
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

RALF K ÄHLER, MARK SIMON , HANS-CHRISTIAN HEGE

Fast Volume Rendering of Sparse
Datasets Using Adaptive Mesh

Refinement

ZIB-Report 01-25 (July 2001)



Fast Volume Rendering of Sparse Datasets Using

Adaptive Mesh Refinement

Ralf Kähler, Mark Simon, Hans-Christian Hege∗

Abstract

In this paper we present an algorithm that accelerates 3D texture-
based volume rendering of large and sparse data sets. A hierarchical
data structure (known as AMR tree) consisting of nested uniform grids is
employed in order to efficiently encode regions of interest. The hierarchies
resulting from this kind of space partitioning yield a good balance between
the amount of volume to render and the number of texture bricks – a
prerequisite for fast rendering.

Comparing our approach to an octree based algorithm we show that
our algorithm increases rendering performance significantly for sparse
data. A further advantage is that less parameter tuning is necessary.

Keywords: scalar field visualization, volume rendering, 3D texture mapping,
hierarchical space partitioning, AMR tree

1 Introduction

3D imaging and computational science produce increasingly large volumetric
data sets. The number of voxels output by 3D imaging devices is proportional
to the third power of their spatial resolution which continuously grows linear
due to technical advances e.g. in detector technology. While data volumes
consisting of O(109) voxels are not unusual today, future imaging devices and
large scale simulations will create tera-scale data sets. These huge data sets
have to be handled and explored interactively. Despite the enormous computer
hardware development this remains a challenge.

Hierarchical representations allow to speed up the rendering process, typ-
ically at the expense of some preprocessing time. Furthermore, they enable
switching between different levels of detail, which greatly facilitates interactive
navigation and provides appropriate means for data analysis of multiscale phe-
nomena.

Since the early days of direct volume rendering, the prevalent types of ren-
dering algorithms, namely ray casting [14, 19], cell projection, splatting [32],
and volume rendering via 3D textures [9, 7, 34], have been accelerated by hier-
archical volume representations.

Due to the advent of powerful texturing hardware, slice based volume ren-
dering algorithms, either using 2D [11] or 3D texture mapping [7, 34], became
∗E-mail: {kaehler,mark.simon,hege}@zib.de .

1



very popular. They allow to obtain an image quality that suffices for many
applications and make interactive frame rates on standard graphics hardware
possible. The textures result from transfer functions that map the original data
to color and opacity values. In case of 3D texture mapping, the texture coordi-
nates at the polygon’s vertices are interpolated and determine a slice through
the 3D texture. This approach leverages the trilinear interpolation hardware
and has the additional advantage that textures need to be loaded only once,
independent of the viewpoint. If the data set is too large to fit in texture mem-
ory, the full volume may be rendered in multiple passes, placing only portions
of the volume data, so called bricks, into the texture memory on each pass.

For sparse data sets the rendering speed can be significantly increased by
skipping non-interesting regions, as noticed earlier in various volume rendering
approaches. If the ratio of relevant to non-relevant volumes is small enough,
this can be exploited with specialized variants of almost all types of volume
rendering algorithms. This technique is well suited for interactive visualization,
in particular if the criterion of relevance can be adjusted reasonable fast, such
that user itself can ensure not to miss important details. More sophisticated
approaches like truely error-controlled numerical computation of the volume ren-
dering integrals, are more expensive and view-dependent. Furthermore, in many
applications particular subvolumes shall be ignored deliberately, e.g. irrelevant
spatial objects that have been identified in a preceding image segmentation step.

Disregarding irrelevant parts of the data volume is especially effective for
spatially sparse data sets. Since such data occur frequently in nature it is
worthwhile to devise specific rendering algorithms. For instance in biomedical
visualization, line-like structures, like vessel trees, neuron trees, trabeculae in
bones, or filament structures in muscels, have to be visualized. Thin structures
occur on all length scales in nature, ranging from chain molecules in chemistry
to filaments of galaxies and galaxy clusters. In numerical simulations often large
computational volumes have to be considered to take care of boundary condi-
tions, though the interesting phenomena happen in very tight spatial regions.
Here also a tight fitting of relevant subvolumes helps to save rendering time.

In case of rendering via 3D textures, sparsity of data can be exploited by
assigning individual 3D textures – usually called texture bricks – to the relevant
regions. The optimal coverage of the relevant subvolumes would be achieved by
assigning a texture brick to each voxel that has been classified as relevant. This
of course would result in an enormous number of texture and polygon coordi-
nates to be computed and specified, since every brick has to be intersected with
the proxy geometries (i.e. the slices to be rendered). Therefore a good balance
between the volume enclosed by texture bricks and the number of created bricks
is crucial.

In this paper we present an algorithm that achieves this balance by utilizing
a hierarchical data structure, the so called adaptive mesh refinement (AMR)
tree, which has been introduced by Marsha Berger in the 1980s for numerical
gas dynamical simulations [5].

We compare the AMR-based algorithm with an octree-based algorithm and
show that significant gains in rendering performance are achieved. The AMR-
based algorithm has the additional advantage that it requires less user inter-
action for parameter adjustment, since its standard parameter settings already
yield good rendering performance, almost independent of the topology and spa-
tial distribution of the interesting subregions.

2



Section 2 surveys related work. We describe our approach in Section 3.1. In
Section 3.2 we compare it to an octree approach. Sections 4.1 and 4.2 address
the 3D texture based rendering of AMR and octree hierarchies, respectively.
In Section 5 we list performance results of the methods on different data sets.
Conclusions and future work are presented in Sections 6 and 7, respectively.

2 Related Work

The idea to accelerate volume rendering algorithms by ignoring subregions that
do not contribute to the final image has been pursued by many researchers.
Levoy [20] presented a ray transversal algorithm that skips empty space by uti-
lizing a hierarchical data structure indicating the presence of non-transparent
material. The pyramidal data structure (a complete octree) has been employed
by many researchers, too. Subramanian and Fussel [27] also designed a ray
tracer that works efficiently when the data of interest is distributed sparsely
through the volume. A simple preprocessing step identifies the voxels repre-
senting features of interest and stores these in a kD-tree. The partitioned space
is then efficiently ray-traced to render the voxel data.

Laur and Hanrahan [17] proposed a splatting algorithm that works on a
pyramidal representation of the volume and chooses the number of splats adap-
tively, according to user-supplied error criteria. Storing data mean and root
mean square at each node permits rendering by progressive refinement. Nodes
within the user-specified tolerance are rendered as single splats by utilizing tex-
ture mapping capabilities.

Danskin and Hanrahan [10] presented algorithms that exploit homogeneity:
not only empty, but also homogeneous regions are traversed in a fast manner.
The algorithms enable to take into account also accumulated opacity. General-
izing these ideas Wilhelms and Van Gelder used multi-dimensional trees, whose
nodes contain also importance information which is used for selective traversal,
e.g. in a coherent projection rendering approach [33].

Extending the idea of exploiting the distance transform to speed up the
background traversal [35], Cohen and Sheffer [8] introduced so-called proxim-
ity clouds that store the ’uniformity information’ typically encoded in a space
partitioning tree directly in the voxel raster: voxel data contain either a data
value or information indicating how far incident rays may leap without missing
important features.

A different multiscale approach is to project the volume data into a wavelet
basis and exploit this e.g. by performing the integration process for rays on the
resulting wavelet coefficients directly [31]. This has been extended by Lippert
and Gross [22], who employ Fourier descriptions of wavelet basis functions to
efficiently compute line integrals.

Lee and Park [18] reduced ray-casting overheads by an adaptive block sub-
division. Their algorithm applies a uniform space subdivision and then merges
coherent uniform blocks in order to generate adaptive-sized blocks which are
efficient for leaping space. They achieved 25% to 70% performance gain in
rendering time over some octree implementation.

LaMar et. al. introduced a multiresolution technique for interactive texture-
based volume visualization of very large data sets [16]. They also use an oc-
tree representation and employ an adaptive scheme for rendering the volume in

3



regions-of-interest at high resolution and the volume away from these regions at
progressively lower resolutions. Weiler et.al. [30] additionally developed meth-
ods for avoiding artifacts that occur due to incorrect texture interpolation and
opacity correction at brick boundaries. Boada et.al. [13] present an error and
importance driven strategy for selecting a set of octree nodes from the full pyra-
midal structure.

Some of these ideas have been extended for handling time-varying data sets.
Ma et.al. [15] developed a corresponding octree encoding and rendering algo-
rithm of time-varying volume data. Shen et. al. [25] proposed a data structure,
called time-space partitioning (TSP) tree, that can effectively capture both the
spatial and the temporal coherence from a time-varying field. This is utilized in
a ray casting algorithm. In recent time this work has been extended to hardware
volume rendering using 3D texture mapping [26].

For AMR data, resulting from simulations of hyperbolic PDEs by finite
difference algorithms, a direct volume rendering using cell projection has been
developed by Weber et.al. [29] and Ma [23].

Tong et.al. developed methods for volume block trimming and texture block
merging in order to load only volume data hat contains important objects into
texture memory [28]. Srinivasan et.al. [24] present an octree data structure to
encapsulate non-transparent voxels.

We present an algorithm that in a first step creates an AMR hierarchy on
base of the 3D image contents. It utilizes a clustering algorithm for merging cells
into rectilinear regions. In order to minimize waste of texture memory caused
by OpenGL (and possibly hardware) restrictions as well as to reduce texture
I/O, we employ a packing algorithm. The created hierarchies are rendered via
hardware assisted 3D texture mapping.

3 Generating the Hierarchies

3.1 Generating the AMR Hierarchy

3.1.1 The AMR Data Structure

In the AMR approach the whole computational domain is covered by a coarse
grid, representing the root node of the hierarchical data structure. In regions
where higher resolution is required, finer subgrids are inserted as child nodes
of the root grid. Together they define a new level of the hierarchy, increasing
the resolution of their parent grid by a factor, usually referred to as refinement
factor. Figure 1 shows a 2D example. This process repeats recursively until
all grid cells on the finest resolution level satisfy certain error criteria, which
depend on the particular numerical simulation. For simplification purposes the
AMR schemes usually fulfill the following restrictions:

• The refinement factor is a positive integer, possibly different for the various
spatial directions.

• The subgrids are axis-aligned, structured rectilinear meshes, consisting of
hexahedral cells with constant edge lengths.

• Subgrids are completely contained within their parent grids.

4



A

B

C D

A

B

C

D

Figure 1: 2D example of an AMR grid hierarchy. Root grid A has one subgrid
B, which again has two children (C, D).

• Subgrids begin and end on parent cell boundaries, which implies that
parents grid cells are either completely refined or completely unrefined.

In the next paragraph we describe how we utilize AMR hierarchies to effi-
ciently capture the relevant parts of the datasets.

3.1.2 Extracting the Relevant Regions

In a preparing step we generate a pyramidal hierarchy of coarser resolutions of
the original grid by subsampling with an integer factor. The pyramidal hierarchy
will only be used in the preprocessing step, but not during rendering. The
coarsening factor usually is chosen as 2. Larger values are possible and may be
useful to reduce the amount of memory needed to store the pyramidal hierarchy.
The factor may also be different for each of the 3 coordinate directions. Each
cell on the coarser level stores the minimum and maximum values of all the
data voxels of the subregion it covers, as shown in Figure 2. This procedure

Figure 2: Creating the pyramidal structure. The bottom line shows the original
data samples (on a 2D grid). The rows above indicate the min-max-layers.

is recursively repeated until the number of data samples in one direction drops
below some specified lower bound. In cases where the cell size of the original
dataset does not match a multiple of a power of the refinement factor, the
remainder cells are covered by one coarser cell on the next layer. This might

5



involve some cropping of the subgrids’ bounding boxes, when descending from
a coarser to a finer layer.

After this preparing step we build the hierarchy of axis-aligned subgrids that
provide a tight enclosing of the relevant subareas. The coarsest resolution of
the pyramid defines the root grid of the hierarchy.

Next, the cells of the root grid are inspected and the relevant ones are marked
for refinement. In order to classify the voxels into relevant and irrelevant ones
an importance criterion is necessary. This might be based on transparency or
on a segmentation which assigns voxels to classes based upon their values. In
the first case the colormap’s alpha values in the interval associated with the
minimal and maximal values being stored in the coarse cells are examined and
in case the threshold is exceeded the cell is flagged.

Now the subgrids are created by invoking a clustering algorithm. It effi-
ciently encloses the grid cells that require refinement by axis-aligned rectilinear
regions, subject to the following conditions: minimize the number of created
boxes as well as the number of covered cells that do not need refinement. The
algorithm will be presented in subsection 3.1.3. Thereby child grids of the root
level are defined. This clustering procedure is recursively applied to the new
subgrids until the finest level of the min-max layers is reached. Then the original
data cells that are covered by the grids on this layer, are inspected and clustered
again. Thereby the memory overhead of storing two additional values for each
cell of the original data volume is avoided without limiting the clustering gran-
ularity to the cell size of the first min-max layer. Now the data samples covered
by these grids are copied and stored in the grids’ tree node. The pseudo code
for these steps is given in Figure 3 (re-clustering is omitted for simplification
purposes). Some care is necessary at the boundary faces of the grids. To avoid
artifacts caused by discontinuities between adjacent grids during the rendering
via 3D-textures, one has to assure that they share one row of data samples at
their common boundary faces [16].

Notice that one could alternatively cluster directly on the original data vol-
ume, without first creating the min-max-pyramid, but this would increase the
time for creating the AMR-hierarchy, because the clusterer works faster on
smaller grids. As discussed in [6] the running time is O(k(P +M)), where k is
the total number of grids upon termination of the algorithm, P is the number
of flagged cells, and M is related to the determination of the inflection points,
see subsection 3.1.3. Dividing the preprocessing step into pyramid creation and
clustering is advantageous, since only the clustering step has to be repeated if
the colormap is changed – which may happen several times during a visualiza-
tion session.

Notice also that this AMR hierarchy offers the possibility to obtain a multi-
resolution representation of the interesting regions by applying appropriate av-
eraging methods in order to compute the data samples on the coarser grids.

3.1.3 The Clustering Algorithm

An efficient and fast algorithm for clustering cells into axis-aligned regions was
suggested by Berger and Rigoutsos [6], adopting signature-based methods used
in computer vision and pattern recognition. We will shortly describe the basic
ideas in this section. For more details the reader might refer to [6].

First for each slice perpendicular to the x-y, x-z and y-z planes the number

6



struct AMRGrid {

integer box[6];

pointer to data;

pointer to children;

pointer to parent;

}

AMRgrid createGrid(integer level,

integer box[6])

{

generate subgrid;

if (level==maxlevel) {

copy data samples to subgrid;

insert subgrid into AMR_hierarchy;

}

else {

insert subgrid into AMR_hierarchy;

markedCells=inspect(subgrid,

importance criterion);

newBoxList=cluster(markedCells);

for each subbox in newBoxList {

childGrid=createGrid(level+1, subbox);

set subgrid as parent of childGrid;

set childGrid as child of subgrid;

}

}

return subgrid;

}

create_hierarchy() {

rootGrid = createGrid(0,rootLayerBox);

}

Figure 3: Pseudo code for creating the AMR hierarchy via clustering.

7



of cells that need refinement is computed and stored in so called signature lists.
A 2D example is shown in Figure 4. Next exterior zero-entries in these lists are

5 6 6 2 2
3
3

2

3

5

5

0

Figure 4: 2D example of clustering: the horizontal edge was detected by the
zero entry in the signature list, the vertical edge by the biggest inflection point.

detected and pruned off, in order to place a minimal bounding box around the
flagged cells. Any interior zero entry in these lists indicates a potential cutting
index, i.e. a position at which the given volume is subdivided into two smaller
subregions. In cases where the signatures are all non-zero, the Laplacian second
derivative of each signature list is computed and the biggest inflection point
of these three lists is taken as the splitting point. The described procedure is
repeated recursively on the newly created subregions, until one of the following
halting criteria is satisfied:

• The subregion exceeds some efficiency ratio, i.e. the ratio of the number
of its cells needing refinement to its total number of cells is greater than
a preselected value between 0% and 100%.

• The further subdivision of the region would result in grid dimensions
smaller than some minimal extension.

As a result the data volume is partitioned in a kD-tree manner, which will
be relevant for the back-to-front traversal of the generated hierarchy in the
rendering step (see subsection 4.1.2).

Our implementation of the clustering algorithm was inspired by Paul Walker’s
version [1] that is used in the AMR software package DAGH [2]. Adjusting it
to our specific needs resulted in performance gains of about a factor of 10.

3.2 Generating the Octree

We compare the AMR approach with an octree based renderer, similar to the one
described in [24]. First the data volume is partitioned into bricks of preselectable
dimensions. These should equal a power of two, in order to minimize the amount
of texture memory needed in the rendering step (see section 4). Note that,
just like in the AMR case, adjacent nodes need to share data samples at their
common faces. These bricks define the leaf nodes of the full octree hierarchy.
Only subbranches with leaf nodes that cover non-transparent regions of the data

8



volume are inserted into the hierarchy. As mentioned in the introduction the
rendering performance is affected by

• the size of the subvolumes to render

• the number of polygon and texture coordinates to be generated and thus
the number of bricks.

Since the subvolumes of the leaf nodes are later defined as texture bricks (see
section 4), the rendering performance can be increased by reducing their number
without enlarging the size of volume to render. In order to do so one checks if all
eight children of an octree node are leaves, and thus have to be rendered. Then
they are cut off and the node becomes a new leaf. This reduces the number of
bricks needed by 7 and also decreases the amount of texture memory, since the
overlapping boundaries are canceled. Another reduction of bricks is achieved

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

A

B C

D

C
A

D

B

Figure 5: Subbranch of the octree: ratio of volume of leaf nodes B and D and
the root A is 5

16 .

by taking into account the ratio between the sum of volumes covered by the
leaves of a node and the node’s volume itself. If this ratio exceeds a preselected
threshold, the branch is cut and the node gets a leaf node (see Figure 5), which
usually increases the volume to render. This threshold can be different for each
level of the hierarchy. To find a good balance between the performance limiting
factors mentioned above, these parameters have to be to be adjusted carefully,
as also noticed in [24].

Now the data volumes covered by the resulting leaves of the octree are copied
and stored in the hierarchy’s nodes.

4 Rendering

We render the created subvolumes utilizing the 3D-texture mapping approach.
Individual 3D-textures are assigned to the separate subvolumes and are clipped
against equidistant slices parallel to the viewplane. The slices are then blended
back-to-front in the frame buffer.

The volume rendering routines for both, the AMR and the octree hierarchies
are implemented in AMIRA [3], a 3D visualization system developed at ZIB.

9



X

y
1max

y
2max

y
3max

1 2 3

4 5 6 7

8 9 10

Figure 6: 2D example of the next-fit-decreasing-height packing heuristic: sub-
volumes are inserted from left to right, starting at the lower left corner.

One channel textures and the OpenGL colortable extension were used. In the
following we describe the differences for both types of hierarchies, AMR tree
and octree.

4.1 Rendering the AMR hierarchy

The graphics hardware assumes the dimensions of 3D-textures to be equal to a
power of two. This could be achieved by extending the data subvolume of each
leaf grid of the AMR hierarchy to the next bigger power of two, for example by
clamping the boundary texels and restricting the generated texture coordinates
to the unextended area. Regarding the potentially large number of textures
to deal with, this would result in a typically large overhead of unused texture
memory. We decided to reduce this overhead by utilizing a packing algorithm
that merges separate textures into one bigger texture.

4.1.1 Packing the Leaf Bricks

For our purposes the following variant of the three-dimensional packing problem
is appropriate: pack a given number of rectilinear boxes into one container with
fixed width and depth sizes, such that its height is minimized. For a more formal
definition see [21]. This problem belongs to the class of NP-hard problems, but
a couple of useful heuristics have been suggested.

We adopt a level-by-level layer-by-layer packing scheme, a three-dimensional
version of the next-nit-necreasing-neight (NFDH) algorithm [12]. First the boxes
are inserted into a list, in the order of decreasing height. The packing algorithm
starts at the lower left-hand corner of the container and inserts the boxes from
left to right until the right border is reached. Then a new row is opened, with a
depth coordinate given by the largest depth of the already inserted boxes. This
procedure is repeated until the lowest layer of the container is filled. Then a
new layer is opened and this process continues until all boxes are inserted. See
Figure 6 for a 2D example.

We iterate this procedure with different values for the base layer extensions
of the container, chosen as powers of two. For the resulting containers the heigth

10



Figure 7: A 3D example of axis-aligned bounding boxes, that form a cycle from
the considered viewpoint.

is extended to the next power of 2, and the one with smallest volume is taken.
Then a 3D texture of this size is defined with the subtextures inserted at their
computed positions. For each brick its offset position in the merged texture is
stored.

4.1.2 Back to Front Rendering

Even for axis-aligned subvolumes, generally it is not possible to render them
back-to-front in a brick-by-brick approach, because occlusion cycles might occur
when looking from certain viewpoints, c.f. Figure 7. But since the clustering
algorithm described in section 3.1.3 internally generates a kD-tree partitioning
of the data volume, no cycles occur in the AMR approach. Thus we use this
kD-tree in order to traverse the generated bricks in the correct order. At each
node the actual viewpoint is compared to the value of the node’s split position
and the two child nodes are visited in a back-to-front manner. If the node is a
leaf, the associated subvolume is rendered slice by slice.

Computing the intersection points of the slices and the bricks’ bounding
boxes is done in software. We speed up this procedure by first determining
for each brick the interval of slices that intersect it. This is accomplished by
projecting the bounding box corners of the brick on the planes normal direction
as shown in Figure 8. Only for this subset the intersections need to be computed.
This is done by first determining which bounding box corners lie above and
which below the oriented plane, by comparing the projections onto the plane
normal vector of the plane center and the corners of the bounding box. A lookup-
table stores which edges are intersected and their correct order (needed for the
definition of the associated polygon) for each configuration. The intersection
coordinates are computed by linear interpolation between the endpoints of these
edges.

11



1

2

3

4

0

Figure 8: Computing the interval of slices intersecting an brick by projecting
its corners onto the slices’ normal direction.

4.2 Rendering the Octree

Since most leaf nodes of the octree already have dimensions equal to a power
of 2, each of them is converted into a separate texture brick. Merging them
into one big texture generally increases the amount of texture size due to the
non-optimal packing scheme.

Each octree brick is rendered separately in a back-to-front traversal. The
view-consistent order can easily be determined by a table lookup at each node,
which returns the correct order to visit the children with respect to the actual
viewpoint [4].

As in the AMR case, for each brick the interval of intersecting slices is pre-
computed and the intersection points are determined using the fast table-lookup
approach mentioned above. In [24] the authors determine the intersection points
by computing several templates, which are translated to the actual box posi-
tion.

5 Results

5.1 Experimental Setting

We applied our algorithm to several data sets with decreasing degree of sparse-
ness. The performance was tested on a SGI Onyx2 InfiniteReality2 with two
RM7 raster managers with 64 MB texture memory. The runs were performed
on a single 195 MHz MIPS R10k processor.

Since texture based volume rendering is fillrate limited, the frame rates de-
pend on the size of the viewer window, the number of slices, and the area in
screen space covered by the data volume (and thus on the actual position of the
viewpoint).

We averaged the framerates for several positions inside and outside the data
volume, by choosing viewpoints located on different circles with variing radii
and orientations, as indicated in Figure 9. For all examples the sizes of the
rendered images were 764× 793 pixels; the numbers of slices are listed below.

12



Figure 9: Some of the camera positions used for determination of the average
rendering speed.

5.2 Input Data

In the examples we used the opacity value as importance criterion. Voxels with
an associated opacity value greater than αthres = 0.03 were marked as relevant.

The datasets I and II are confocal microscopy images of neurons inside a
honey bee’s brain. About 0.1% respectively 0.2% voxels were marked as rele-
vant and the volumes were rendered with 1.200 slices. For dataset II a greater
threshold of αthres = 0.1 was used, in order to eliminate noise contained in the
microscopy image.

Dataset III represents a part of a human vascular tree. Here 1.2% voxels
were tagged as relevant. This dataset also was rendered with 1200 slices.

Example IV contains data from a molecular dynamics simulation and con-
formational analysis. About 4% of voxels were marked as relevant. The volume
was rendered with 320 slices. This is the only dataset which fitted into memory
without bricking, i.e. in the standard volume rendering approach the frame rate
was dominated by the fill rate.

The last example is a non sparse datatset containing 23% of relevant voxels,
which was rendered with 900 slices.

Images of the different datasets are shown in Figure 10 to Figure 14. The
left image of each figure shows an example volume rendering, the images in the
middle depict the bounding boxes of the AMR hierarchy, and the right images
display the octree bounding boxes.

5.3 Experimental Results

The statistics are shown in Tables 1 to 5. For each dataset we list the results
for standard volume rendering, for the octree and the AMR approach. The first
rows (‘Standard’) show the results for the standard volume rendering approach.
Rows labeled ‘Octree I’ contain the octree result with leaf dimensions that result
in optimal frame rates. The ratio threshold was set to 1. Rows labeled ‘Octree

13



II’ show the best octree results we achieved, by adjusting the ratio threshold
parameters. For the definition of these parameters see section 3.2.

The fourth rows (‘AMR I’) display AMR results with the clusterer’s effi-
ciency parameter set to 0.85 and a minimal extension bound of 15. The last
rows, labeled ‘AMR II’, report the optimal results achieved by adjusting these
parameters for each dataset. For datasets I and II the entries for ‘AMR I’ and
‘AMR II’ are identical because the parameters mentioned abouve already were
optimal for these examples.

The tables’ columns list the number of created texture bricks, the percentage
of the data volume covered by them, the amount of texture memory (after
extension to the next power of 2 and packing them into one texture in the AMR
case), the preprocessing times, the number of levels of the hierarchies and finally
the frame rates. On the InfiniteReality2 the texelsize is 2, so the internal size
of the textures is twice the number given in the table.

Note that for the datasets I,II,III and IV the volume entries for the standard
case give values greater than 100%, because the bricks share a common row of
voxels at their boundaries. For the standard approch the preprocessing times
are just given by the times to allocate and define the texture or textures (in cases
where bricking is necessary). The preprocessing times for the AMR hierarchies
are split into the part needed for the resampling and a second part for clustering
and packing. Note that only the clustering and packing step has to be updated,
when the colormap is changed.

6 Conclusions

We presented an algorithm that accelerates the rendering of large datasets. The
AMR approach achieves a good balance between the number of boxes needed
for tightly capturing the relevant voxels of the data volume and the number
of covered non-relevant ones. We compared our approach with the results of
an octree based spatial subdivision. The number of created texture bricks is
much smaller than the bricks created by the corresponding octree hierarchy,
see Figures 1 to 5. Thus for the sparse datasets the AMR approach achieved
significant performance gains. The frame rates for the standard and optimal
parameter settings in the AMR cases are similar for all data sets. This shows
that the standard setting usually yields good performance and hence almost no
user interaction is necessary for finding optimal rendering parameters.

In contrast, the optimal parameter settings for the octree based algorithm
vary strongly for the different datasets and are therefore difficult to determine
for a given dataset.

We reduced the additional amount of texture memory caused by the power
of 2 restrictions of OpenGL (respectively the graphics hardware), by packing
several bricks into one bigger texture. For the datasets I, II and III the best
AMR results needed less texture memory compared to the best octree results.
For dataset IV the size was almost equal. For the non-sparse dataset V the
amount was twice as high as for the octree case.

So the AMR-based algorithm yields best results for sparse and large data
sets and in this case has clear advantages compared to the octree-based one with
regard to the frame rates, as well as to the amount of required texture memory.

14



levels bricks volume texsize preproc. fps
standard 1 7 103.0% 208.0 MB 8.1s 0.1
Octree I 8 1503 2.9% 3.1 MB 6.5s 10.2
Octree II 8 615 3.6% 5.1 MB 17.3s 13.1
AMR I 4 333 0.8% 2.0 MB 21.3s+2.7s 28.6
AMR II 4 333 0.8% 2.0 MB 21.3s+2.7s 28.6

Table 1: Dataset I: Neurons inside a bee brain, containing 654×993×200 voxels
and rendered with 1200 slices.

levels bricks volume texsize preproc. fps
standard 1 7 103.0% 208.0 MB 8.0s 0.1
Octree I 8 1786 3.4% 3.7 MB 17.2s 8.2
Octree II 8 857 5.3% 6.4 MB 15.1s 11.8
AMR I 4 417 1.4% 4.0 MB 19.5s+4.6s 24.6
AMR II 4 417 1.4% 4.0 MB 19.5s+4.6s 24.6

Table 2: Dataset II: Neurons inside a bee brain, containing 566 × 990 × 200
voxels and rendered with 1200 slices.

levels bricks volume texsize preproc. fps
standard 1 23 103.1% 736.0 MB 13.3s 0.1
Octree I 7 3277 7.7% 15.9 MB 34.6s 3.2
Octree II 7 1907 8.7% 19.0 MB 11.7s 3.9
AMR I 5 1388 4.3% 16.0 MB 34.4s+13.9s 6.3
AMR II 5 1525 3.9% 16.0 MB 34.4s+13.5s 6.5

Table 3: Dataset III: Vascular tree, containing 528 × 574 × 700 voxels and
rendered with 1200 slices.

levels bricks volume texsize preproc. fps
standard 1 1 100.0% 16.0 MB 0.5s 3.5
Octree I 8 652 8.9% 0.6 MB 4.1s 13.7
Octree II 8 587 7.9% 0.9 MB 6.1s 15.6
AMR I 4 61 8.8% 1.0 MB 0.9s + 0.7s 14.3
AMR II 4 333 6.9% 1.0 MB 0.9s + 0.8s 16.7

Table 4: Dataset IV: Molecular conformation dataset, containing 185×202×157
voxels and rendered with 320 slices.

levels bricks volume texsize preproc. fps
standard 1 2 101.0% 64.0 MB 2.0s 0.4
Octree I 7 2947 37.6% 14.5 MB 11.0s 3.7
Octree II 7 1814 37.0% 15.0 MB 7.2s 4.5
AMR I 3 619 32.1% 32.0 MB 6.1s + 11.4s 4.5
AMR II 3 501 35.0% 32.0 MB 6.1s + 13.2s 4.7

Table 5: Dataset V: Bee brain dataset, containing 749 × 495 × 100 voxels and
rendered with 900 slices.

15



Even for the non-sparse data set V the AMR-based algorithm achieves frame
rates comparable to those of the octree based algorithm.

7 Future Work

In order be forearmed for the large scale simulations and huge image data sets
expected for the future we will optimize the texture packing approach. Fur-
thermore we will examine the use of better packing algorithms, for example
those similar to the one presented in [21]. It would also be interesting to test
other cluster algorithms and compare the preprocessing times and qualities of
the resulting hierarchies.

Currently we are extending our algorithm for rendering data sets from AMR
simulation, i.e. where an AMR hierarchy has already been established by the
numerical solver. Here other requirements have to be considered, e.g. not refined
areas have to be partitioned without introducing cycles. And one has to deal
with the problem of opacity corrections and artifacts on the boundaries of grids
with different levels of resolution.

8 Acknowledgments

We thank Malte Zöckler for the idea and implementation of the intersection al-
gorithm based on a lookup-table, that was sketched in subsection 4.1.2 and Jo-
hannes Schmidt-Ehrenberg, Detlev Stalling, Malte Zöckler and Werner Benger
for proof reading and fruitful discussions respectively.

The single neuron and bee brain datasets where provided by Robert Brandt
(research group Randolf Menzel, Freie Universität Berlin), the vascular tree
dataset by Thomas Lange (research group Peter Schlag, Robert-Rössle-Klinik
and Unversitätsklinikum Charité, Berlin) and the molecular dataset by Jo-
hannes Schmidt-Ehrenberg, Daniel Baum, and Frank Cordes (ZIB).
This work was supported in part by the Max-Planck-Institut für Gravitation-
sphysik (Albert-Einstein-Institut) in Potsdam/Germany.

References

[1] http://jean-luc.ncsa.uiuc.edu/Codes/3DCluster/.

[2] http://www.caip.rutgers.edu/ parashar/DAGH/.

[3] Amira User’s Guide and Reference Manual as well as Amira Programmer’s
Guide. Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) and
Indeed - Visual Concepts GmbH, Berlin, http://www.amiravis.com, 2000.

[4] Walid G. Aref and Hanan Samet. An algorithm for perspective viewing
of objects represented by octrees. Computer Graphics Forum, 14(1):59–66,
1995.

[5] M. J. Berger and P. Collela. Local adaptive mesh refinement for shock
hydrodynamics. J. Computational Physics, 82(1):64–84, 1989.

16



[6] Marsha Berger and Isidore Rigoutsos. An algorithm for point clustering
and grid generation. IEEE Transactions on Systems, Man and Cybernetics,
21(5), 1991.

[7] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomo-
graphic reconstruction using texture mapping hardware. In Arie Kaufman
and Wolfgang Krueger, editors, 1994 Symposium on Volume Visualization,
pages 91–98, 1994.

[8] D. Cohen and Z. Sheffer. Proximity clouds: An acceleration technique for
3D grid traversal. The Visual Computer, 11:27–38, 1994.

[9] T. Cullip and U. Neumann. Accelerating volume reconstruction with 3D
texture mapping hardware. Technical Report Technical Report TR93-027,
Department of Computer Science at the University of North Carolina,
Chapel Hill, 1993.

[10] John M. Danskin and Pat Hanrahan. Fast algorithms for volume ray trac-
ing. In Workshop on Volume Visualization, pages 91–98, October 1992.

[11] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering.
Computer Graphics (Proceedings of SIGGRAPH 88), 22(4):65–74, August
1988. Held in Atlanta, Georgia.

[12] D. S. Johnson E.G. Coffman, JR., M.R.Garey and R. E. Tarjan. Perfor-
mance bounds for level-oriented two dimensional packing algorithms. SIAM
Journal on Computing, 9:808–826, 1980.

[13] R.Scopigno I. Boada, I. Navazo. Multiresolution volume visualization with
a texture-based octree. The Visual Computer, 17(5):185–197, 2001.

[14] James T. Kajiya and Brian P. Von Herzen. Ray tracing volume densities.
Computer Graphics (Proceedings of SIGGRAPH 84), 18(3):165–174, July
1984. Held in Minneapolis, Minnesota.

[15] Kwan-Liu Ma, Diann Smith, Ming-Yun Shih and Han-Wei Shen. Efficient
encoding and rendering of time-varying volume data. Technical report,
ICASE Report No. 98-22 (NASA CR-1998-208424), Institute for Computer
Applications in Science and Engineering, NASA Langley Research Center,
Hampton, VA., June 1998.

[16] Eric C. LaMar, Bernd Hamann, and Kenneth I. Joy. Multiresolution tech-
niques for interactive texture-based volume visualization. In David Ebert,
Markus Gross, and Bernd Hamann, editors, IEEE Visualization ’99, pages
355–362, San Francisco, 1999. IEEE.

[17] David Laur and Pat Hanrahan. Hierarchical splatting: A progressive re-
finement algorithm for volume rendering. Computer Graphics (Proceedings
of SIGGRAPH 91), 25(4):285–288, July 1991. Held in Las Vegas, Nevada.

[18] Choong Hwan Lee and Kyo Ho Park. Fast volume rendering using adaptive
block subdivision. Pacific Graphics ’97, October 1997. Held in Seoul,
Korea.

17



[19] Marc Levoy. Display of surfaces from volume data. IEEE Computer Graph-
ics & Applications, 8(3):29–37, May 1988.

[20] Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on
Graphics, 9(3):245–261, July 1990.

[21] Keqin Li and Kam-Hoi Cheng. On three-dimensional packing. SIAM Jour-
nal on Computing, 19(5):847–867, 1990.

[22] L. Lippert and M. H. Gross. Fast wavelet based volume rendering by
accumulation of transparent texture maps. Computer Graphics Forum,
14(3):431–444, 1995.

[23] Kwan-Liu Ma. Parallel rendering of 3d amr data on the sgi/cray t3e. Proc.
7th Symposium on Frontiers of Massively Parallel Computation, pages 138–
145, 1999.

[24] S. Huang R. Srinivasan, S. Fang. Rendering by template-based octree
projection. Proceedings of the 8th Eurographics Workshop on Visualization
in Scientific Computing, pages 155–163, 1997.

[25] Han-Wei Shen, Ling-Jan Chiang, and Kwan-Liu Ma. A fast volume render-
ing algorithm for time-varying fields using a time-space partitioning (TSP)
tree. In David Ebert, Markus Gross, and Bernd Hamann, editors, IEEE
Visualization ’99, pages 371–378, San Francisco, 1999.

[26] Han-Wei Shen, David Ellsworth, and Ling-Jen Chiang. Accelerating time-
varying hardware volume rendering using TSP trees and color-based error
metrics. In Visualization and Graphics Symposium 2000, pages 119–128,
Salt Lake City, UT, 2000.

[27] K. R. Subramanian and Donald S. Fussel. Applying space subdivision
techniques to volume rendering. IEEE Visualization ’90, pages 150–159,
1990.

[28] X. Tong, W. Wang, W. Tsang, and Z. Tang. Efficiently rendering large
volume data using texture mapping hardware. Joint EUROGRAPHICS
- IEEE TCVG Symposium on Visualization, May 1999. Held in Vienna,
Austria.

[29] Gunther H. Weber, Hans Hagen, Bernd Hamann, Kenneth I. Joy, Terry J.
Ligocki, Kwan-Liu Ma, and John Shalf. Visualization of adaptive mesh
refinement data. In Proceedings IS&T/SPIE Electronic Imaging 2001, 2001.

[30] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl. Level-
of-detail volume rendering via 3D textures. In IEEE Volume Visualization
and Graphics Symposium 2000, pages 7–13, 1994.

[31] Rüdiger Westermann. A multiresolution framework for volume rendering.
1994 Symposium on Volume Visualization, pages 51–58, October 1994.

[32] Lee Westover. Footprint evaluation for volume rendering. Computer Graph-
ics (Proceedings of SIGGRAPH 90), 24(4):367–376, August 1990. ISBN
0-201-50933-4. Held in Dallas, Texas.

18



[33] Jane Wilhelms and Allen Van Gelder. Multi-dimensional trees for con-
trolled volume rendering and compression. Technical Report UCSC-CRL-
94-02, University of Santa Cruz, 1994.

[34] Orion Wilson, Allen VanGelder, and Jane Wilhelms. Direct volume ren-
dering via 3D textures. Technical Report UCSC-CRL-94-19, University of
Santa Cruz, 1994.

[35] K. Zuiderveld, A. Koning, and M. Viergever. Acceleration of ray-casting
using 3d distance transforms. In Visualization in Biomedical Computing,
Proceedings of VBC’92, pages 324–335. SPIE, 1992.

19



Figure 10: Dataset I, bee brain neuron, left: standard, middle: AMR, right:
octree.

Figure 11: Dataset II: bee brain neuron, left: standard, middle: AMR, right:
octree.

Figure 12: Dataset III: vascular tree, left: standard, middle: AMR, right: oc-
tree.

20



Figure 13: Dataset IV: molecule conformation, left: standard, middle: AMR,
right: octree.

Figure 14: Dataset V: bee brain, left: standard, middle: AMR, right: octree.

21


