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1 INTRODUCTION

1. Introduction

This thesis will cover the development and application of an empirical Bayes method to

the problem of parameter estimation in systems biology. The goal is to provide a general

and practical solution to the Bayesian inverse problem in the case of high dimensional

parameter spaces making use of present cohort-data.

Regarding its application to systems biology or medicine a quanti�cation of uncertainty of

the results is of utmost importance to any practitioner facing decisions such as whether to

apply a speci�c treatment or release a new drug.

Although the classical frequentist approach to statistics o�ers answers to this in terms

of con�dence intervals and hypothesis tests, these techniques, aiming for point estimates,

have a hard time dealing with ill-posed problems incorporating uncertainties and uniden-

ti�abilities, often appearing in applications with large nonlinear models.

We will henceforth adopt the Bayesian view which, contrary to the point estimates in the

frequentist approach, naturally con�nes the treatment of uncertainty by its description in

terms of distributions.

As we will see it also allows for a natural incorporation of data, a circumstance of ever

greater importance in a time of progressing digitalization of our lives, the medicine and

the sciences.

We will furthermore tackle one of the main points of criticism on the Bayesian approach,

namely its subjectivity in the choice of the prior: Two scientists, given the same data and

working with the same model, can come up with di�erent results (the posterior) imposing

di�erent a priori knowledge about the parameters in questions (the prior).

This critique lead to the school of objective Bayesian analysis (cf. [1]) with the goal to

provide methods ensuring consistent results in repeated usage by scientists.

One approach is the choice of so called non-informative priors, using information-theoretic

considerations to formalize the notion of non-informativity, giving rise to the Je�rey's prior

[12] and its generalization to more general spaces, the reference priors [3].

An alternative approach is given by the empirical Bayes methods:

The empirical Bayes approach to statistical decision problems is applicable

when the same decision problem presents itself repeatedly and independently

with a �xed but unknown a priori distribution of the parameter - Herbert

Robbins [18].

Here repeated measurements of individuals from the population in question, called co-
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1 INTRODUCTION

hort data, are used to construct a prior representing that population. The �rst major

contribution was by Robbins [17], deriving explicit formulas for the Bayes estimators of

nonparametric priors for di�erent families of likelihood functions giving rise to the non-

parametric maximum likelihood estimator (NPMLE). These ideas got largely neglected due

to their computational cost, until they was brought back to attention in the parametric

case by Efron and Morris [5] in 1973.

Unfortunately the NPMLE approach applied to �nite data results in discrete distributions.

In Section 3 we will therefore discuss its regularization. We start by treating the topic of

penalization of unsmooth solutions, leading to the maximum penalized likelihood estimator

(MPLE), and will set this into relation with Bayesian hyperpriors, i.e. prior assumption

on the prior.

We then continue by introducing the mutual information penalty, a speci�c choice for

penalizing unsmooth priors based on information-theoretic considerations. We end up

with a nonparametric, hence generally applicable, method combining the assumptions of

least information from the non-informative priors with the usage of cohort data from the

empirical Bayes approach combining their strengths. The suggested prior can as well be

seen as a generalization of the reference priors to the cohort data regime.

We additionally discuss the doubly-smoothed maximum likelihood estimator (DS-MLE) es-

timate by Seo and Lindsay [22], an alternative approach with the idea of tackling the

problem of �nite data at its root by smoothing the data itself followed by the NPMLE.

In section 4 we will then address the question of how to compute the introduced prior esti-

mates numerically. We will work with a sample driven Monte Carlo approach, expressing

the priors as importance samplings. We then derive the explicit formulas for the EM algo-

rithm [4] for the approximation of the NPMLE and the DS-MLE and provide the Jacobian

for the optimization of the MPLE with the mutual information penalty.

We conclude the section with a digression to Markov Chain Monte Carlo sampling used

for the computation of the Monte Carlo discretization.

Finally we will apply the developed methods and algorithms to a high-dimensional model

from systems biology and discuss the results in section 5.

For supplementary reading we refer to the articles [14, 13], which originated in close relation

to this thesis and share a lot of the general approach and notation.
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2 EMPIRICAL BAYES METHODS

2. Empirical Bayes Methods

2.1. The Bayesian formalism

We start by laying out the basic formal tools in the Bayesian setting.

De�nition 1. Let X : Ω → X and Y : Ω → Y denote continuous random variables with

joint probability density ρX,Y (x, y). The conditional probability density of Y given the

event X = x (i.e. ρX (x) > 0) X is de�ned as

ρY |X (y|x) :=
ρX,Y (x, y)

ρX (x)
, (2.1)

where ρX (x) is the marginal density of X, i.e. the joint density ρ (x, y) marginalized over

all possible y:

ρX (x) :=

∫
y
ρ (x, y) dy. (2.2)

Throughout this thesis, we will slightly abuse notation and not distinguish between a

probability distribution X and its density ρX . We will furthermore, whenever conditioning

on an event X = x directly denote the condition in the subscript, i.e.

ρY |x (y) := ρY |X (y | x) ,

whenever the corresponding random variable is clear from the context.

The above equations already imply the heart of Bayesian statistics, Bayes' theorem:

Theorem 2. Let X and Y be as above. For all y ∈ Y, such that ρY (y) > 0 holds:

ρX|y (x) =
ρY |x (y) ρX (x)

ρY (y)
=

ρY |x (y) ρX (x)∫
X ρY |x′ (y) ρX (x′) dx′

. (2.3)

Proof. This follows by successive insertion of (2.1) and (2.2):

ρX|y (x) :
(2.1)
=

ρX,Y (x, y)

ρY (y)

(2.1)
=

ρY |x (y) ρX (x)

ρY (y)

(2.2)
=

ρY |x (y) ρX (x)∫
X ρY |x′ (y) ρX (x′) dx′

.

This formula, obtained by successive insertion of (2.1) and (2.2), constitutes the heart of

Bayesian statistics. It tells us how to reconstruct the posterior distribution ρX|y of the
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2 EMPIRICAL BAYES METHODS

unknown parameter x given data y, using the likelihood ρY |x (y) of x given y as well as the

prior ρX (x) re�ecting our prior assumptions on the density of X.

Note that for �xed y the posterior ρX|y and prior ρX both are probability densities in X .
The likelihood on the other hand is not a probability density in X (it is one one in Y for

�xed x). For this reason it is also called the likelihood function

L (x | y) := ρY |x (y) .

2.2. The likelihood model

Our inference bases on the combination of a deterministic physical model, our description

of the reality, with a stochastic measurement error and the formalism of Bayes'.

De�nition 3. The physical model is a map Φ : X ⊆ Rn → Y ⊆ Rm, mapping some

parameter x ∈ X to a resulting state y ∈ Y. The parameters x ∈ X are distributed

according to some prior X : Ω→ X ∼ ρX , with ρX (x) > 0∀x ∈ X .

The data generating measurement process Z : Ω→ Z ⊆ Rm is modeled as an independent

Gaussian perturbation with prescribed covariance matrix Σ of the state conditioned on the

parameter:

ρZ|X (z | x) = Φ (x) + E, E ∼ N (0,Σ) , (2.4)

where N (y, Σ) denotes the normal distribution with mean y and covariance matrix Σ.

This likelihood model gives us the means to compute the probability of measuring a single

measurement z, given the underlying parameter x.

Assuming the prior distribution on X was known, this would enable us to compute the

posterior ρX|z given some measurement z ∈ Z by straightforward application of the Bayes'

theorem (2.3).

Remark 4. Note that whilst this model is extensible to inference based on multiple mea-

surements zM :=
(
zi

i.i.d.∼ ρZ|x (x)
)M
i=1

using the product-rule,

ρX|zM (x) =

∏M
m=1 ρZ|x (zi) ρX (x)∏M

m=1 ρZ (zi)

the assumption of identically distributed zi implies that they all depend on the same

parameter X = x. This is the right inference if all measurements come from the same
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2 EMPIRICAL BAYES METHODS

realization of X, e.g. the same subject, but is wrong assuming di�erent measurements

correspond to independent draws from the prior ρX , e.g. multiple subjects. We will

therefore proceed to a more general framework allowing for the inference in the latter case.

2.3. The empirical Bayes model

Since in general the prior X cannot be assumed to be known, a number of di�erent

methods have been established for estimating this prior based on empirical cohort data,

giving rise to so=called empirical Bayes methods. In that context we extend the model

by parametrizing the prior ρX on a hyperparameter Π, the prior on the set of priors if

one likes, resulting in the hierarchical model Π → X → Z, which we will refer to as the

hyperparametric model.

Most literature con�nes itself to (�nite dimensional) parametric empirical Bayes methods,

characterized by considering parametrized families of distributions for the priors, e.g.

π ∈ Π : Ω→= Rk,

ρX|π ∼ N (π, I)

since these may admit explicit formulas for prior point estimates if the likelihood model

and prior families admit simple forms, as well as circumventing regularization issues. We

aim at a more general solution to the inference problem by allowing arbitrary distributions

as priors, i.e.

,

Π : Ω→M1 (X ) :=
{
ρ ∈ L1 (X ) | ρ ≥ 0, ‖ρ‖L1 = 1

}
,

ρX|π (x) = π (x)

resulting in nonparametric empirical Bayes methods.

The marginal likelihood of a prior Π = π given a single measurement z is then given by

L (π | z) = ρZ|π (z) =

∫
X
ρZ|x (z)π (x) dx.

Since this likelihood, in contrast to the basic Bayesian model above, does not depend

on a speci�c realization of the latent variable X anymore, this allows us to handle mul-

tiple measurements coming from independent samples of X correctly using the product

distribution:
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2 EMPIRICAL BAYES METHODS

De�nition 5. For �nite data zM = (zm ∈ Z)m=1,...,M we de�ne the likelihood of a prior

π as

L
(
π | zM

)
:=

M∏
m=1

ρZ|π (zm) (2.5)

or alternatively in its renormalized logarithmic form as �nite data log-likelihood

L
(
π | zM

)
:=

1

M
log ρ

(
zM |π

)
=

1

M

M∑
m=1

log ρZ|π (zm) .

In the case of �in�nite data�, represented by the probability density ρZ of the data-

generating random variable Z we de�ne analogously

De�nition 6. Let ρZ be a probability density on Z. The corresponding in�nite data

log-likelihood is de�ned as

L∞ (π | ρZ) :=

∫
Z
ρZ (z) log ρZ|π (z) dz.

This de�nition, also referred to as the cross entropy between ρZ and ρZ|π, follows from the

former in the limit for m→∞ from the law of large numbers assuming that ρZ is indeed

the data generating distribution:

zm
i.i.d.∼ ρZ ⇒ L

(
π | zM

) a.s.−→
M→∞

L∞ (π | ρZ) . (2.6)

The following proposition demonstrates how we can recover the data underlying �true prior�

π∗ in the in�nite data regime by maximizing the corresponding likelihood functional L∞.

Proposition 7. Let the hyperparametric model be well speci�ed, i.e. ∃π∗ ∈M1 (X ):

ρZ = ρZ|π∗

and identi�able [25, chapter 5], i.e. ∀π ∈M1 :

ρZ|π = ρZ|π∗ ⇒ π = π∗.

Then π∗ is the unique maximizer of L∞

π∗ = arg max
π∈M1(X )

L∞ (π) .
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Proof. Gibbs' inequality says that∫
Z
ρZ (z) log ρZ (z) dz ≥

∫
Z
ρZ (z) log q (z) dz

for any probability density q, with equality if and only if q = ρZ . The claim follows from

the assumptions.

Both assumptions arise rather naturally. If the model is not well speci�ed this merely

means the measured data ρZ cannot be explained by any prior, thus resulting in an ill-

posed problem. If on the other hand the model is not identi�able, which by de�nition

corresponds to the injectivity of the marginal likelihood function ρZ|π as a function of π,

there exists another π′ 6= π∗ inducing the same measurement distribution so we cannot

hope to recover the true prior from the data.

The latter problem can be retracted through lifting the inference problem to equivalence

classes of priors leading to the same measurements,

π ∼ π′ :⇐⇒
∥∥ρZ|π − ρZ|π′∥∥L1(Z)

= 0,

which, in the non-identi�able case, is all we can hope for.

Though in practice usually only �nite data is available, and even though the limiting

property (2.6) might give hope that the NPMLE estimate

πML := arg max
π′∈M1(X )

L
(
π | zM

)
might approximate π∗ properly, one can prove [15, Theorem 21] that the maximizer of L
is a discrete distribution with at most M nodes.

In the �eld of machine learning this phenomenon, commonly occurring for insu�cient data,

is referred to as over�tting and usually approached by regularization techniques, methods

to enforce more regular and smooth solutions.

3. Regularization

To address this problem of irregularity we will introduce two regularization methods, the

maximum penalized likelihood estimation (MPLE), introducing a penalization term to the

former optimization problem, and the doubly smoothed maximum likelihood estimation

(DS-MLE), based on applying NPMLE after smoothing the data.
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3 REGULARIZATION

3.1. Regularization by a penalization term

For this section, let us �x the data data zM in De�nition(5), denoting L (π) := L
(
π | zM

)
.

De�nition 8. For a given roughness penalty (or regularization term) φ :M1 → R, respon-
sible for penalizing unsmooth or unwanted solutions with high values, the MPLE estimate

πφ admits the form

πφ = arg max
π

logL (π)− φ (π) . (3.1)

This approach also allows for an interpretation in the context of the Bayesian hyperpara-

metric model by identifying the penalty φ with the hyperprior ρΠ on Π via ρΠ ∝ e−φ. The
posterior for Π is then

ρΠ|Z ∝ L (π) e−φ(π)

and thus the maximum a posteriori estimate πMAP for the hyperparametric model corre-

sponds to the MPLE estimate:

πMAP = arg max
π

L (π) e−φ(π) = arg max
π

logL (π)− φ (π) = πφ.

One now might might argue that we started with the question of �nding the correct prior

and just complicated the situation by transferring this problem to the question of the

correct hyperprior. While this may be true we argue that the latter can be tackled from a

rather abstract, problem independent standpoint, hence leading to a more general answer.

3.2. The mutual-information penalty

Many of the common penalty functions currently in use, penalizing either large amplitudes

(e.g. ridge regression [16, section 1.6]) or derivatives (cf. [9]) of the prior, are not invariant

under reparametrizations of the parameter space X and are rather ad-hoc without a natural

derivation. Following a more information-theoretic view Good [8] suggested the use of the

di�erential entropy for the penalty

φHX (π) := γ

∫
X
ρX|π (x) log ρX|π (x) dx,

with γ ∈ R+, the regularization constant, determining the degree of smoothing due to this

penalty. This prior however is still variant under reparametrizations of X . This means

that if two scientists estimate the prior using equivalent models, using di�erent systems of

units, they could end up with di�erent estimates. Hence this penalty does not rectify the
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3 REGULARIZATION

problem of subjectivity in the Bayesian method. We therefore look for a penalty which is

invariant under coordinate transformations.

Embracing the information-theoretic approach we therefore propose the use of the mutual

information instead of the entropy for the penalty:

De�nition 9. Let A : Ω→ A and B : Ω→ B be two continuous random variables, ρA,B

their joint probability density and ρA, ρB their respective marginal densities. Their mutual

information is de�ned as

I (A;B) : =

∫
A

∫
B
ρA,B (a, b) log

(
ρA,B (a, b)

ρA (a) ρB (b)

)
dadb

= Eb∼B
[
DKL

(
ρA|b ‖ ρA

)]
= H (B)−H (B;A) ,

with DKL being the Kullback-Leibler divergence from ρA to ρA|b

DKL

(
ρA|b ‖ ρA

)
:=

∫
A
ρA|b (a) log

ρA|b (a)

ρA (a)
da,

and H (B), H (B;A) being the di�erential entropy of B respectively the conditional dif-

ferential entropy of B given A

H (B) := −
∫
B
ρB (b) log (ρB) db

H (B;A) :=

∫
A
ρA (a)H (B | a) da

= −
∫
A
ρA (a)

∫
B
ρB|a (b) log

(
ρB|a

)
dbda.

The mutual information quanti�es the �amount of information� that one random variable

shares with the respective other, expressed by the information content of the their joint

distribution (ρA,B) relative to their joint distribution if they were independent (ρAρB),

weighted by their joint distribution.

We can gain further insights into its meaning by expressing it in terms of another funda-

mental information-theoretic quantity, the Kullback-Leibler divergence DKL (A ‖ B) from

B to A (also called information gain or relative entropy). It is a measure for the loss of

information when considering B as an approximation to A, or consequently in the Bayesian

context it is the gain of information revising one's beliefs from the prior B to the posterior

A.

9



3 REGULARIZATION

Hence the mutual information of A and B corresponds to the expected information gain

from the prior to the posterior over A when the measurements are B-distributed. This

interpretation gives rise to the following de�nition:

De�nition 10. For γ > 0 constant we de�ne the mutual information penalty

φγI (π) : = −γI (X | π;Z | π)

= −γ
∫
X
ρX|π (x)

∫
Z
ρZ|x (z) log

(
ρZ|x (z)

ρZ|π (z)

)
dzdx. (3.2)

Minimizing this penalty then corresponds to maximizing the amount of shared information

between the prior prediction Z | π and the prior X | π itself (where we understand these

random variables as restrictions of Z respectively X onto the event Π = π). In terms of

the Kullback-Leibler formulation this means priors π are rewarded by the amount of in-

formation gain expected from their hypothetically induced measurements, hence encoding

a notion of non-informativity.

Fortunately the mutual information is furthermore transformation invariant, thus allowing

for the application of the mutual information penalty independent of the models parame-

terization:

Lemma 11. Let X, Y be two random variables and ϕ−1 : X → X̃ , ψ−1 : Z → Z̃ be dif-

feomorphisms de�ning coordinate transformations and corresponding transformed random

variables X̃, Z̃ with the densities

ρX̃,Z̃ (x̃, z̃) := ρX,Z (ϕ (x̃) , ψ (z̃)) |Dϕ (x̃)| |Dψ (z̃)|

ρX̃ (x̃) := ρX (ϕ (x̃)) |Dϕ (x̃)| , ρZ̃ (z̃) := ρZ (ψ (z̃)) |Dψ (z̃)| .

Let π̃ (x̃) := π (ϕ (x̃)) |Dϕ (x̃)| de�ne the corresponding pullback onto π and

z̃M := (z̃m)Mm=1 , z̃m = ψ−1 (zm) , m = 1, ...,M the transformed data.

1. The mutual information I (X;Z) is invariant under these coordinate transformations

of X and Z:
I (X;Z) = I(X̃; Z̃).

2. The likelihood L
(
π | zM

)
(2.5) is invariant under these coordinate transformations

up to a constant factor c =
∏M
m=1 |Dψ (z̃m)|.

L
(
π | zM

)
= cL

(
π̃ | z̃M

)

10
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Proof. According to the change of variables formula

I (X;Z)

=

∫
Z

∫
X
ρX,Z (x, z) log

(
ρX,Z (x, z)

ρX (x) ρz (z)

)
dxdz.

=

∫
Z̃

∫
X̃
ρX,Z (ϕ (x̃) , ψ (z̃)) log

(
ρX,Z (ϕ (x̃) , ψ (z̃))

ρX (ϕ (x̃)) ρZ (ψ (z̃))

)
|Dϕ (x̃)| |Dψ (z̃)| dx̃dz̃

=

∫
Z̃

∫
X̃
ρX̃,Z̃ (x̃, z̃) log

(
ρX̃,Z̃ (x̃, z̃)

ρX̃ (x̃) ρZ̃ (z̃)

)
dx̃dz̃

= I(X̃; Z̃).

Analogously

L
(
π | zM

)
=

M∏
m=1

∫
X
ρZ|x (zm)π (x) dx

=

M∏
m=1

∫
X
ρZ|x̃ (z̃m)π (ϕ (x̃)) |Dϕ (x̃)| |Dψ (z̃m)|dx̃

=

M∏
m=1

|Dψ (z̃m)|
∫
X
ρZ|x̃ (z̃m) π̃ (x̃) dx̃

= cL
(
π̃ | z̃M

)
.

Corollary 12. The MPLE πφγI
(3.1) with the mutual information penalty φγI (3.2) is

invariant under the transformations of X and Y as speci�ed in Lemma 11.

Proof. This follow immediately from the above Lemma, recognizing that the multiplicative

constant turns into an additive shift due to the logarithm, which does not change the

arg max.

In the case of an additive measurement error we can simplify the MPLE estimator by only

computing the entropy of the prior predictive distribution:

Theorem 13. For models with additive measurement error E ∼ ρE

Z = Φ (X) + E

11



3 REGULARIZATION

the MPLE estimate πφγHZ
, penalized by the Z-entropy

φγHZ (π) := −γH (Z | π) ,

and the mutual information penalty coincide:

πφγHZ
= πφγI

.

Proof. In the case of additive measurement error ρZ|x consists of shifts of ρE

ρZ|x (z) = ρE (z − Φ (x))

and thus

H (Z | x) =

∫
Z
ρZ|x (z) log

(
ρZ|x (z)

)
dz

=

∫
Z
ρE (z) log (ρE (z)) dz

= H (E) .

Hence the conditional entropy part is constant and both penalties agree up to an additive

constant

φγI (π) = −γ (H (Z | π)−H (Z;X | π))

= −γ
(
H (Z | π)−

∫
X
ρX|π (x)H (Z | x) dx

)
= −γ (H (Z | π) +H (E))

= φγHZ + γH (E) .

Therefore their maxima agree and the estimates are the same.

Remark 14. For the mentioned additive error model and discrete parameter space X ,
Klebanov et al. [14, p. 3.1] show that the hyperprior ρΠ (π) :∝ expH (Z | π) maximizes

the total entropy H (Z,Π) of the whole model and furthermore conjecture this to hold

as well for continuous X . This derivation from a maximum entropy principle is a further

justi�cation for the choice of φγHZ as a meaningful penalty.

Remark 15. In the case of no data zM the log-likelihood term of πφγI
in (3.1) vanishes. It

then matches the de�nition of reference priors [2] by Berger et al. Therefore this estimation

12



3 REGULARIZATION

routine can be seen as an extension of reference priors from a purely non-informative to a

cohort-data based empirical Bayes approach.

Remark 16. It can be shown that the mutual information penalty is convex in π, with strict

convexity in the identi�able case, as well as that the likelihood function L is convex[14].

The MPLE (3.1) becomes a concave optimization problem for φ = φγI .

3.3. Regularization by smoothing of the data

Instead of relying on the coarse approximation of the data generating distribution by the

empirical distribution ρzM := 1
M

∑M
m=1 δzm ≈ ρZ and then penalizing overcon�dent priors,

we may as well address the issue of over�tting by using a smooth approximation ρ̃zM to

ρzM .

In the following we will apply the idea of smoothing the data by a kernel convolution,

introduced by Seo and Lindsay [22] as the DS-MLE, to the empirical Bayes setting.

De�nition 17. Let K : Z → R be a kernel density function (i.e. K ≥ 0,
∫
Z K (z) dz = 1)

and zM =
(
zm

i.i.d.∼ ρZ

)M
m=1

be M measurements. The smoothed data density is then

de�ned as

ρ̃zM (z) = (ρzM ∗K) (z) :=
1

M

M∑
m=1

K (z − zm) .

Note that when smoothing the data we also have to smooth the model (hence doubly

smoothed) to amount for the additional uncertainty in the data and stay consistent.

That is in the identi�able case with data-generating prior π∗ (cf. Proposition 7) we want

ρ̃zM
M→∞−→ ρZ ∗K =: ρ̃Z|π∗ 6= ρZ|π∗ ,

to hold.

Hence the corresponding smoothed likelihood model is given by

ρ̃Z|x = ρZ|x ∗K

⇒ ρ̃Z|π = ρZ|π ∗K

The resulting DS-MLE then takes the form

πDS := arg max
π∈M1(X )

L̃∞ (π | ρ̃zM ) ,

13
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with L̃ as in De�nition (5) with adjusted likelihood.

This estimator is proven to be consistent under weak assumptions on the kernel and like-

lihood model (cf. [22]).

Note however that the choice of a kernel K leaves space for debate. Furthermore this

procedure is not invariant under reparametrizations of the measurement space Z for �xed

kernels. Hence this approach, although rather natural and simple does not remedy the

problem of subjectivity in the Bayesian inference.

4. Numerical schemes

4.1. Monte Carlo approximations

Since the arising integrals are in general not tractable analytically, we will make use of

sample based discretization of the continuous spaces X , Z and use Monte Carlo integration

for the corresponding integrals.

1. Given M measurements zM = (zi)
M
i=1 sampled across the population, these are

distributed across the marginal measurement distribution zi ∼ ρZ by construction of

the model. We can hence approximate

ρZ ≈
1

M

M∑
m=1

δzm .

2. In the case of the parameter space X we start with an arbitrary sampling

x = (xk ∈ X )Kk=1 (4.1)

distributed according to some density xi ∼ ρA. We can now approximate any other

density distribution ρB on X as an importance sampling with weights

w ∈ W :=M1 ({1, ...,K})

such that wi ∝ ρB(xi)
ρA(xi)

. We then have

ρB ≈
K∑
k=1

wkδxk .

14
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Let us express the prior π in terms of its weights w,

π ≈ ρX|w :=

K∑
k=1

wkδxk . (4.2)

For ease of notation we will, by slightly abusing it, refer to the discretization w of a

continuous density π by its latter name, where appropriate.

We can now approximate the expectation value of any measurable function g under π via

Ex∼π [g (x)] =

∫
X
g (x)π (x) dx ≈

K∑
k=1

wkg (xk) .

For the prior predictive distribution this leads to

ρZ|π (z) =

∫
X
ρZ|x (z)π (x) dx

≈ ρZ|w (z) :=
K∑
k=1

wkρZ|xk (z) .

Inserting this into the marginal likelihood yields

L
(
π | zM

)
≈ L

(
w | zM

)
:=

M∏
m=1

K∑
k=1

wkρZ|xk (zm) .

In order to integrate over the density ρZ|π for the entropy hyperprior, we approximate

its density by an additional weighted sampling consisting of K̄ > K Z-samples generated

from the given X -sampling by

z̄ :=
(
z̄j ∼ ρZ|xJ(j)

)K̄
j=1

with corresponding weights

w̄j :=
wJ(j)

#J−1 (J (j))
.

Here J : {1, 2, ..., K̄} → {1, 2, ...,K} denotes a surjective index mapping function, mapping

from the Z- to the corresponding X -samples indices. The normalizing factor in the weights

amounts for the in�ation by multiple Z-samples z̄i, z̄j from a single X -sample in the case

of J (i) = J (j).
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The Monte Carlo approximation to the Z-entropy then takes the form

H (Z | π) ≈ H (Z | w) := −
K̄∑
j=1

w̄j log

(
K∑
k=1

wkρZ|xk (z̄j)

)
.

4.2. The EM algorithm

We will �rst show how to apply the well known expectation-maximization (EM) algorithm

for the NPMLE and DS-MLE.

Herefore let us �rst recapitulate the EM-algorithm following the classic paper of Dempster,

Laird and Rubin [4].

We start by de�ning the complete data likelihood function

Lc (π | x, z) : =

M∏
m=1

ρX|π (xm) ρZ|xm (zm) ,

the likelihood of a speci�c prior represented by w given the measurements z = (zm)Mm=1

with corresponding parameters x = (xm)Mm=1, where the completeness is meant in the

context of knowing all involved variables, including x.

Based on this we de�ne the expected complete data log-likelihood of π as the expectation

over the posterior xn :=
(
xn,m

ind.∼ ρX|πn,zm

)M
m=1

under the current estimate πn of the

logarithm of the complete data likelihood conditioned on π and the observed cohort-data

zM :

Q (π | πn) :=Exn

[
log
(
Lc
(
π | xn, zM

))]
=Exn

[
m∑
m=1

log
(
ρX|π (xn,m) ρZ|π (zm)

)]
(4.3)

=
M∑
m=1

Ex∼ρX|πn,zm
[
log
(
ρX|π (x) ρZ|x (zm)

)]
.

The second step follows from the insight that after exchanging integration and summation

the log term for the m'ths summand depends only on a single xn,m and thus the other

xn,m′ , m
′ 6= m, get marginalized out.

The EM algorithm works by iteratively maximizing the expected complete-data log-likelihood

16
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under the current estimate πn:

πn+1 := arg max
π∈W

Q (π | πn) .

For a proof of uniqueness and convergence in the case of strictly convex likelihoods we refer

to [4] and [26].

Let us compute the corresponding formulas for our Monte Carlo approximations.

For the approximations (4.2) of π and πn in terms of w and wn, respectively,

π ≈
K∑
k=1

wkδxk ,

πn ≈
K∑
k=1

wn,kδxk ,

we have for any measurable function f

Ex∼ρX|πn,zm [f (x)] =

∫
X
ρX|πn,zm (x) f (x) dx

≈
K∑
k=1

wn,k
ρZ|xk (zm)

ρZ|wn
(zm)

f (xk) .

Therefore we can approximate (4.3) by

Q (π | πn) ≈ Q (w | wn) :=

M∑
m=1

K∑
k=1

wn,k
ρZ|xk (zm)

ρZ|wn
(zm)

log
(
ρX|w (xk) ρZ|xk (zm)

)
=

M∑
m=1

K∑
k=1

wn,k
ρZ|xk (zm)

ρZ|wn
(zm)

log
(
wkρZ|xk (zm)

)
.

We can furthermore explicitly compute the maximizer to the arising optimization problem

wn+1 := arg max
w∈W

Q (w | wn) .

A necessary condition is that the gradient of Q(· | wn)at w is orthogonal to the tangent
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4 NUMERICAL SCHEMES

space TwW of W, which means that all components of the gradient are equal:

∂Q (w | wn)

∂wk
⊥ TwW

⇒∃c ∈ R ∀k = 1, ...,K :

∂Q (w | wn)

∂wk
=

M∑
m=1

wn,k
wk

ρZ|xk (zm)

ρZ|wn (zm)
= c

⇒wk =
wn,k
c

M∑
m=1

ρZ|xk (zm)

ρZ|wn (zm)
.

Since
∑

k wk = 1 we conclude c = 1/M and hence end up with the explicit EM step

wn+1 = ψ (wn) :

ψ (wn)k :=
wn,k
M

M∑
m=1

ρZ|xk (zm)

ρZ|wn (zm)
. (4.4)

Iterative application of this formula henceforth converges to the weights approximating the

desired NPMLE estimate πML.

Applying the Monte Carlo discretization to the DS-MLE setting ([22]) we end up with the

same EM-algorithm of the NPMLE applied to the augmented data points
(
zm

i.i.d∼ ρ̃zM
)Maug

m=1

and the smoothed likelihoods (cf. Section 3.3). Since M data points result in maximally

M peaks in the NPMLE [15], a necessary condition for strictly positive weights is that the

number of augmented data points is at least that of the parameter-space nodes,Maug > K.

4.3. Optimization for the MPLE

In the case of an additive measurement error the Monte Carlo discretized version of the

MPLE (3.1) with the mutual information penalty takes the form

wφγI
= arg max

w∈W
O (w)

with objective function

O (w) = logL
(
w | zM

)
+ γH (Z | w)

=
M∑
m=1

log
K∑
k=1

wkρZ|xk (zm)− γ
K̄∑
j=1

w̄j log

(
K∑
k=1

wkρZ|xk (z̄j)

)
.
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Being a composition of linear and concave functions the objective O is easily shown to be

concave, allowing for the use of constraint concave/convex optimization routines.

The high dimensionality of w suggests the usage of derivative based optimization tech-

niques. The derivative of the objective is given by

∂O

∂wk
(w) =

M∑
m=1

ρZ|xk (zm)∑K
k′=1wk′ρZ|xk′ (zm)

+ γ
K̄∑
j=1

w̄jρZ|xk (z̄j)∑K
k′=1wk′ρZ|xk′ (z̄j)

+ γ
∑

j∈J−1(k)

log
(∑K

k′=1wk′ρZ|xk′ (z̄j)
)

#J−1 (k)
.

Remark. Instead of �rst discretizing and then deriving, one might as well try to work with

the discretization of the derivative (of the corresponding continuous objective). Whilst

this promises to better approximate the gradient of the underlying continuous problem,

the gradient does not �t to the objective anymore and may therefore lead to problems with

optimization routines relying on correctness of the gradient.

4.4. Markov Chain Monte Carlo

The quality of the Monte Carlo approximations greatly depends on the choice of the impor-

tance samples x. Whilst an equidistant grid may work well for low dimensional parameter

spaces X , its number of grid points increases exponentially with the dimension of X . This
so called curse of dimensionality suggests the use of Markov Chain Monte Carlo (MCMC)

sampling methods, a popular sampling scheme for probability densities f de�ned over

high-dimensional spaces.

The basic idea of MCMC methods revolves around constructing an ergodic Markov Chain,

a stochastic process whose conditional probability for future states depends only on the

current state, which has the desired target density f as stationary density. In the limit of

in�nite sample sizes the samples from the Markov Chain then are distributed according to

f .

The probably most common MCMC scheme is the Metropolis�Hastings (MH) algorithm.

It works by iteratively sampling a proposal x
′
n ∈ X �around� the last MCMC sample xn−1

according to a prescribed proposal density Q
(
x
′
n | xn−1

)
and accepting or rejecting that

proposal in such a way that the resulting MCMCs stationary distribution is f.
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Let us de�ne the corresponding Markov process in terms of its transition probabilities

P (xn+1 | xn), starting from the detailed balance condition

P
(
x′ | x

)
f (x) = P

(
x | x′

)
f
(
x′
)

⇔ f (x)

f (x′)
=
P (x | x′)
P (x′ | x)

ensuring that f is indeed a stationary distribution f = Pf .

Taking the ansatz of splitting the transition probability into a proposal distribution g and

an acceptance distribution A

P
(
x′ | x

)
= g

(
x′ | x

)
A
(
x′ | x

)
,

we end up with
A (x′ | x)

A (x | x′)
=
f (x′)

f (x)

g (x | x′)
g (x′ | x)

. (4.5)

The Metropolis-Hastings choice for the acceptance distribution

A
(
x′ | x

)
:= min

(
1,
f (x′)

f (x)

g (x | x′)
g (x′ | x)

)

satis�es this equation, since either A (x′ | x) or A (x | x′) is 1, while the other equals the

desired right hand side of (4.5) (or its inverse).

This choice allows for the formulation of the following theorem.

Theorem 18. Let f, g (· | x) ∈M1 (X ) with f > 0, g (· | x) > 0 ∀x ∈ X . Then the Markov

chain de�ned by

P
(
x′ | x

)
= g

(
x′ | x

)
min

(
1,
f (x′)

f (x)

g (x | x′)
g (x′ | x)

)
admits f as unique stationary distribution

f = Pf.

Proof. The fact that f is indeed a stationary distribution follows by construction, unique-

ness follows from irreducibility and aperiodicity which is given due to positivity of P .

Hence we can use this Markov process to sample a Markov Chain according to the MH-

MCMC algorithm:
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1. Start from an arbitrary point x0

2. Sample a proposal state x′n+1 ∼ g (xn+1 | xn)

3. With probability A
(
x′n+1 | xn

)
accept the proposal, i.e. set xn+1 := x′n+1, otherwise

reject it, i.e. set xn+1 := xn

4. Increase n by 1 and resume with 2 until su�ciently many states were generated

The speed of convergence to the stationary distribution is strongly in�uenced by the choice

of the proposal distribution. A common choice for the proposal distribution is the normal

distribution centered at the current state xn, but even here the choice of the covariance is

vital for rapid mixing of the resulting Markov Chain.

To circumvent the obstacle of choosing a proper proposal covariance we decided to use

the adaptive Metropolis (AM) algorithm by Haario et. al [10, 20]which tunes the proposal

covariance matrix online based on the current samples, according to

gn(· | xn) = N (x, Σ0) if n ≤ 2d,

gn(· | xn) = (1− β)N
(
x,

2.382

d
Σn

)
+ βN (x, Σ0) if n > 2d,

with d being the dimensionality of the sampling space X and 2.382

d a scaling constant

considered to be optimal for high dimensions [19]. Σn is the covariance matrix estimate

based on the previous samples (xi)
n
i=0, which can be computed recursively, and Σ0 an

initially chosen positive de�nite covariance matrix. The linear combination with the �xed

normal by 0 < β < 1 ensures that the resulting proposal covariance stays positive de�nite

even in the case of singular Σn.

The acceptance step remains the same as with the standard MH-MCMC. This Markov

chain still admits the desired target density as stationary distribution, assuming it is log-

concave outside of some arbitrary region (for a proof see [20]).

5. Application

We will now discuss the application of the developed empirical Bayes method on the

basis of a high-dimensional ordinary di�erential equation model accompanied by real-life

measurements. We will therefore introduce the model and obtain a discretization of X by

sampling from the individual Bayesian posteriors by means of MCMC sampling. We will

then compute the NPMLE, MPLE and DS-MLE prior estimates and discuss the results.
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5.1. The model

Our physical model, consisting of a system of 33 ordinary di�erential equations (ODE),

models the feedback mechanisms of the prevalent hormones in the female menstrual cycle

with a focus on GnRH-receptor binding and was derived by Röblitz et al. [21]. For the

de�ning equations we refer to the original paper.

This system is parametrized by 114 parameters, out of which 21 (the Hill parameters) are

considered �xed for the following survey. In [21] the authors provide point estimates for the

parameters, although concluding that only 52 were identi�able, as well as initial conditions.

We will denote these as nominal parameters θnom and initial conditions ynom0 and use them

as initial conditions for the Markov chain as well as for the prior computation.

Let us denote the forward solution of the ODE at time t, given parameters θ ∈ R82 and

initial conditions y0 ∈ R33, as

Φ (t; θ, y0) ∈ R33.

Our data consists of blood concentrations of follicle-stimulating hormone (FSH), luteinizing

hormone (LH), estradiol (E2) and progesterone (P4) measured from 53 healthy women over

thirty days, roughly every second day. This data was collected in the context of PAEON,

a collaborative European research project on eHealth.

Denote the set of measurements for a single subject m by

zm :=
(
zt,im
)

(t,i)∈Imz

with zt,im being the single measurement of species i = 1, ..., 4 at time t and Imz denoting the

index set of available measurements.

To impose the condition of periodicity of the data onto our inference process we further

augment the data by a copy of itself shifted in time by an additional latent parameter

representing the period length, τ > 0:

zτm :=
(
ẑt,im
)

(t,i)∈Im,τz
,

with augmented index set

Im,τz =
⋃

(t,i∈Imz )

{(t, i) , (t+ τ, i)}
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and augmented measurements

ẑt,im :=

z
t,i
m if (t, i) ∈ Imz
zt−τ,im otherwise

.

Subsuming the latent model parameters θ (82), the initial conditions y0 (33) and the period

length τ we end up with 116 parameters

x = (θ, y0, τ) ∈ X := (Θ, Y0, T )

for the Bayesian inference.

We model each measurement by an independent Gaussian measurement error with com-

ponentwise standard deviations of 10% of their respective order of magnitude, estimated

from the nominal solution

Φnom (t) := Φ (t; ynom0 , θnom) , (5.1)

giving rise to the likelihood function for the parameters x given a single measurement zm,

L (x | zm) = L (θ, y0, τ | zm) :=
∏

(t,i)∈Im,τz

(
2πσmeas

i
2
)− 1

2 ()−2 exp

−1

2

(
Φ (t; θ, y0)i − ẑ

,t,i
m

σmeas
i

)2
 ,

with σmeas
1 = 12, σmeas

2 = 1, σmeas
3 = 40, σmeas

4 = 1.5.

Remark 19. This likelihood correctly re�ects the amount of information available depen-

dent on the number of measurements. A higher number of measurements results in sharper

speci�ed likelihood function. This will allow us to correctly treat di�erent measurements

together in the upcoming empirical Bayes analysis.

Remark 20. One might argue that this model manipulates the data and hence is no more

of the form (2.4). But it is equivalent to the model obtained by just duplicating the data

and subsuming the shift operation into a new forward solution operator, hence Theorem

13 still applies.

We now aim at a individual posterior sampling for each person, which we will later use as

a basis for constructing the discretization of the state space X (4.1).

Therefore we need to specify an initial priorπ0 on our parameters X := (θ, y0, τ). Since the

prior estimation routines, based on a �xed discretization, do not add new samples to the
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discretization sampling, it is important that our initial prior covers all domains of interest.

Thus we choose an the uniform prior for each Θi, bounded above by α := 5 times the

multiple of its corresponding nominal parameter value,

Θi | π0 ∼ U (0, αθnomi ) , i = 1, ..., 82.

The prior for the initial conditions y0,i = θ82+i, i = 1, ..., 33 is constructed as a mixture of

multivariate Gaussians centered at the trajectories of the nominal solution (5.1)

Y0 | π0 ∼
1

31

30∑
t=0

N
(
Φnom (t) ,ΣY0

)
with the diagonal covariance matrixΣY0 being estimated from the nominal solution by

ΣY0
ii := Cov

(
(Φnom

i (t))30
t=0

)
, i = 1, ..., 33.

The prior for the period length T was chosen to be Gaussian with mean 28.9 days and a

standard deviation of 3.4 days (cf. [6]),

T | π0 ∼ N
(
28.9, 3.42

)
.

5.2. Sampling

We will now compute the individual posterior samples

xm := (xmi )Ni=1
i.i.d∼ ρX|zm = ρX|π0L (θ | zm)

for each subject m.

Since all sampled parameters (xi)
116
i=1 are restricted to R+ but the used AM sampler uses

normal proposal densities with global support, we �rst rescale the original parameters using

log : R+ → R:
x̃i = log (xi) , i = 1, ..., 116.

The normal proposals in the log-space now correspond to lognormal proposals in the orig-

inal parameter space.

However undergoing this transformation we also have to adjust the likelihood function

24



5 APPLICATION

according to the change of variables formula:

L̃ (x̃ | z) = L (exp (x̃) | z)
116∏
i=1

x̃i.

Choosing the initial value for the Markov chain according to our nominal values

x0,i := log θnomi , i = 1, .., 82

x0,82+i := log ynom0,i , i = 1, .., 33

x0,116 := log 28.9,

we may hope to start in a region of high density which henceforth is already representative

for the target density and thus expect a relatively short burn-in phase.

In the �rst runs the initial covariance matrix Σ0 of the proposal density for the AM sampler

was chosen to be small value uniform in each direction. Upon later runs we reused the

covariance ΣN of present samplings according to [19] via

Σ0 :=
2.382

d
ΣN ,

to speed up the adaption process.

We computed 50.000.000 samples xm of the individual posteriors ρX|zm for each subject m

at an average speed of around one million samples per hour and core, of which we rejected

the �rst 10.000.000 as a burn-in phase.

We applied the convergence diagnostics by Gelman and Rubin [7] and concluded conver-

gence of a parameter if the potential scale reduction factors 0.975-quantiles were estimated

below 1.2. This lead to an average 74 of converged parameters (varying per subject). The

Heidelberger and Welch diagnostic [11] furthermore assessed componentwise stationarity

of the Markov Chains for on average 109 parameters.

Keeping in mind that many of the parameters are probably unidenti�able (and one is hence

random walking in high-dimensional submanifold) we consider these as good results.

Remark 21. Since the MCMC sampling, consuming most of the computational time of

the here proposed prior estimation procedure, is easily parallelizable over the individual

measurements, the proposed scheme is well suited for the use in e.g. clinical studies, where

lots of data is available (cf. [13], Section 4).
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5.3. Prior estimation

After thinning the individual posterior samples (xm)53
m=1 for computational feasibility, we

combined these in order to obtain a grid for the prior estimation.

xM :=
M⋃
m=1

xm.

The results below were computed with #xM = 2596.

Note that these samples, which conform to the average density of the individual posterior

densities, are π1 := ψ (π0) distributed. Our experiments have shown that this �rst EM step

(4.4) is already quite close to the NPMLE. Since furthermore the MPLE is expected to be

a smoothed version of the NPMLE, these points serve as a good basis for the importance

sampling:

xM ∼ ψ (π0) ≈ πML ≈ πφγI .

We computed the NPMLE and DS-MLE estimates using 100 iterations of the EM algo-

rithm, starting with uniform weights.

In case of the DS-MLE model we smoothed each data point zt,im by 50 additional samples

for each t, i. The kernel Kt,i was chosen to be a Gaussian with standard deviation σK
t,i
,

computed by Silverman's rule of thumb [23] for kernel density bandwidth estimation, based

on the individual data components:(
σK

t,i
)2

= 0.9M−
1
5Cov

({
zt,im | (t, i) ∈ Imz , m ∈ {1, ...,M}

})
.

For the optimization of the MPLE we used the Method of Moving Asymptotes algo-

rithm [24], a globally-convergent, gradient-based optimizer. To guarantee the constraint∑K
k=1wk = 1 we used the built-in Augmented Lagrangian algorithm. This basically

amends a penalty to the objective, whose impact is scaled based on the current mis�t

of the constraint. We furthermore set the upper bounds for each component to 1, and the

lower bounds to 10−12 to avoid eventual divisions by zero.

The penalty constant γ is chosen by trial and error, until desired smoothing results have

been achieved. It would be interesting to �nd a rule for its choice, e.g. by information-

theoretic reasons or cross validation.
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Figure 5.1: π0, NPMLE, DS-MLE and MPLE (top to bottom) �transition rate constant
from PrA2 to SeF1�-marginals (left) of the respective priors (blue) and posteri-
ors (red) for a single subject (m = 14), �E2�-trajectories sampled from the prior
together with the cohort data (middle) and the subject data with corresponding
posterior trajectories (right).

5.4. Results

We will now compare the initial prior π0 with the NPMLE πML, the DS-MLE πDS and

the information penalized MPLE πφγI
for γ = 100.

Figure 5.1 shows kernel density estimates (KDE) (Gaussian kernel, bandwith 0.1) of the

marginal distributions of the transition rate constant from PrA2 to SeF1. These depict

the estimated priors and corresponding posteriors for a single subject. It furthermore

illustrates the prior respectively posterior predictive distribution as density plots of the

trajectories with the cohort respectively individual data.

We provide two more similar plots in Appendix C.

For the prior π0 we combined the MCMC samples xM ∼ π1 with the same amount of
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independent samples from the true density π0 and then reweighted this sampling with the

inverse of a KDE (with the bandwidths chosen according to Silverman's rule of thumb [23])

at each of the grid-points to approximate a true sampling of π0, which itself did not lead

to any interesting plots for the relatively low given sample size. The �rst row can therefore

only be seen as an approximation to π0. We can still recognize a lot of unfeasible solutions

in the �rst few days but also a diverse posterior plot.

Looking at the NPMLE (second row), we can observe, keeping in mind that we are looking

at a KDE, that the estimated prior consists of a few, relatively high peaks (maxiwi =

0.023). This expected behavior can also be seen in the prior predictive density plot (mid-

dle), where the individual trajectories of the prior approximating the cohort-data are dis-

tinctly visible. The corresponding posterior exhibits a single peak (maxiwi = 0.999) for

the most likely solution found.

The DS-MLE (third row) provides a slightly more diverse view with smaller peaks (maxiwi =

0.019) then the NPMLE and a smoother prior predictive density plot, but still exhibiting

a rather erratic variation. The posterior is dominated by three peaks (maxiwi = 0.439),

Finally the MPLE (last row) provides the smoothest of the estimated priors (maxiwi =

0.014), while still sharing the informative peak at around x = 15 with the NPMLE. The

prior predictive density plot is also more densely covered in the feasible region, indicating a

higher explanatory power. The individual posterior (right) shares the mode of the NPMLE

but also o�ers a lot of additional trajectories as explanation (maxiwi = 0.258).

We henceforth conclude that the MPLE with the mutual information penalty indeed leads

to satisfactory results, improving on the overcon�dence of the MPLE, and being at the

very least capable of keeping up with other contemporary methods such as DS-MLE.

6. Conclusion

We have shown that the MPLE with the information penalty φγI is an attractive approach

to the empirical Bayes method. It is based on natural, information-theoretic considerations

and admits the desirable property of transformation invariance, generalizing the notion of

the reference priors to the empirical Bayes framework. Due to its concavity the objec-

tive is computationally feasible and its mesh-free Monte Carlo approximation enables its

application to high-dimensional problems eluding the curse of dimensionality.

We furthermore showed how to apply the developed methods to a real world problem by

the means of MCMC sampling, a�rming its pro�ciency in a practical scenario.
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B. Implementation

The introduced algorithms were implemented in Julia, a modern programming language

for numerical computing, and bundled in the open-source package GynC.jl, available at

www.github.com/axsk/GynC.jl.

For installation and usage run the following commands in the Julia REPL:

Pkg . c l one ( https : // github . com/axsk/GynC. j l )

us ing GynC

The package was build in a modular way trying to separate the generic empirical Bayes

methods and the GynC model speci�cs in their respective own submodules and should

hence be easily extensible to other additive-error models.

It also provides a series of Jupyter-notebooks, containing the code which was ran to gen-

erate the results from Section 5.

In the following we will give a short overview over the core components and methods of

the software and mention some implementation details. Further help to the methods and

types can be accessed by the Julia help function, pre�xing the name in question by an ?.

Empirical Bayes

The code to this module can be found in the src/eb directory.

Like l ihoodModel ( xs , ys , zs , datas , measerr , z s amp l ed i s t r )

This is the base-type of the empirical Bayes module, providing the data nec-

essary for the empirical Bayes methods. It holds the following �elds:

• xs: vector of X -samples (xk) constituting the grid of the discretization

• ys: vector of corresponding pushforward under Φ

• zs: vector of additional Z-samples for the Z-entropy computation (cf.

Section 4.1)

• datas: vector containing the cohort-data

• measerr: speci�cation of the measurement error for likelihood computa-

tion. Whilst basic support is added for generic Distributions.Distribution,

we also provide the type MatrixNormalCentered used for the computa-

tion of the likelihoods in our application.
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• zsampledistr: speci�cation of the distribution used for generating sam-

ples for the Z-entropy computation

Based on this type the following convenience functions are available

em(m: : Likel ihoodModel , w0 , n i t e r )

Perform niter iterations of the EM-algorithm on model m, starting with initial

weights w0. Note that a single EM iteration with a single datapoint corresponds

to the usual Bayes posterior computation.

mple (m: : Likel ihoodModel , w0 , n i t e r , reg , h )

Perform a constraint gradient ascent search to optimize the MPLE with γ =

reg, initial weights w0, stepsize h and niter iterations.

optimmple (m, reg , w0)

Perform a constraint optimization using the Method of Moving Asymptotes

algorithm [24].

hz (m,w) , dhz (m,w) , l o g l (m,w) , d l o g l (m,w)

Compute the log-likelihood, Z-entropy and their derivatives for the given

model m at weights w.

smoothedmodel (m, mult )

Perform the smoothing of the data and likelihood functions for the DS-MLE.

l i k e l i hoodmat ( xs : : Vector , ys : : Vector , d : : D i s t r i bu t i on )

Compute the pairwise likelihoods based for a distribution d. In the case that

d is of the type MatrixNormalCentered, an optimized version making use of

the binomial decomposition and renormalization of the likelihoods for stability

is implemented. It also handles incomplete data by excluding NaNs of the

computations.

gyncmodel (n)

Generate a GynC-likelihoodmodel with n presampled x-samples.

gyncmodel ( xs , datas ; zmult , sigma )
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Generate a GynC-likelihoodmodel for the given samples xs and datas with

zmult z samples (for the entropy) per x sample and measurement error stan-

dard deviation sigma times the components magnitude.

samplepi0 (m) , samplepi1 (m) , subsample (m)

Convenience functions for generating respectively loading (precomputed) sam-

ples corresponding to the prior and posterior distributions, as well as for sub-

sampling.

GynC

The code to this module can be found in the src/gync directory.

Conf ig

Base-type managing the con�guration for the MCMC sampling (measure-

ment, measurement error, initial proposal variance for MCMC, adaptivity of

MCMC, thinning, initial values and priors). For more information refer to

src/gync/model.jl .

l o g p r i o r ( c , x ) , l ogpo s t ( c , x ) , l l h ( c , x )

Log prior, posterior and likelihood values for given con�g c and sample x.

sample ( con f i g , i t e r s )

Sample iters samples using the AMM sampler from the Mamba.jl package

batch ( con f i g s , i t e r s ; d i r )

Sample the given vector of configs in parallel on a Slurm cluster and store

them in the dir directory whenever any of the iterations in the vector iters

is reached.

a l l d a t a s ( )

Return all present cohort-data zM .

gync ( y0 , p , t s )

Compute a trajectory for given initial values y0, parameters p and times ts

using the Sundials CVode solver.
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C PLOTS

C. Plots

These plots, generated under the same conditions as Figure 5.1, depict additional results.

Figure C.1: π0, NPMLE, DS-MLE and MPLE (top to bottom) �blood volume�-marginals
(left) of the respective priors (blue) and posteriors (red) for a single subject
(m = 14), �LH�-trajectories sampled from the prior together with the cohort
data (middle) and the subject data with corresponding posterior trajectories
(right).
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Figure C.2: π0, NPMLE, DS-MLE and MPLE (top to bottom) �blood volume�-marginals
(left) of the respective priors (blue) and posteriors (red) for a single subject
(m = 13), �E2�-trajectories sampled from the prior together with the cohort
data (middle) and the subject data with corresponding posterior trajectories
(right).
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