
Shiryaev [15].

Let Ω denote a set and 2Ω its power set. Recall that aσ-field F in Ω is a collection of
subsets ofΩ that is closed under forming complements, countable unions, and countable
intersections. The setsA ∈ F are calledF -measurable, the⊆-minimal elementsα ∈ F
are calledF -atoms. A sub-σ-field G ⊆ F is a subset ofF that is also aσ-field; G ⊆ F
is coarserthanF andF finer thanG . Theσ-field σ({Ai}i∈I ) generatedby an arbitrary
collection of subsetsAi ⊆ Ω is the unique coarsestσ-field containing everyAi . Likewise
σ({Fi}i∈I ) denotes the unique coarsestσ-field containing everyFi as a sub-σ-field. The
empty set andΩ itself generate the trivialσ-field, σ( /0) = σ(Ω) = { /0,Ω}.

Given ameasurable space(Ω,F ) and an ordered set(I ,�), a filtration F = {Ft}t∈I

in Ω (in F ) is a family ofσ-fields inΩ (in F ) satisfyingFτ ⊆ Ft for all τ, t ∈ I with τ� t.
For instance, the set of all sub-σ-fields ofF (ordered by inclusion) is a filtration inF .

A probability measureon (Ω,F ) is a monotonous,σ-additive functionP: F → [0,1]
satisfyingP( /0) = 0 andP(Ω) = 1. The triple(Ω,F ,P) is a probability space. In this
contextA∈ F is called anevent, ω ∈Ω anelementary event, andΩ thesample space.

A mapping f : (Ω,F )→ (Ω′,F ′) is measurableif f−1(A′) ∈ F for everyA′ ∈ F ′. A
random variable Zon a probability space(Ω,F ,P) is such a measurable mapping. A
stochastic process(or random process) ξ = (ξt)t∈I is a family of random variables;ξ is
adaptedto the filtrationF if every ξt is Ft -measurable. Thecanonical(minimal) filtration
associated withξ consists of theσ-fieldsσ({ξτ}τ≤t) generated by the pre-imagesξ−1

τ (A′)
of F ′-measurable sets. It is the coarsest filtration inF to whichξ is adapted. (Note that
measurability with respect to a coarserσ-field is astrongerrestriction.)

Every finite σ-field F (having finite cardinality|F |) is completely characterized as
F = σ(A) = 2A whereA denotes the (finite) set of atoms; hence|F | = 2|A | and every
measurable setA ∈ F is a union ofF -atoms. Moreover, if|Ω| is finite, then everyσ-
field F corresponds to a partitioning ofΩ into mutually disjoint subsets (theF -atoms),
andG ⊆ F holds if and only if everyG-atom is a union ofF -atoms. In that case we
assumeF = 2Ω without loss of generality: ifF ⊂ 2Ω (proper inclusion) thenΩ contains
irrelevant or unobservable sub-atomic events and should be redefined as the set ofF -atoms.
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FIGURE 2. Flow of information in a stochastic dynamic decision process.

We then haveA = Ω andP = ∑ω∈Ω pωδω for suitable probabilitiespω ≥ 0, ∑ω∈Ω pω = 1.
A filtration (with linearly orderedI ) now simply corresponds to a sequence of successively
finer partitionings ofΩ; see Fig. 1.

A random variableZ is G-measurable if and only ifZ is constant with respect to every
G-atom β ∈ B. We write Z = (Zβ)β∈B = (Zω)ω∈Ω to refer to itsrealizations; likewise
ξ = (ξβ)β∈B = (ξtβ)t∈I ,β∈B etc. for a random process. IfZ takes values in a vector space, the
conditional expectationEG{Z} is theG-measurable random vector̄Z whose realizations
are the convex combinations̄Zβ = ∑ω∈β p−1

β pωZω with pβ = ∑ω∈β pω. The mappingEG

defines a projection, and the usual expectation is given as the special caseE{ /0,Ω} = E.

1.2. Trees. Abstractly atree is a connected, acyclic graph. We consider onlyrootedtrees
where the root is predecessor of all other nodes. LetV denote the set of nodes (orvertices),
Lt ⊆V the level set of nodes at deptht, andL⊇ LT the set of leaves (whereT is the depth
of the tree). Further let 0∈ L0 denote the root,j ∈ Lt the “current” node,i ≡ π( j) its unique
predecessor (ift > 0), S( j) its set of successors, andΠ( j) = {0, . . . , i, j} the unique path
from the root to j. Expressing father-son relations byπ andS is more convenient than
using the standard graph-theoretic concept of an arc set. Other authors use similar tree
representations [10, 13, 14] or simply two indices (time and scenario) for every node.

In the probabilistic context,scenario trees(also known asevent treesor decision trees)
are often used as more convenient representations of finite filtrations whenF0 = { /0,Ω}.
Given such a filtration{Ft}t∈I , the tree’s level sets are formally defined as the sets of atoms,
Lt := At , and the successors ofα ∈ Lt areS(α) := {β ∈ Lt+1 : β ⊆ α}. A pathΠ(α) (or
sometimesα itself) is called astage-t scenariofor α ∈ Lt , and ascenarioif α is a leaf.
ClearlyΠ(α) corresponds to a decreasing sequence of atomsΩ = α0⊇ α1⊇ ·· · ⊇ αt = α.
(Thus each node is an atom; we just disregard that it is a subset ofΩ and write j for α.)
The scenario probabilities arep j > 0, j ∈ L. All other nodes also have probabilitiesp j

satisfyingp j = ∑k∈S( j) pk. Hence∑ j∈Lt p j = 1 holds for allt, andp0 = 1. The tree thus
defined has the special propertiesL = LT andπ( j) ∈ Lt−1 for j ∈ Lt , t > 0; see Fig. 1.

Conversely, given a scenario tree with the properties just mentioned, theFT -atoms are
defined as the singleton setsα j := { j}, j ∈ LT , and theFt -atoms fort < T are recursively
defined as the unionsα j :=

⋃
k∈S( j) αk, j ∈ Lt , yielding eventuallyα0 = L. Thus we have

Ω = L = LT , F = FT = 2Ω, andP(α j) = p j .

2. STOCHASTIC DECISION PROCESSES

Consider a sequential decision problem in discrete time over a finiteplanning horizon
I = {0,1, . . . ,T} where thestates xt of a dynamic process are influenced viacontrols ut ,
the decisions to be made. The goal is to minimize some cost subject to constraints under
random influencesξt representing, for instance, external disturbances or process-inherent
uncertainty. Decisions react to observations of “past” random events (recourse) while tak-
ing into account the known distribution of as yet unobserved “future” events, in a sense to
be made precise below. The flow of information is illustrated in Fig. 2.

2.1. Data and information fields. Suppose thatξ = (ξt)t∈I is a stochastic process on
some finite probability space(Ω,F ,P). The realizations ofξt generateσ-fieldsDt ⊆ F .
We call ξ the data processandDt the data fields. For simplicity of exposition suppose
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further thatξt contains all random data elements that influence the process at timet, such as
matrix and vector elements in a linear stochastic program.1 Finally let D∗t := σ({Dτ}τ≤t)
denote theσ-field generated by all random events up to timet, andFd := {D∗t }t∈I the
associated minimal filtration inF , which we call thedata filtration.

The central issue of the current paper relates to the question when and to what extent
the decision maker obtains information on the realizations of random events. Following
Rockafellar and Wets [11], we model the information available at timet as aninformation
field Gt ⊆ F with respect to whichut must be measurable,ut = EGt{ut}. This restriction
is the generalnonanticipativity condition. Abstractly it means that decisionut relies on the
observationof aGt -atom or, in other words, that the information available at timet permits
the distinction ofGt -atoms. Practically observations are usually made by measuring the
values of certain data elements, state components, or functions thereof.

The standard setting in the stochastic programming literature assumesfull information
in the sense that the observed data are precisely the random data{ξτ}τ≤t up to the cur-
rent time, and henceGt = D∗t for all t ∈ I . Thus the decision processu is required to be
Fd-adapted, which implies the same property for the resulting state processx. Here we
consider instead the general case of arbitrary and independent data and information fields
Dt andGt . As will be seen, this covers situations whereξt is observed before or after timet
(or perhaps never) and where the time of observation may be scenario-dependent, or even
where previously acquired information may get lost.

2.2. Dynamics. The dynamic aspect of a discrete-time process is modeled by state transi-
tion equations. Decisions may take effect instantaneously (such as financial transactions)
or continously over an extended period of time (such as heating in a chemical process).
With extended action dynamic equations take the general form

(1) xt = θt(xt−1,ut−1).

If decisions take effect instantaneously one has different statesx−t and x+
t immediately

before and after decisionut , yielding separate transition equations

(2) x−t = ϑ−t (x+
t−1), x+

t = ϑ+
t (x−t ,ut).

Depending on whetherxt is chosen to meanx−t or x+
t , those combine to one of the forms

xt = θ−t (xt−1,ut−1) := ϑ−t (ϑ+
t−1(xt−1,ut−1)) (xt ≡ x−t ),(3)

xt = θ+
t (xt−1,ut) := ϑ+

t (ϑ−t (xt−1),ut) (xt ≡ x+
t ).(4)

The choice is a matter of taste unless one alternative offers an advantage in numerical
computations. Conceptually we prefer the latter form (which will be used throughout).

Uncertainty may enter all state transitions above, that is,θt ,ϑ±t ,θ±t are elements ofξt

with (discrete) values in suitable function spaces. The precise meaning of the time index on
ut ,ξt is therefore that these quantities enter the process at timet, either through dynamics,
objective, or constraints. This is what we mean by saying that a decisionut is “made” at
time t or that an eventξt “happens” at timet.

3. STOCHASTIC PROGRAMS

In the following we focus onstochastic programs, where anexpectedcost is to be min-
imized. We assume that the objective is convex and smooth and that the constraints are
linear (polyhedral). Two closely related problem classes are considered; they correspond
to thetree-sparse programsof [18] but are stated in probabilistic notation with abstract fea-
sible sets, like the extended linear-quadratic control problems of Rockafellar and Wets [11].

1In practice one usually prefersfactor modelswhere actual random parametersξt have just a few components
and all problem data are expressed as functions ofξt . The dependence is typically affine to preserve convexity.
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Theoutgoing controlvariant has dynamic equations in the form (1), (3), reading

min
x,u

T

∑
t=0

E{ϕt(xt ,ut)}(5)

s.t. xt = Gtxt−1 +Etut−1 +ht ∀t = 0, . . . ,T,(6)

(xt ,ut) ∈ (Xt ×Ut)∩Yt ∀t = 0, . . . ,T,(7)

EGt{ut}−ut = 0 ∀t = 0, . . . ,T,(8)
T

∑
t=0

E{Ftxt +Dtut +et}= 0,(9)

whereas theincoming controlvariant has dynamic equations in the form (4), reading

min
u,x

T

∑
t=0

E{ϕt−1,t(xt−1,ut)+ ϕt(xt)}(10)

s.t. xt = Gtxt−1 +Etut +ht ∀t = 0, . . . ,T,(11)

(xt−1,ut) ∈Yt−1,t ∀t = 0, . . . ,T,(12)

(ut ,xt) ∈Ut ×Xt ∀t = 0, . . . ,T,(13)

EGt{ut}−ut = 0 ∀t = 0, . . . ,T,(14)
T

∑
t=0

E{Dtut +Ftxt +et}= 0.(15)

Here all quantities are understood as random variables on the probability space(Ω,F ,P).
The data elements areξt = (ϕt ,Gt ,Et ,ht ,Xt ,Ut ,Yt ,Ft ,Dt ,et) in the outgoing control case
and ξt = (ϕt−1,t ,ϕt ,Gt ,Et ,ht ,Yt−1,t ,Ut ,Xt ,Ft ,Dt ,et) in the incoming control case, with
Xt ,Ut ,Yt ,Yt−1,t denoting polyhedral sets in appropriate dimensions.2

Directly corresponding scenario tree formulations are obtained if the decision maker has
full current information,Gt = D∗t . Random variablesZt are then simply replaced by their
realizationsZ j , j ∈ Lt , where the scenario tree is constructed from the data filtrationFd.
Thus, recalling the notational conventioni ≡ π( j), the outgoing control problem becomes

min
x,u ∑

j∈V
p jϕ j(x j ,u j)≡

T

∑
t=0

∑
j∈Lt

p jϕ j(x j ,u j)(16)

s.t. x j = G jxi +E jui +h j ∀ j ∈V,(17)

(x j ,u j) ∈ (Xj ×U j)∩Yj ∀ j ∈V,(18)

∑
j∈V

p j [Fjx j +D ju j +ej ] = 0,(19)

and the incoming control problem becomes

min
u,x ∑

j∈V
p j [ϕi j (xi ,u j)+ ϕ j(x j)](20)

s.t. x j = G jxi +E ju j +h j ∀ j ∈V,(21)

(xi ,u j) ∈Yi j ∀ j ∈V,(22)

(u j ,x j) ∈U j ×Xj ∀ j ∈V,(23)

∑
j∈V

p j [D ju j +Fjx j +ej ] = 0.(24)

These are precisely the tree-sparse programs studied in [18], except that the feasible sets are
kept in the more convenient abstract notation. Appropriate representations by hierarchies

2Since the probability space is finite, there is no conceptual difficulty with set-valued or “function-valued”
random variablesXt ,ϕt etc., and no integrability assumptions or “P-almost surely” specifications are required.
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of full-rank linear equations and inequalities are actually a key feature of the tree-sparse
modeling and solution framework. (This explains the presence of “unnecessary” setsXt ,Ut

in (7) andUt in (13): they represent certain inequalities in those hierarchies.) The underly-
ing natural classification of constraints will again play a significant role below.

4. SCENARIO TREE FORMULATIONS

We are now ready to construct scenario tree formulations of the discrete-time problems
(5)–(9) and (10)–(15) with arbitrary information constraints. Recall which items are given:

(a) a finite probability space(Ω,F ,P);
(b) a data process(ξt)t∈I on (Ω,F ,P);
(c) a sequence of information fieldsGt ⊆ F , t ∈ I .

The reformulation proceeds in two steps. First, a filtration representing the finest rele-
vantσ-fields is determined to construct the scenario tree. Second, decisions that must be
measurable with respect to coarserσ-fields are mapped onto the tree. Artificial states or
extra nodes may have to be introduced and control variables may have to be reinterpreted in
the process so that information constraints are properly incorporated into the tree topology.
This provides the transition from the abstract viewpoint of [11] to a practical formulation.

It is also possible to model information constraints explicitly within our problem classes,
asglobal equality constraints. This might even be advantageous in certain unusual situa-
tions, but in general it contravenes the very idea of a scenario tree formulation.

4.1. Assumptions. To get familiar with the probabilistic setting adopted here we discuss
some elementary assumptions that can be made without restriction of generality—even for
arbitrary (nonconvex, nonsmooth) problem functions and feasible sets.

Formal proofs are mostly omitted in the sequel. Almost all considerations rely directly
on the following well-known result (which is trivial in the finite case).

Theorem 1. Suppose that Z is a random vector on(Ω,F ,P) and thatF1⊆ F2⊆ F . Then
EF1{EF2{Z}}= EF2{EF1{Z}}= EF1{Z}. In particular,E{EF2{Z}}= E{Z}. �

4.1.1. Global Constraints Vectors.Observe first that the randomness ofet is irrelevant:
only the expectation ¯e := ∑T

t=0E{et} ≡ E{∑T
t=0et} enters the problem. That is, two prob-

lems differing only in the realizations ofet are equivalent whenever the values of ¯e agree.
Thus one may dropet from ξt , setting for instancee0 := ēandet := 0 for t > 0.

4.1.2. Probability Space.A common assumption under standard information constraints
is F = FT whereFt := D∗t (data filtrationFd). Given a set of data scenarios(ξω)ω∈Ω with
associated probabilities(pω)ω∈Ω, this is achieved by the natural definitionsF := 2Ω and
P := ∑ω∈Ω pωδω. Under general information constraints theσ-fields Dt andGt may be
totally unrelated—evenGt 6⊆ D∗T is possible. In this caseΩ must be larger than the set
of data scenarios, that is, a probability space must be specifieda priori. The assumption
F = FT now holds with no loss of generality for the refined filtrationFt := σ({Dτ,Gτ}τ≤t):
every feasible solution is automaticallyFT -measurable. ThusF is unnecessarily fine if
F ⊃ FT : there exist identical scenarios (having the same data elementsξt and belonging
to the sameGt -atoms throughout), and(Ω,F ,P) should be replaced with(AT ,FT ,P|FT).

Example.Consider a simple two-stage problem withΩ = L = {1,2,3,4}, V = {0}∪Ω:

min
u,x ∑

j∈V
p jx

2
j s.t. x0 = u0,

{
x1 = x0−u1, x3 = x0 +u23

x2 = x0−u23, x4 = x0 +u4

}
.

Theσ-fields areD0 = G0 = { /0,Ω}, D1 = σ({1,2},{3,4}), andG1 = σ({1},{2,3},{4});
henceD1 = D∗T 6= F1 = F = 2Ω. If we haveΩ′ = {1, . . . ,5} initially with x5 = x0 + u23,
then the identical scenariosω′ ∈ {3,5} are replaced with the single (aggregated) scenario
ω = 3 wherep3 = p′3 + p′5, yielding the coarser model just discussed.
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FIGURE 3. Propagation of stochastic information. Left: incoming con-
trol; right: outgoing control.(n)x

t refers to variablex in Eq.(n) at staget.

4.1.3. Positive Probabilities.Another standard assumption isP> 0. This means thatΩ
does not contain scenarios which the decision maker can rule out as impossible (pω = 0)
based on the information available att = 0. Apart from increasing the solution effort, such
scenarios might actually yield awrongproblem: they can obviously not contribute to the
objective or global constraints but are likely to generate a worse optimum by imposing
unjustified local constraints.

Example.Consider a simple tree with root and three leaves (scenarios) having probabilities
p0 = 1, p1, p2 > 0, p3 = 0, with uncertainty occurring only in the constraints:

min
x,u ∑

j∈V
p jx j s.t. x0 = h0, x1 = x2 = x3 = x0 +u0, x1≥ 0, x2≥ 1, x3≥ 2.

The unique solution isu0 = 2−h0, x1 = x2 = x3 = 2, having costh0+2. Without scenario 3
one obtains the better solutionu0 = 1−h0, x1 = x2 = 1, having costh0 +1.

4.1.4. Initial Information Field. The last assumption isG0 = { /0,Ω}. This simply means
that thehere-and-nowdecisionu0 is deterministic: it cannot depend on random events
since any event observed up tot = 0 is certain by construction of the decision model.
If optimization takes place before all those events are observed, then every outcomeβ
requires a separate problem on the space(β,F ∩β, 1

pβ
P|F ∩β) of conditional probabilities.

4.2. Dynamic, global, and local data.A more detailed analysis of the information struc-
ture, specifically of the interplay between dynamic and stochastic aspects, will show that
the refined filtration of§4.1.2 is in general still unnecessarily fine. To recognize this par-
tition random elements intodynamic, global, andlocal partsξt = (ξd

t ,ξ
g
t ,ξl

t) according to
the natural constraints classification in [18]. Having droppedet , the components are

(25) ξd
t = (Gt ,Et ,ht), ξg

t = (ϕt−1,t ,ϕt ,Dt ,Ft), ξl
t = Yt−1,t ×Ut ×Xt

in the incoming control problem, and

(26) ξd
t = (Gt ,Et ,ht), ξg

t = (ϕt ,Ft ,Dt), ξl
t = (Xt ×Ut)∩Yt

in the outgoing control problem, whereξl
t is the local feasible set. The respectiveσ-fields

generated byξd
t ,ξ

g
t ,ξl

t are denotedDd
t ,D

g
t ,D l

t , henceDt = σ(Dd
t ,D

g
t ,D l

t ).
Probabilistic information (uncertainty) enters the problem directly via data elementsξt

and indirectly via decisionsut . Whereasξg
t andξl

t are only relevant in the current stage,
information fromξd

t andut is propagated forward in time by the states. This is illustrated
in Fig. 3, which suggests to study the filtration generated by states and controls together.
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We therefore introduce state fieldsSt (representing the measurability properties ofxt ) and
defineFt = σ(St ,Gt).

Consider first the outgoing control case. Sincext depends on the preceding statext−1,
preceding decisionut−1 (if t > 0), and on the data elementξd

t (but not ξg
t ,ξl

t ), it must be
measurable with respect toDd

t andFt−1. This yields the inductive definitions

S0 := σ(Dd
0 )≡Dd

0 , F0 := σ(S0,G0),(27)

St := σ(Dd
t ,Ft−1), Ft := σ(St ,Gt), t = 1, . . . ,T.(28)

The incoming control case is analogous except thatxt depends on thecurrentdecisionut .
Obviously this impliesFt ≡ St so that the appropriate definitions are

(29) F0≡ S0 := σ(Dd
0 ,G0)≡Dd

0 , Ft ≡ St := σ(Dd
t ,Gt ,Ft−1), t = 1, . . . ,T.

It is now easily verified thatξg
t ,ξl

t can be assumed to beFt -measurable, implying that the
filtration just constructed is in fact sufficiently fine for the desired scenario tree formulation.
Technically one has to replace theglobal data elements by their conditional expectations
with respect toFt , and thelocal data elements (feasible sets) belonging to the sameFt -atom
by their intersection.

Theorem 2. Defineξ̄g
t := EFt{ξg

t }. For everyFt -atomα let ξ̄l
tα :=

⋂
ω∈α ξl

tω, that is, take
intersections of feasible sets. Replacingξg

t ,ξl
t with ξ̄g

t , ξ̄l
t in problem(10)–(15) then yields

an equivalent problem. An analogous statement holds for the outgoing control case.

Proof. Let (u,x) be optimal for (10)–(15). Sincext−1,ut ,xt are allFt -measurable, we have

E{ϕt−1,t(xt−1,ut)+ ϕt(xt)}= E
{

EFt{ϕt−1,t(xt−1,ut)+ ϕt(xt)}
}

= E
{

ϕ̄t−1,t(xt−1,ut)+ ϕ̄t(xt)
}
.

Thus the objectives are identical. A similar argument applies to the global constraints.
Next, byFt -measurability ofut ,

ut ∈Ut ⇐⇒ ∀α ∈ At : ∀ω ∈ α : utα ∈Utω

⇐⇒ ∀α ∈ At : utα ∈
⋂

ω∈α
Utω = Ūtα ⇐⇒ ut ∈ Ūt .

Equivalence of the remaining local constraints is proved similarly, giving(xt−1,ut)∈ Ȳt−1,t

and(ut ,xt) ∈ Ūt × X̄t . Analogous arguments apply to the outgoing control case. �

Remark.The proof shows that some of the data elements can actually be assumed to be
measurable with respect to even coarserσ-fields. With incoming control theseσ-fields are
Gt for Ut ,Dt , thenσ(Ft−1,Gt) for ϕt−1,t ,Yt−1,t , and finallyFt for ϕt ,Xt ,Ft . With outgoing
control they areGt for Ut ,Dt andSt for ϕt ,Xt ,Yt ,Ft .

4.3. Examples. Before we proceed with the tree construction let us investigate the two
main phenomena that may occur under general information constraints: delayed decisions
(possibly caused by delayed observations, by the computing time spent on optimizations,
or by the time required to implement decisions), and foresight (the possibility to observe
random events before they have an effect on the dynamic process). Here we make the
simplifying assumptionDd

t = Dg
t = D l

t to obviate a distinction of the data fields. Full
technical details of the scenario tree formulations will be provided.

4.3.1. Information Delay.A common situation occurs when decisions are based on full
information up to thepreviousstage,Gt = D∗t−1. More generally decisions may be delayed
by δ stages,Gt = D∗t−δ.3 Information fields are then clearly coarser than the data fields, the
realization ofξ0 is unknown att = 0, and the construction in§4.2 yieldsFt = D∗t where
F0 6= { /0,Ω} in general. Sinceut+δ is Ft -measurable fort ∈ {0, . . . ,T−δ}, it is natural to

3For t−δ< 0 we haveD∗t−δ = { /0,Ω} and the actual delay is min(δ, t +1).
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FIGURE 4. Information delayδ stages. Left: data scenarios (no obser-
vations available in small nodes:t < δ). Right: scenario tree (no control
variables in small nodes:t > T−δ; fictitious stage−1 prepended).

place its realizations(u′j) j∈Lt on levelt (rather than the realizations ofut ). Controlsu′j in
the final stagest > T− δ are then empty and a fictitious stage−1 is required whose con-
trol u′−1 represents the deterministic decisionsu0, . . . ,uδ−1. Decisionut−1 (outgoing) orut

(incoming) is passed forward to staget through artificial statesx′j . No random dataξ−1 ex-
ist, so stage−1 is deterministic. The scenario tree rooted inF−1 = { /0,Ω} is thus obtained
from theextended data filtrationF := {Ft}Tt=−1≡ {D∗t }Tt=−1; cf. Fig. 4.

The precise reformulation for outgoing control (5)–(9) with delayδ≥ 1 reads

min
(x,x′),u′

T

∑
t=0

∑
j∈Lt

p jϕ j(x j ,Pjx
′
j)(30)

s.t. x j = G jxi +E jPix
′
i +h j ∀ j ∈ Lt , ∀t = 0, . . . ,T,(31)

x′j = u′−1 ∀ j ∈ L0,(32)

x′j = Qix
′
i +Riu

′
i ∀ j ∈ Lt , ∀t = 1, . . . ,T,(33)

(x j ,Pjx
′
j) ∈ (Xj ×U j)∩Yj ∀ j ∈ Lt , ∀t = 0, . . . ,T,(34)

T

∑
t=0

∑
j∈Lt

p j [Fjx j +D jPjx
′
j +ej ] = 0.(35)

HerePjx′j replacesu j , andx−1,x′−1 are empty so that stage−1 contributes onlyu′i in (33).
The controlsu′j are formally unconstrained, andx′j passes forward the previousδ decisions.
Proper components are selected by (deterministic) matricesPj ,Q j ,Rj where

(36)

[
Pj

Q j Rj

]
=

 I 0
0 I 0
0 0 I

 ∈ R(nu
t +nu

t+1:t+δ−1+nu
t+δ)×(nu

t +nu
t+1:t+δ−1+nu

t+δ), j ∈ Lt .

Herenu
t := dim(ut) andnu

t:t+δ := nu
t + · · ·+nu

t+δ. If δ = 1 thennu
t+1:t+δ−1 clearly vanishes,

yielding Pj = I , Q j = 0, Rj = I , and obvious simplifications in (30)–(35). (LikewiseP−1

and the unused matricesQ j ,Rj for j ∈ LT are always empty.)
The reformulation for incoming control (10)–(15) with delayδ≥ 1 is quite similar,

min
u′,(x,x′)

T

∑
t=0

∑
j∈Lt

p j [ϕi j (xi ,Pjx
′
i)+ ϕ j(x j)](37)

s.t. x j = G jxi +E jPjx
′
i +h j ∀ j ∈ Lt , ∀t = 0, . . . ,T,(38)

x′−1 = u′−1,(39)

x′j = Q jx
′
i +Rju

′
j ∀ j ∈ Lt , ∀t = 0, . . . ,T−1,(40)

(xi ,Pjx
′
i) ∈Yi j ∀ j ∈ Lt , ∀t = 0, . . . ,T,(41)

(Pjx
′
i ,x j) ∈U j ×Xj ∀ j ∈ Lt , ∀t = 0, . . . ,T,(42)

T

∑
t=0

∑
j∈Lt

p j [D jPjx
′
i +Fjx j +ej ] = 0.(43)

Now Pjxi replacesu j andx−1,x′T are empty (time shift), so stage−1 contributes to several
conditions. Note in particular thatu j = Pjx′i appears in the local constraints for allj ∈ Lt .
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FIGURE 5. Foresightδ stages. Left: data scenarios (deterministic for
t ≤ δ). Right: scenario tree (no further branches fort ≥ T−δ).

That is, constraints (41), (42) can be written(xi ,Pjx′i) ∈
⋂

j∈S(i)Yi j andPjx′i ∈
⋂

j∈S(i)U j ,

respectively.4 This feasibility issue illustrates a principal difficulty with information delays:
decisionu′j (made at timet) must satisfy all constraint realizations at timet + δ.

For δ = 1 we have againPj = I , Q j = 0, andRj = I , implying x′j = u′j throughout. This
makes artificial states obsolete and we may switch to an outgoing control formulation: the
controls are simply shifted back to the previous stage,ut = (u′j) j∈Lt−1.

4.3.2. Foresight. The opposite case occurs when the decision maker can observe random
eventsδ stagesbeforethey actually influence the process,Gt = D∗t+δ.5 This implies that
ξ0, . . . ,ξδ are deterministic (their realizations are known att = 0) and henceDt = { /0,Ω}
for t ≤ δ. Information fields are now finer than the data fields and the construction in
§4.2 yieldsFt = D∗t+δ. Thus the scenario tree is constructed from theinformation filtration
F := {Ft}t∈I ≡{Gt}t∈I . With this tree one obtains a straightforward reformulation as usual,
except that duplicate data elementsξ j will generally exist sinceD∗t ⊆ Gt ; see Fig. 5.

If the original problem has outgoing control one may alternatively switch to an incoming
control reformulation where the states and certain data elements are shifted back one stage:

min
u,x′

T

∑
t=0

∑
j∈Lt

p jϕ j(x′i ,u j)(44)

s.t. x′j = G′jx
′
i +E′ju j +h′j ∀ j ∈ Lt , ∀t = 0, . . . ,T−1,(45)

(x′i ,u j) ∈Yj ∀ j ∈ Lt , ∀t = 0, . . . ,T,(46)

u j ∈U j ∀ j ∈ Lt , ∀t = 0, . . . ,T,(47)

x′j ∈ X′j ∀ j ∈ Lt , ∀t = 0, . . . ,T−1,(48)

T−1

∑
t=0

∑
j∈Lt

p jF
′
j x
′
j +

T

∑
t=0

∑
j∈Lt

p j [D ju j +ej ] = 0.(49)

Herex′i and(Gi ,Ei ,hi ,Xi ,Fi)′ are the respective realizations ofFt−1-measurable random
variablesxt and (Gt ,Et ,ht ,Xt ,Ft) for t > 0. The initial statex0 = x′−1 does not actually
appear in the problem: its fixed valueh0 is directly substituted in (44)–(46).

4.4. Mapping decisions onto trees.Returning to the filtration constructed in§4.2, we
observe first that the initialσ-field F0 can be assumed to be trivial without restriction of
generality. Recall thatF0 = σ(Dd

0 ,G0) = Dd
0 . If Dd

0 6= { /0,Ω} thenξd
0 is uncertain att = 0:

the problem has an initial delay of information. As in§4.3.1 we prepend a fictitious stage
t =−1 which containsu0 and possibly further deterministic decisions, but nothing else. A
time shift t → t + 1 now yields the desired property. Thus a scenario tree can always be
constructed either from the filtration{Ft}t∈I or from the extended filtration{Ft}T+1

t=0 . The
data processξ, decision processu, and state processx are all adapted to that filtration.

The states and data elements are naturally represented in terms of their realizations as
xt = (xtα)α∈At andξt = (ξtα)α∈At (or (x j) j∈Lt and(ξ j) j∈Lt in tree notation), whereAt is

4Observe thatPj xi depends oni only (not on j) sincePj is deterministic; cf. (36).
5For t + δ≥ T we haveD∗t+δ = D∗T = F and the actual foresight is min(δ,T− t).
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TABLE 1. Random data elements in the general example problem.

ω 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
H0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
F0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1−2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
H1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b1 17 17 17 17 17 17 17 17 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 17 17 17 17 17 17 17 17
F1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H2 0 0 0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 15 15 15 15 15 15 15 15
E2 −1 −1 −1 −1 1 1 1 1 1 1 1 1−1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1−1 −1 −1 −1
b2 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 11 11 11 11
F2 6 6 6 6−3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −2 −2 −2 −2 −2 −2 −2 −2
H3 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
E3 1 1 1 1 1 1−2 −2 −2 −2 1 1 1 1 1 1 1 1−2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
b3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 11 7 7 7 7 7 7
F3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−9 −9
H4 3 3 3 4 4 3 3 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 3 3 4
E4 −2 −2 −2 −2 3 3 3 3 3 3 3 3 3 3 3 3−2 −2 −2 −2 −2 −2 3 3 3 3 3 3 3 3 3 3
b4 42 24 24 24 42 42 42 24 24 24 24 24 24 24 24 42 42 42 42 42 42 42 42 42 42 42 42 42 42 24 24 24
F4 2 2 2−1 −1 2 2 2 2−1 −1 2 2−1 −1 2 2−1 −1 2 2−1 −1 2 2−1 −1 2 2 2 2−1

the set ofFt -atoms. Both representations may have duplicate realizations, but this does not
cause any difficulties since neitherx nor ξ are subject to measurability restrictions.

Decisionsut must beGt -measurable so that the direct representation asut = (utα)α∈At

is perfect ifGt = Ft , which is the case if the realizations ofξ0, . . . ,ξt are known at timet.
OtherwiseGt is strictly coarser thanFt and there exists at least oneGt -atomβ∈Bt which is
a union of two or more atomsαν ∈At . In this case the representation is too fine: it requires
explicit equality constraints to ensure that all realizations(utα)α∈β are indeed identical.
Hence the question arises in which node one should placeutβ. This is now easily decided.
Since{Ft} is a filtration withF0 = { /0,Ω}, a unique largestδ(β) ∈ {1, . . . , t} exists such
thatβ is contained in an atomα ∈At−δ(β). We interpretδ(β) as thelocal delay of informa-
tion in β.6 In tree notation the set{αν} (henceβ) simply corresponds to a subsetB⊆ Lt

andα corresponds to the rooti of the unique smallest subtree containing all nodesj ∈ B.
As in §4.3.1 we placeutβ in nodei ∈ Lt−δ(β) and pass decisions forward as artificial states
on all the paths fromi to j ∈ B. This completes the problem reformulation.

Instead of inventing a general notation to write down complete technical details we pro-
vide an illustrative example problem. The reader should thus be able to apply the general
construction to any particular problem instance that he or she encounters.

4.5. General case example.We now study an artificial example which is constructed in
such a way that it exhibits all aspects discussed in the previous sections. (This results
in a perhaps surprisingly complex information structure.) Consider an outgoing control
problem withxtω,utω ∈ R:

min
x,u

T

∑
t=0

E{Htx
2
t } s.t. xt = xt−1 +Etut−1, ut ∈ [0,bt ],

T

∑
t=0

E{Ftxt}= ē.

Random data elementsξt = {Ht ,Et ,bt ,Ft} for a 32-scenario instance withT = 4 periods
(five stages) are listed in Table 1. Some data are deterministic here, such asGt ,ht ,Dt and
the lower control bound (zero). Using abbreviated notationn := {n} andm:n := {m, . . . ,n}

6Conversely, ifβ∈At then there exists a unique smallestδ(β)≤ 0 such thatβ∈At−δ(β). Thusβ is an atom of
Ft , . . . ,Ft−δ(β), implying that no further branches occur up to staget−δ(β) in the partial scenario corresponding

to β ∈ At . We interpret−δ(β) as thelocal foresightin β (or δ(β) as the local delay of information).
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for the atoms, information fields are given as

G0 = σ(1:32) = { /0,Ω},
G1 = σ(1:16,17:18,19:20,21:22,23:24,25:32),

G2 = σ(1:16,17:18,19:20,21,22,23,24,25:26,27:28,29:32),

G3 = σ(1:2,3:4,5:6,7:8,9:10,11:14,15:16,17:20,21,22,23,24,25:26,31:32,27:30),

G4 = σ(1:6,7:12,13:20,21,22,23,24,25,27,29,31,26,28,30,32).

(Note that information get lost in stages 3 and 4.) The dynamic data fields are obtained as

Dd
0 = σ(1:16,17:32), Dd

3 = σ(1:6,11:18,7:10,19:32),

Dd
1 = σ(1:32) = { /0,Ω}, Dd

4 = σ(1:4,17:22,5:16,23:32).

Dd
2 = σ(1:4,13:20,29:32,5:12,21:28),

Observing thatD0 has two atoms (initial information delay) it is easily seen that the data
filtration Fd = {D∗t } corresponds to two regular binary trees with 16 scenarios each. It is
also seen that the probability space withF = D∗T = 2Ω is unnecessarily fine: the construc-
tion according to§4.2 (with trivial stage−1 prepended) yields the 22-scenario filtration

F−1 = { /0,Ω}, F0 = Dd
0 , F1 = G1,

F2 = σ(1:4,5:12,13:16,17:18,19:20,21,22,23,24,25:26,27:28,29:32),

F3 = σ(1:2,3:4,5:6,7:8,9:10,11:12,13:14,15:16,

17:18,19:20,21,22,23,24,25:26,27:28,29:30,31:32),

F4 = σ(1:2,3:4,5:6,7:8,9:10,11:12,13:14,15:16,

17:18,19:20,21,22,23,24,25,26,27,28,29,30,31,32).

On the other hand, this filtration is finer than the one obtained from dynamic data fields
alone; the information fields are indeed relevant. The associated 6-stage scenario tree has
1+ 2+ 6+ 12+ 18+ 22= 61 nodes whose data and variables are given in Table 2, where
pω = 1/32 for all ω ∈ Ω. HereH j andFj are the realizations of appropriate conditional
expectations whereasb j is always the minimum of the relevant realizations. The delay of
information ranges from−3 (foresight three stages) up to 5: decisionu4,13 = · · · = u4,20

must be made before any observations become available.

5. GENERALIZED L INEAR-QUADRATIC CONTROL

A comparison of the tree-sparse programs with the generalized linear-quadratic control
problems of Rockafellar and Wets [11] has been provided in [18] under standard informa-
tion constraintsGt = D∗t . Here we consider again the smooth quadratic case (obtained with
V := Rl1×Rl2

+ andQ := 0 in the notation of [11]; see also [9, Example 3.2]), but under
general information constraints. The stochastic problem(Psto) [11, §4] then reads

min
u,x

T

∑
t=0

E
{1

2
u∗t Ptut + p∗t ut −c∗t+1xt

}
(50)

s.t. xt = Atxt−1 +Btut +bt ∀t = 0, . . . ,T,(51)

ut ∈Ut ∀t = 0, . . . ,T,(52)

EGt{ut}= ut ∀t = 0, . . . ,T,(53)

EGt{C1
t xt−1}+D1

t ut = q1
t ∀t = 1, . . . ,T +1,(54)

EGt{C2
t xt−1}+D2

t ut ≥ q2
t ∀t = 1, . . . ,T +1.(55)

(HereA0, x−1, DT+1, anduT+1 are empty.) The data elementsPt , pt ,Ut ,Dt ,qt are assumed
to beGt -measurable in [11] whereas no restrictions are imposed onAt ,Bt ,bt ,Ct ,ct . Clearly



GENERAL INFORMATION CONSTRAINTS 13

TABLE 2. Mapping of data and variables to scenario tree in the general
example. Nodesj given byt andFt -atomα; duplicate states indicated
by St -atoms underx j ; delayed decisions listed underx′j andu′j , where
u3,25::32 := u3,25:26,31:32, u4,25::31 := u4,25,27,29,31, u4,26::32 := u4,26,28,30,32;
local delay of information given underδ( j); ‘—’ indicates empty items.

j = t,α H j E j b j Fj x j x′j u′j δ( j)
−1,1:32 — — — — — — u0,1:32,u4,13:20 0
0,1:16 2 −1 3 1 0,1:16 u0,1:32,u4,13:20 — 1
0,17:32 1 1 3 −2 0,17:32 u0,1:32,u4,13:20 u3,17:20 1
1,1:16 0 1 4 0 1,1:16 u4,13:20 u j ,u2,1:16,u3,11:14,u4,1:6,u4,7:12 0
1,17:18 0 1 4 0 1,17:32 u3,17:20,u4,13:20 u j −3
1,19:20 0 1 4 0 1,17:32 u3,17:20,u4,13:20 u j −3
1,21:22 0 1 4 0 1,17:32 — u j 0
1,23:24 0 1 4 0 1,17:32 — u j 0
1,25:32 0 1 17 0 1,17:32 — u j ,u3,25::32,u3,27:30,u4,25::31,u4,26::32 0
2,1:4 0 −1 47 6 2,1:4 u2,1:16,u4,1:6 — 1
2,5:12 8 1 47 −3 2,5:12 u2,1:16,u3,11:14,u4,1:6,u4,7:12 — 1
2,13:16 8 −1 47 −3 2,13:16 u2,1:16,u3,11:14,u4,13:20 — 1
2,17:18 8 −1 47 −3 2,17:18 u3,17:20,u4,13:20 u j −2
2,19:20 8 −1 47 −3 2,19:20 u3,17:20,u4,13:20 u j −2
2,21 8 1 47 −3 2,21:22 — u j −2
2,22 8 1 47 −3 2,21:22 — u j −2
2,23 8 1 47 −3 2,23:24 — u j −2
2,24 8 1 47 −3 2,23:24 — u j −2
2,25:26 15 1 47 −2 2,25:28 u3,25::32,u4,25::31,u4,26::32 u j −1
2,27:28 15 1 47 −2 2,25:28 u3,27:30,u4,25::31,u4,26::32 u j −1
2,29:32 15 −1 11 −2 2,29:32 u3,25::32,u3,27:30,u4,25::31,u4,26::32 u j 0
3,1:2 5 1 7 0 3,1:4 u4,1:6 u j 0
3,3:4 9 1 7 0 3,1:4 u4,1:6 u j 0
3,5:6 9 1 7 0 3,5:6 u4,1:6 u j 0
3,7:8 9 −2 7 0 3,7:10 u4,7:12 u j 0
3,9:10 9 −2 7 0 3,7:10 u4,7:12 u j 0
3,11:12 9 1 7 0 3,11:12 u3,11:14,u4,7:12 — 2
3,13:14 9 1 7 0 3,13:16 u3,11:14,u4,13:20 — 2
3,15:16 9 1 11 0 3,13:16 u4,13:20 u j 0
3,17:18 9 1 11 0 3,17:18 u3,17:20,u4,13:20 — 3
3,19:20 9 −2 11 0 3,19:20 u3,17:20,u4,13:20 — 3
3,21 9 −2 11 0 3,21 — u j −1
3,22 9 −2 11 0 3,22 — u j −1
3,23 9 −2 11 0 3,23 — u j −1
3,24 9 −2 11 0 3,24 — u j −1
3,25:26 9 −2 11 0 3,25:26 u3,25::32,u4,25::31,u4,26::32 — 2
3,27:28 9 −2 7 0 3,27:28 u3,27:30,u4,25::31,u4,26::32 — 2
3,29:30 9 −2 7 0 3,29:32 u3,27:30,u4,25::31,u4,26::32 — 2
3,31:32 9 −2 7 −9 3,29:32 u3,25::32,u4,25::31,u4,26::32 — 2
4,1:2 3 −2 24 2 4,1:2 u4,1:6 — 3
4,3:4 3.5 −2 24 0.5 4,3:4 u4,1:6 — 3
4,5:6 3.5 3 42 0.5 4,5:6 u4,1:6 — 3
4,7:8 3 3 24 2 4,7:8 u4,7:12 — 3
4,9:10 3.5 3 24 0.5 4,9:10 u4,7:12 — 3
4,11:12 3.5 3 24 0.5 4,11:12 u4,7:12 — 3
4,13:14 3.5 3 24 0.5 4,13:14 u4,13:20 — 5
4,15:16 3.5 3 24 0.5 4,15:16 u4,13:20 — 5
4,17:18 3.5 −2 42 0.5 4,17:18 u4,13:20 — 5
4,19:20 3.5 −2 42 0.5 4,19:20 u4,13:20 — 5
4,21 3 −2 42 2 4,21 — u j 0
4,22 4 −2 42 −1 4,22 — u j 0
4,23 4 3 42 −1 4,23 — u j 0
4,24 3 3 42 2 4,24 — u j 0
4,25 3 3 42 2 4,25:26 u4,25::31 — 3
4,26 4 3 42 −1 4,25:26 u4,26::32 — 3
4,27 4 3 42 −1 4,27:28 u4,25::31 — 3
4,28 3 3 42 2 4,27:28 u4,26::32 — 3
4,29 3 3 42 2 4,29:30 u4,25::31 — 3
4,30 3 3 24 2 4,29:30 u4,26::32 — 3
4,31 3 3 24 2 4,30:31 u4,25::31 — 3
4,32 4 3 24 −1 4,30:31 u4,26::32 — 3
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we have incoming control withξd
t = (At ,Bt ,bt), ξg

t = (Pt , pt ,ct+1), andξl
t = (Ut ,Ct ,Dt ,qt).

ThusGt -measurability of the specified data is not really a restriction: it holds without loss
of generality by the direct analogue of Theorem 2 (and likewiseFt -measurability ofct+1).7

However, constraints (54), (55) deserve closer inspection: the conditional expectations
EGt{Ci

txt−1} enforceGt -measurability of the termsCi
txt−1 (which may then be assumed of

Di
t ,q

i
t as well). Without conditional expectations these constraints would represent poly-

hedraYt,t−1 that could only be assumed to be measurable with respect toσ(Ft−1,Gt)⊆ Ft .
This would allow slightly more general feasible sets, like in the tree-sparse programs.

6. CONCLUSIONS

The previous investigations demonstrate that tree-sparse programs provide natural sce-
nario tree formulations of stochastic programs with general information constraints. Given
a problem with arbitrary finite data and information fields, we have shown how thedy-
namicdata fields together with the information fields generate a filtration that yields the
direct scenario tree reformulation, both for incoming and outgoing control models. Using
the relations between atoms of the variousσ-fields, we have also interpreted nonstandard
information constraints, either as a local delay of information or as local foresight. A local
delayδ at timet means that reliable information is only available on random events that
have influenced the process until timet−δ in the past. In other words, the current decision
could have been madeδ periods earlier if full information had been available. Conversely,
a local foresight ofδ at timet means that reliable information is already available on all
random events that will influence the process until timet + δ in the future. In the extreme
case of an entirely deterministic process (i.e., with foresightδ = T), all decisions can thus
be optimizedoff line—at the very beginning. This is also true for the other extreme case
(delayδ = T) where no new information is acquired during the entire process.

Further we have shown that outgoing control problems with uniform foresightδ ≥ 1
can be recast as incoming control problems, and incoming control problems with uniform
delayδ = 1 can be recast as outgoing control problems. Considering the feasibility issues
associated with information delays, one may assume that models with delayδ > 1 are
probably not reasonable in most practical situations (the time discretization is “too fine”).
Thus outgoing control naturally models delays while incoming control naturally models
immediate reactions or foresight. This is the reason for considering two versions of tree-
sparse programs: they cover almost all practically relevant situations directly. (Actually
there is a third variant with dynamic equations in implicit form; cf. [17, 18]. This variant
is similar to the standard formulation of stochastic programs [4].)

Of course, the trees constructed in this paper may be further modified to increase nu-
merical efficiency. In the general example problem, for instance, several nodes toward the
end of the horizon have empty controls. A smaller problem can be obtained by clustering
these nodes and eliminating the associated states.

To add concreteness and to allow finer distinctions of the measurability properties of
data elements, we have studiedconvexstochastic programs in§4. However, none of the
considerations rely on this. The constructions carry over directly to the general case where
the dynamics (6), (11) involve arbitrary transition mappingsθt and where global constraints
(9), (15) have the general form∑t E{γt(xt ,ut)} = 0, with no restrictions whatsoever im-
posed on the problem functions or feasible sets. For instance, everything applies directly
to stochastic integer programs (see [13] and references therein), and the ideas extend to
other classes of stochastic optimization models (see, e.g., [5, 7, 8] for a general overview).
In any case, the generally applicable concept of distinguishing dynamic, global, and local
problem data is the key to a concise problem formulation based on the full understanding
of the relation between information structure and algebraic structure.

7TheGt -measurable equality constraints readEGt {C1
t xt−1}β +D1

tβutβ = q1
tβ for all β ∈ Bt (whereD1

tω = D1
tβ

andq1
tω = q1

tβ for all ω ∈ β); similarly the inequalities.
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