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Abstract

The recent spectral bundle method allows to compute, within reasonable time, approx-
imate dual solutions of large scale semidefinite quadratic 0-1 programming relaxations. We
show that it also generates a sequence of primal approximations that converge to a primal
optimal solution. Separating with respect to these approximations gives rise to a cutting
plane algorithm that converges to the optimal solution under reasonable assumptions on
the separation oracle and the feasible set. We have implemented a practical variant of the
cutting plane algorithm for improving semidefinite relaxations of constrained quadratic
0-1 programming problems by odd-cycle inequalities. We also consider separating odd-
cycle inequalities with respect to a larger support than given by the cost matrix and
present a heuristic for selecting this support. Our preliminary computational results for
max-cut instances on toroidal grid graphs and balanced bisection instances indicate that
warm start is highly efficient and that enlarging the support may sometimes improve the
quality of relaxations considerably.

MSC 2000: 90C22; 90C25, 90C27, 90C09, 90C20, 90C06
Keywords: bisection, equicut, max-cut, quadratic 0-1 programming, semidefinite
programming, spectral bundle method, subgradient method

1 Introduction

Crowder, Johnson, and Padberg [7] initiated the rise of general mixed integer programming
by solving several large scale, unstructured 0-1 linear programming problems via a unified
cutting plane framework. Can we set up a similar framework for large scale quadratic 0-1
programming problems?

It seems likely, that this question motivated much of the work on the boolean quadric
polytope and the max-cut polytope, see [29, 9] and references therein. In the late eighties
basic techniques for lifting linear inequalities into quadratic space were developed [34, 27, 1];
Lovész and Schrijver [27] linked this to a semidefinite relaxation of quadratic 0-1 programming
[35] and demonstrated by means of the stable set problem that much can be gained by doing so.
Further evidence on the effectiveness of the semidefinite approach was provided by Goemans
and Williamson [13] via their approximation algorithm for max-cut. These works provide a
clear guideline on how one should set up and improve relaxations of constrained quadratic
0-1 programming problems. Unfortunately, the final ingredient, an efficient algorithm that

*Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Takustrae 7, D-14158 Berlin, helmberg@zib.de,
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solves large scale semidefinite relaxations in acceptable time and allows for the addition of
cutting planes on the fly, is still missing. In this work we would like to convince the reader
that the spectral bundle method [19, 18] provides all that is needed — certainly not for all
applications, but for many cases of relevance.

The dual of a semidefinite program with bounded feasible set can be transformed into a
problem of minimizing the maximum eigenvalue of an affine matrix function (see, e.g., [16]).
The latter is a nonsmooth convex optimization problem that may be tackled by subgradient
and bundle methods, see [21] and references therein. The spectral bundle method [19, 18]
is tuned to eigenvalue optimization problems and their associated semidefinite programs in
that it uses a quadratic semidefinite subproblem. It was already pointed out in [19], that
the solutions of this quadratic semidefinite subproblems may be interpreted as (infeasible)
approximate solutions to the primal semidefinite program. Here, we prove rigorously that
these approximations converge to a primal optimal solution within the setting of the spectral
bundle method with bounds [18]. Feltenmark and Kiwiel [11] proved a related result for a
classical proximal bundle method; see also [4] and references therein for other approaches for
generating primal solutions from subgradient methods.

The primal approximations will serve as input for a separation oracle. Since these approx-
imations are infeasible in general, precautions have to be taken against the separation oracle
returning the same inequality again and again. A realistic assumption, that is often fulfilled
in practice, is that the oracle returns a maximally violated inequality from a finite represen-
tation Az < b of the polyhedron. The combination of the spectral bundle method with such
an oracle yields a cutting plane algorithm that generates a sequence of iterates converging
to primal and dual optimal solutions whenever a strictly feasible primal solution exists. To
the best of our knowledge this is the first provably convergent cutting plane approach based
on bundle methods. Since semidefinite programming includes linear and second order cone
programming, the algorithm easily extends to cutting plane algorithms over products of these
cones as long as the primal feasible set is bounded.

In our implementation we concentrate on the quadratic 0-1 programming setting and do
not obey all requirements for theoretic convergence in favor of computational efficiency. For
various reasons we prefer to work with the equivalent semidefinite relaxation of quadratic
{-1,1} programming which is better known as the max-cut relaxation. We improve the
basic relaxation by adding odd-cycle inequalities as cutting planes. In contrast to linear
programming it may help to separate these inequalities also with respect to support not
contained in the cost function. We present a simple heuristic for enlarging the support that
turned out to considerably improve the quality of the bound for several bisection instances. In
order to illustrate this and the behavior of the cutting plane approach in general, we present
preliminary numerical results for max-cut instances on toroidal grid graphs and bisection
instances from numerical linear algebra.

Here is an outline of the paper. In §2 we review the equivalence between 0-1 and {—1,1}
formulations and lists some important properties of the odd-cycle inequalities. Next, in §3,
we explain the basic steps of the spectral bundle method with bounds and prove primal con-
vergence of the iterates. This part relies heavily on [18] which should be at hand. Based
on these convergence properties we develop a conceptual cutting plane algorithm with con-
vergence guarantee in §4. For efficiency reasons we employ a slightly different approach in
practice. The implementational choices are described in §5. Finally, we present preliminary
computational results §6.

Our notation is quite standard. The set of symmetric matrices of order n will be denoted



by Sp. A =0, A € S, refers to positive semidefinite matrices, A = 0 is used for positive
definiteness. The trace tr A is the sum of the diagonal elements; diag(A) denotes the vector
of diagonal elements. For A,B € S,, or A, B € R™*" we employ the inner product (4, B) =
tr BT A. When minimizing some function f(y), argmin f is refers to a unique minimizer of f
and Argmin f to the set of minimizers. An (undirected) graph G = (V, E) consists of a finite
set of nodes V' C N and a set of edges E C {{i,7} : 4 < j, i,7 € V}. We only consider graphs
without loops or multiple edges. For an edge {7, j} we will also write ij, because we typically
associate edges with matrix elements a;;. A set of edges C' C F is called a cycle (of length k), if
C = {viv9,v9v3, ... ,vxv1 } for pairwise distinct v; € V, 4 =1,..., k. For a matrix A € S, the
support graph refers to G = (V,E) with V = {1,...,n} and E = {ij : i < j,a;; #0,i,j € V}.

2 SDP-Relaxations for quadratic 0-1 and {—1, 1} programming

We first review the process by which the semidefinite Lovédsz-Schrijver relaxation for con-
strained quadratic 0-1 programming [27] can be transformed into an equivalent semidefinite
relaxation for quadratic {—1,1} programming (we refer to the latter as the max-cut setting).
For a cost matrix C € S, constraints matrices A; € S, for i € M := {1,...,m}, and right
hand side b a semidefinite program arising from a Lovasz-Schrijver relaxation over n — 1 0-1
variables may read

max <cj,17_>
(SQP) s.t. (_AZ,Y + 5 =0b diag?;f)ZTE M
> > 0.
Y= [dlag Y ]—O’S—O
By employing the scaling
_ N1y Nn-T . . 1 0 -1 _ 1 0
X=0QYQ with Q_[%e %In:| and @ _[—e 21”]

and by transforming the coefficient matrices according to the identity (4,Y) = (QAQT, X),
C :=QCQ7, A= QA;,QT forie M, (1)

we obtain an equivalent semidefinite relaxation within the max-cut setting [25, 15] (e denotes
the vector of all ones)

max (C,X)
s.t. <A1,X>+Si=bi fori e M
(SMC) diag(X) =e
X >0,s>0.

Indeed, if the equality constraints describing the structure of Y are chosen appropriately, then
(SQP) and (SMC) share the same slack and dual variables. Furthermore, the transformation
(1) preserves sparsity and low rank structure of the constraints [15]. Thus, we may switch
between both formulations without loss, in theory and in practice.

Likewise, the boolean quadric polytope and the max-cut polytope are isomorphic; this
has already been proven in [8]. Both polytopes have been studied extensively (see [29] for the
boolean quadric polytope and [9] for the max-cut polytope).



Our goal is to devise a cutting plane approach for generically improving semidefinite
relaxations of type (SMC) or (SQP) by exploiting polyhedral knowledge about the underlying
polytopes. Within our computational framework, the semidefinite relaxation of max-cut
(SMC) offers significant advantages over (SQP) and therefore we will concentrate on the
max-cut setting. In particular, we are interested in cutting planes that are suitable for large
sparse cost matrices C.

Numerous classes of facet defining inequalities of the cut polytope appear in the literature,
but for most of them no efficient separation algorithm or heuristic is available. In the case
of large unstructured support graphs G = (V, E), the only class that has proven to be of
practical value is, so far, the class of odd-cycle inequalities. Formulated within the {—1,1}
setting of (SMC) they read

Z Tij — Z zi; < |C| =2 for C C E a cycle, F C C,|F| odd. (2)
ijeC\F ijEF

Odd-cycle inequalities can be separated in polynomial time [5] by solving shortest path prob-
lems in an auxiliary graph with twice the number of nodes and four times the number of
edges. They provide a complete description of the cut polytope for graphs not contractible
to K5 (the complete graph on 5 nodes) [33, 2].

In a pure polyhedral setting, enlarging the number of cycles in a graph (and therefore the
number of separable odd-cycle inequalities) by adding edges with weight 0 does not improve
the relaxation [3]. This is not true in combination with the semidefinite relaxation (SMC) as
has been observed on many examples.

3 Primal convergence of the spectral bundle method

We first introduce some basic objects and concepts that we will need throughout the next
two sections. For a > 0 let
W={X>0:(,X)=a} (3)

denote the set of positive semidefinite matrices of order n with constant trace a. Consider
the semidefinite program

max (C,X)
(PSDP) st. AX+s=b
XeW,s>0

with variables X € S,, s € R, cost matrix C € Sy, right hand side vector b € R™ and a
constraint matrix (or linear map) A : S,, — R™. This covers all forms of linear programs over
symmetric cones with bounded feasible sets. For theoretical purposes, equality constraints
would do, but this formulation is closer to practical requirements.

Introducing Lagrange multipliers y € R™ and dualizing we arrive at a dual problem

min {f(y) = sup (C,X)—I—(b—s—.AX,y)}. (4)

yerR™ (X,8)EWXRT

This problem is tightly related to the standard dual semidefinite program of (PSDP). By
making use of (3), it can be verified that strong duality holds for (4) and (PSDP) (v. [19]).



The function f is the supremum over the family of linear functions
fwa(y) =(CW)+(b—n—AW,y)  (W,n) € WxRT (5)

and therefore convex. Denoting by A” the adjoint of A (by definition it satisfies (AX,y) =
(X, ATy) for all (X,y) € S, x R™) we may express f as a sum of two well known supremums,

fy)=(b,y)+ sup (C — ATy, W)+ sup (—n,y)
wew nERTY (6)

= <ba y) + a)\maX(C - -ATy) + R (y)

The first supremum is a “max” and is related to the maximum eigenvalue function Apax(+)
by the fact that Amax(A) = max{(4,X) : X = 0,(I,X) = 1} (see, e.g., [26]). The second
supremum yields the indicator function 2y for ¥ := R (1y(y) = 0 for y € Y and oo
otherwise). Thus, the effective domain of f is Y. For a feasible § € Y, the function value
and a subgradient may be determined by computing Amay(C — A%g) and a corresponding
eigenvector v. With Ws := avv? a subgradient of f in 4 is, e.g., Vw0 =b— AW;. By (4),
the subdifferential of f at y € Y is

af(g) = {VfW,n : fW,W(g) = f(g)a (Wﬂl) €W X Y}

In order to solve (4) we employ the spectral bundle method with bounds [18] whose main
steps we summarize next. Using subgradient information it forms a model f minorizing f and
determines a new candidate y* as the minimizer of the augmented model f+ L]|- -9, where
7 is the center of stability and the weight u > 0 provides indirect control on the distance of
yT to §. At this candidate, f is evaluated and a subgradient is computed. If progress is good
in comparison to the progress predicted by the model, the algorithm moves its center to the
new candidate (a descent step, § is set to y™). Otherwise the center is left unchanged (a null
step) but the subgradient is used to improve the model.

The model f is formed as follows. For arbitrary subsets w C W and Y CY define

fw,f,(y) = sup  fwpy(y) < f(y) for all y € R™. (7)
(Wm)ewxy
For example, fyyy = f and fyyo(y) = f(y) for ally € Y. Instead of f{W} 7 or fim (ny We will

also write f},, & and an' In our algorithm we choose Y =Y and

W:{PVPT+(1W:(I,V)—{—aa:a,VES,Z",aZO} (8)

for a given bundle P € R**", PTP = I,, and aggregate matric W € W. The matrices P and
W will be updated at the end of each iteration.

Given a center of stability § and a weight u, the candidate is now determined by computing
argmin f5; . + 2| - —g||*. Using standard saddle-point arguments from convex analysis [32]
one can show that

. u N2 . u ~112 9
Jmin oy @) +5lly —9l" = W Fwa(y) + 5 lly =9l (9)
and that solving the right hand side yields the left hand side minimizer, as well. The minimizer
of the right hand side inner minimization is (use (5))

S

.1 .
me:y_Evam:y_ (b—n—AW). (10)
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Substituting this into the right hand side of (9) and using the definition (5) of f,, we obtain
the dual function to the augmented model,

YW,0) = (O, W) + (b= — AW, 5) = o [[b— 5 — AW, (1)

The exact maximizing pair of ¥ would yield the exact candidate via (10). For efficiency
reasons, however, we prefer to compute a rough approximation by a coordinate-wise approach
in Gauss-Seidel fashion. In particular, we first fix an 7 and compute a

W € Argmax {w(VV, n):W e )7\7\} (12)
by solving, by means of an interior point algorithm, the quadratic semidefinite subproblem

max (C,W) + (b— 14— AW, ) — 2 |b— 7 — AW
st. W=PVPT +oW

trV +aa=a

V=0a>0.

(13)

(Observe, that in solving (13) we need only AW and (C,W) and not W itself.) Then we
determine the next n™ as the maximizer for this fixed W,

nt = argmax {(W*,n) : n € Y} = max{0, —uj + b — AW} (14)

The corresponding approximate candidate is feasible (i.e., in the effective domain Y of f)
and satisfies complementarity,

1
y+ = yW+,W+ = ma,X{y - E(b - AW+), O}, <77+7 y+> = O (15)

Even though we allow for several repetitions of these “coordinate-wise” steps in Algorithm 3.1
(we call those inner iterations), it is shown in [18] that one inner iteration suffices to ensure
convergence.

As pointed out in the text following (6), evaluating f(y™) can be done by computing the
maximum eigenvalue Apay(C — ATy™). To exploit available structure in the matrix C' — ATy ™
it is advantageous to employ iterative methods like the Lanczos method (see, e.g., [14])
that rely on matrix vector multiplications only. These methods produce successively better
lower estimates and approximate eigenvectors of Apax(C — ATy+). As soon as this lower
estimate indicates a null step, the Wg = avv” corresponding to the approximate eigenvector
v guarantees sufficient improvement of the model for convergence [18]. This is the rational
for combining descent test and evaluation in step 2 of Algorithm 3.1 below. .

In order to guarantee progress of the algorithm after a null step, the new model W has
to contain W and Wg. The minimal choice is PT = v and W' = WT. A better strategy,
that successively adapts the subspace spanned by the columns of P, is described in [18].

Algorithm 3.1 (spectral bundle method with bounds) /18]
Input: y° € R, gopy > 0, kim € (0,00, & € (0,1), & € [k,1), a weight u > 0.

Step 0 (Initialization). Set k =0, §° = 4°, n° = 0, f(9°) and Wo.



Step 1 (Trial point finding). Set § = 7%, W = Wk, 7 = nk.
a) Find Wt ¢ Argmax,,, 59(W, 1) (v. (11)) and set y+% = yw+ (v. (10)).

(
(b) Set n* = argmax,~o»(W+,n) (v. (14)) and y* = yy+,+ (feasible by (15)).

)
)
(c) (Stopping criterion) If f() — fy+,+(y") < €opi(|f(§)| + 1), then STOP.

)

(d) If £55,0(™) = fw+ (WF) > 6mlf (9) — fw+p+ (yT)]; then set ) = 0™ and go to (a).
(e) Set y*t! =yt Whtl = Wt and nft! =¢*.

Step 2 (Descent test). Find Wg“ € W such that either
(@) f(@*) = fyyrrr o(0" ) S RIFGF) = fwnss s (b* )], or

(b) fW§+1’0(yk+1) = f(yk+1) and f(,gk) _ f(ylH'l) > K[f(@k) _ fWk+1,77k+1 (yk+1)].

Ak+1

e+l = g% (null step), otherwise set 4

In case (a), set g = yk*1 (descent step).

Step 3 (Model updating). Choose a closed convex WhtL 5 {Wk“, Wg“}, e.g., as in (8).

Step 4. Increase k by 1 and go to Step 2.

The following theorem is proven in [18].

Theorem 3.2 FEither §* — §j € Argmin f, or Argmin f = () and ||§*|| — oo. In both cases
f(@*) L inf f.

A close inspection of the proof yields an important observation.

Lemma 3.3 If Argmin f # 0 and Algorithm 3.1 does not stop, it generates a subsequence
K C N satisfying V fyx nr 250 and Twk i (%) N f(y) with y € Argmin f.

Proof. First consider the case of a finite number of descent steps. Then an infinite number of
inner iterations or null steps occurs starting with some iteration k. Let the final stability center
be j = §*. Then it is shown in [18, Lemma 3.2c)]! and [18, Lemma 3.4] that fyx « (y*) — f(9)
and ¥ — ¢ € Argmin f. By y* = Ywr e (v- (15)) and (10) we conclude that V fyk » =
b—nkf — AWE = u(j — y*) = 0.

In the case of an infinite number of descent steps, assumption Argmin f # () ensures
condition [18, (3.17)] to hold. Then the last paragraph of the proof of [18, Lemma 3.5]
establishes that the subsequence K := {k : 9¥ = 4*} of candidates yielding descent steps
satisfies the desired properties. |

This motivates the following lemma.

Lemma 3.4 Let K C N be a subsequence of iterates satisfying V fy X5 0 and

mk
fwk,nk(yk) X, f(§) with § € Argmin f. Then all cluster points of (W*,n*)rcx are opti-
mal solutions of (PSDP).

!Strictly speaking, the fact that [18, Lemma 3.2c)] holds for inexact evaluation in Step 2 requires a slightly
different proof, see [15]. Alternatively, one may avoid additional inner iterations by setting Ky = co.



Proof. By construction, Wk e Wk_l CWiorall £k > 1 and W is compact. Theorem 3.2
and Argmin f # () imply that the §* remain bounded. Therefore the vectors —ug* + b —
AW* remain bounded. By (14) and (15) the same is true for the * and the y* for all k.
Furthermore, the n* are nonnegative by (14). ~ Compactness ensures that there is at least
one cluster point for (W*, 1) cx. Now let (W,7) be such a cluster point and K C K a
corresponding subsequence with (W, n*) X, (W,n). Then W € W, i > 0, and (v. (5))
Viwkge = b— n* — AWk gy - 7 — AW = 0. Thus, (W,7) is feasible for (PSDP).

Furthermore, fy (y*) = (C,WF) + (b—n* — AWF, %) N (C,W) = f(7). Since f(7) is
an upper bound on the objective value of (PSDP) this implies optimality. [ |

Before stating the main theorem of this section we need one more result.

Lemma 3.5 If Algorithm 3.1 terminates for eopy = 0 then the terminating (W™*,nT) is an
optimal solution of (PSDP).

Proof. If the algorithm terminates, then f(4) = fy+ ,+(y") and [18, (2.22)] yields § = y™.

So by (15) and (10) we conclude b — n* — AW ™ = 0. Together with W+ € wecw (12),
nt >0 (14), and f(9) = fw+,+(@) = (C,W) (v. (5)) we obtain feasibility and optimality
of (WT,nt) for (PSDP). [ |

Theorem 3.6 Assume Argminf # 0 and let eopy = 0. If Algorithm 3.1 terminates then the
terminating (W, n") is an optimal solution of (PSDP). If the algorithm does not terminate

there is a subsequence K C N so that all cluster points of (W* n¥)rek are optimal solutions
of (PSDP).

Proof. If the algorithm terminates, then Lemma 3.5 applies. Otherwise the result follows
from the previous two lemmas 3.3 and 3.4. |

4 Extension to a cutting plane algorithm

In this section we extend Algorithm 3.1 to a cutting plane algorithm for optimizing over
the intersection of W with a polyhedron {X : AX < b} that is given by a special type of
separation oracle. Note, that within our setting there is no hope for polynomiality; our aim is
to establish convergence. Encouraged by Theorem 3.6 we would like to separate with respect
to WT. Unfortunately, W is never feasible unless it is optimal. Thus, one is faced with
the problem that a separation oracle may return the same cut over and over again without
disclosing any further information. In order to avoid this, we require the oracle to return
a maximally violated inequality out of a finite set of inequalities describing the polyhedron
(many actual separation routines satisfy this requirement).

Definition 4.1 A separation oracle for a polyhedron P = {z : Ax < b} with A € R™*" and
b € R™ is called a maximum violation oracle with respect to Az < b if, for a given point
z € R", it either asserts that T € P or returns an inequality A;.x < by with by — A;.Z <
mine (. my bi — Ai,. @ <0 (A, refers to the ith row of matriz A).

In the following we assume that the polyhedron is given by a maximum violation oracle
with respect to AX < b. A call to this oracle for a given point W will be denoted by



O(W™). For convenience we will refer to the inequality returned by the oracle by its index
in M ={1,...,m}.

At any point in time, the algorithm will work with a subset of the constraints of AX < b.
We will call this the active index set J C M and denote the corresponding subsystem by
A;X < bj. In particular, the feasible set corresponding to J is

Pr={XeW: A;X < by} (16)
and the corresponding optimization problem reads
(PSDPy) max (C, X) s.t. X € Py. (17)

In the analysis of the algorithm we need to investigate the convergence of the slack variables
1 and dual variables y; so in choosing our notation we must take care that modifications of J
do not affect their dimension. Therefore we regard them as elements of R™ with y; =n; =0
for j ¢ J. In particular, we willuse R} = {y e R : y; =0Vj € M\ J}and Y; = {y € R} :
y > 0}. We define []; : R™ — R} to extract the support on J, i.e., for y € R™ the vector
g = [yl is defined by g; = y; for j € J and g; = 0 for j € M \ J. Modifications of J also
affect all formulas and functions involving 4 and b of the previous section. We will indicate
this by a superscript J,

fim) = (CW)+(b—n—AWlpy)  (Win) €W xRY (18)
FpeW) = sup fiy,() WCW,Y;CY; (19)
(Wn)eWxY;
o = fvy,w) (20)
Wiy = G- Vg =i—b-n— AWl (G€Y)) ()
YW0) = (CW)+{b—n— AW]g,9) — 5 llb— 5 — AW (22)
nt = argmax {¢/(W*,n):n€Ys} =max{0,[~uj +b—- AWT];}  (23)
U=yl =max(li - - AWDL0L (Rt =00 (20

Now consider the following modification of Algorithm 3.1.

Algorithm 4.2
Input: J° C M, y° € Yo, eopt > 0, s € (0,00], & € (0,1), K € [k,1), a weight u > 0.

Step 0 (Initialization). Set k = 0, §° = ¢, n° = 0, J° = J°, f7°(§°) and WV.

Step 1 (Trial point finding). Set § = 9*, W= )7\/\’“, i = nk, J = Jk.
(a) Find Wt € ArgmaxWEWd)j(W,ﬁ) (v. (22)) and set y+% = y%,Jr,ﬁ (v. (21)).
(b) Call O(W). If it returns inequality j ¢ J, set J© = JU{j}, J = J* and go to (a).
(c) Set nt = argmax, ¢j(W+,n) (v. (23)) and y* = y{wﬂﬁ (feasible by (24)).

(e) (Stopping criterion) If fj(gj) - f{,];+,,7+ (y) < 6opt(|fj(17)| + 1), then STOP.

9



(f) It f{,]f\;o(y+) - ff;]V+’77+ (*) > rmlf’(9) - fﬁ]V+,n+ (y*)], then set j = 7™ and go to (a).

(g) Set yb+l =yt WhtL = W+ phtl =t and JEH = J.

Step 2 (Descent test). Find W’H'1 € W such that either
(a) £/ (@) - fj[,sz:l (W) <RI @F) = i e (8], o

(b) iy () = £ (*+) and

PR — PP ) 2wl () - Foveen g (FH)].

In case (a), set §Ft! = gk, JE+1 = JF+1 (null step),
otherwise set §ft1 = yk"'l, JhHL = {j € J¥*1 :n; = 0} (descent step).

Step 3 (Model updating). Choose a closed convex Wt 5 {Wk“, Wg“}.

Step 4. Increase k by 1 and go to Step 2.

Remarks 4.3 (i) In each execution of Step 1, the active index set J is enlarged in substep
(b) at most |M| times, so there is no danger that an infinite loop is caused by Step 1b). In
addition, if execution passes on to Step 1c¢) then the maximum violation oracle ensures

min_b; — A;WT > minb; — A;WT. (25)
JEM\T jeJ

(ii) Throughout the inner loop in Step 1 the active index set J satisfies J* - J C Jk+l,
Since §* € Y5 C Y57 C Yjeia with g);“ =0 for all j € JF+1\ J* we obtain

@ = ) = £ @) (26)

and y* € Y; (v. (24) with J = J).
(iii) The reduction of J*¥*! in the descent step 2b) amounts to deleting all constraints
j € JH1 with nk+1 > 0 (the inactive constraints with positive slack). By complementarity

(15), the corresponding coordinates of y**! are zero, yf“ =0forj € Jh+1 \ JE*1. Therefore,
g+l = yk+1 € JE+L and by (20) and (18)

Th+1 , . k+1 ’7c+1 Jkt1
fJ (yk+1):fJ (yk+1) and fWk+1 k+1(yk+1) fWk+1 k+1(yk+1)- (27)

(iv) Updating and solving the model (v. (8) and (22)) after increasing J in step 1b) is not
an issue as long as the information stored about W allows to compute <AJ, W> for all j € J.
If this is not possible, the information of the aggregate is lost for the model and W or AW

has to be rebuilt from scratch in the following iterations. This, however, is no obstacle for
convergence.

For the proof of convergence we assume e, = 0 for the rest of this section. Some steps of
the proof rely directly on [18].

Lemma 4.4 If Algorithm 4.2 stops for some finite k, then gj’_“ € Argmin fM and W7 is an
optimal solution of (PSDPyy).
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Proof. If Algorithm 4.2 stops, then Lemma 3.5 and its proof apply for fj ,s0 Wt is a
(feasible) optimal solution of (PSDP 7) and

(W) = £7(§F) = min 1. (28)

Because the last call to the oracle in Step 1b) for this W™ did not yield new violated in-
equalities, we conclude from (25) that W is feasible for Py, of (16). By (28), (C, W) =
min,, f T = = mingey, fM > min, fM > (C, W) where the last inequality follows from the
feasibility of W+ for Prr and the strong duality theorem for semidefinite programming. MW

We may now concentrate on the case that the algorithm does not stop.

Lemma 4.5 Suppose that at iteration k an infinite loop occurs in Step 1 of Algorithm 4.2.
Then §* € Argmin fM and all cluster points of the W+ are optimal solutions of (PSDPyy).

Proof. In an infinite loop in Step 1, the active index set J must reach its maximal size in step
lc) after finitely many subiterations. From then on [18, Lemma 3.2 c)] applies for f T yielding

k ¢ Argmin f7. J By Theorem 3.6 all cluster points of W converge to optimal solutions of
(PSDP 7). Let W be such a cluster point (existence follows from the compactness of W).
Then, for arbitrary ¢ > 0 there is a W satisfying |[W* — W|| < e and b; — A;WT > —¢ for
all j € J. Therefore, by (25) bj — A;jWT > —¢ for all j € M; so W is feasible for Pys of (16).
Optimality of W for (PSDPjs) may now be shown as in the proof of Lemma 4.4. |

Lemma 4.6 Suppose that after iteration k Algorithm 4.2 produces an infinite number of
null steps. Then §* € Argmin fM and all cluster points of the W* are optimal solutions of
(PSDPyy).

Proof. Arguing as in the proof of Lemma 4.5, the maximal J* must be reached for some

k > k. From then on [18, Lemma 3.4] applies for f 7* and the proof is completed as for Lemma
4.5. |

The proof for an infinite sequence of descent steps would be equally direct if we would not allow
for the deletion of inequalities. The removal of inactive inequalities, however, is indispensable
in practical applications. Unfortunately, the proof of [18, Lemma 3.5] breaks down in this
setting, because the linear model fi/]V,n is not necessarily a minorant of fM for a proper subset
J C M. To guarantee the boundedness of the §* our proof needs the additional assumption
that fM is 0-coercive, i.e., f(y) — oo whenever ||y|| — oo. This is, e.g., the case if there
exists a strictly feasible X for (PSDPyy), i.e., an X > 0 satisfying X € W and AX < b.

Lemma 4.7 If fM is 0-coercive, then the §* remain bounded and all cluster points are in
Argmin fM. Furthermore, if the set D := {k : gt = yk+1} of descent iterations s infinite,
all cluster points of the Wkt for k € D are optimal solutions of (PSDPyy).

Proof. By Lemma 4.6 we may concentrate on the case of an infinite number of descent
iterations D := {k : 9¥*! = ¢**1}. Each iteration k¥ € D satisfies the descent step criterion
of Step 2a) and therefore, by (26) and (27),

0< F7 @) — St s 0 < 1T ) — £ ) (29)
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Using the assumption that f™ is O-coercive (as are then all f/ with J C M), there exists a

minimizer § € Argmin f and the §* remain bounded, because the f T* (¢*) are monotonically
decreasing (v. (29)). Furthermore,

Z [fﬂ (%) - ff/j;l:lmk+1(@k+l)] < % Z [fjk (%) — fﬁ“(:glﬂ—l)]

keD keD (30)

and (29) imply

Tk, . Jet+1 N D
i (yk) fwk+1 k+1(yk+1) — 0. (31)
For k € D, the gradient of f{,];,:l e+t IAY be expressed by (21) (use ¢**! = y%f,jil n’“+1) as
k+1 ~ ~
Vi e = u(@ — ). (32)

This and £ty o (%) < £ (5%) = 17 (%) (use (20) and (26)) yields

Tk, . JeH1 JkH1 . R Je+1 R
fJ (f‘/k) fWk+1 k+1(yk+1) <Vfwk+1 k+1y Y —yk+1> fwk+1 k+1(y )+“||ka+1 k||23
so by (27)
N 7k o 7k N
ull g — 12 < £GP = fipie e GFT (33)
Combining (31)-(33) we obtain (v. (18))

Vfipee e = [b =1 — AWETY ey 25 0. (34)
Now let W be a cluster point of the W**! for k € D (existence follows from the compactness
of W). Then there is a subsequence K C D with Wkl 2 W and (34) and (25) ensure
the feasibility of W for Pp; of (16). Furthermore the boundedness of the §*, (31), and

Jk ~ Jk ~ K = . Tk A .

Fibs e @) = (C WY 4 (R e, 871) 25 (0 W) = infy £7°(5%) > inf £V
implies that W is an optimal solution of (PSDP,;) and that all cluster points  of the §*
satisfy 7 € Argmin fM. |

We may now state our main result.

Theorem 4.8 Let Py of (16) have a strictly feasible point. Then Algorithm 4.2 solves
(PSDPyy).

Proof. In the case of finitely many descent steps the proof follows from lemmas 4.4, 4.5, and
4.6. For infinitely many descent steps, the strict feasibility of Ps implies the 0-coercivity of
fM and so Lemma, 4.7 completes the proof. |

Remark 4.9 The strictly feasible pomt assumption could be dropped if the §* remain bounded

whenever there is a § € Y with fJ (#*) > fM(@) for all k (this assumption corresponds to
[18, (3.16)]). We do not know whether this is true. Primal feasibility alone is not sufficient

1
for boundedness, as can be seen from the well known erample max x19 s.t. [ - 3:62 ] = 0.
12
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5 Implementation

Algorithm 4.2 is convenient for theoretical investigations but has significant drawbacks in
practice. The oracle has to be called for each subproblem solution, which is often compu-
tationally too expensive; the number of inequalities may grow enormously before the next
descent step occurs; finally, the frequent changes in the model may slow down convergence.

Our implementation is tuned for semidefinite relaxations of quadratic {—1,1} program-
ming problems in the style of (SMC); we separate odd-cycle inequalities (2) exclusively. The
code employs the C++ class library SBmethod [17] which implements Algorithm 3.1. We
delete and add inequalities only after descent steps of Algorithm 3.1. In particular, the rou-
tines for deletion and separation are called, in this sequence, whenever the first ten descent
steps have been completed and the condition f(§¥) — fypr+1 grs (yF 1) < 5-1072(|F(9%)| + 1)
holds (here and in the following f refers to the relaxation currently in use). The code stops,
when the stopping criterion of 1c) of Algorithm 3.1 is satisfied for the current relaxation with
Eopt = 10~° or when a given timelimit is reached.

The deletion routine runs as follows. Let m denote the number of constraints before
deletion. We first determine the set D C {1,...,m} of cutting planes whose slack values 7;
satisfy n; > 107°. Then we delete the |D| — max{|D|/4,7m/100} constraints of D with largest
slack. By this rather cautious strategy we hope to keep constraints that flip between being
active and inactive; we do not bother about deleting inactive inequalities if their number is
small in comparison to m.

In the separation routine we will separate with respect to W, which in the following
refers to the W**1 that gave rise to the descent step preceding separation. Although W™ has
in theory the representation W+ = PVt PT 4 otW (v. (13)), SBmethod does not store W by
default but only AW and (C,W). However, SBmethod supports updating W in dense form
or on sparse support. Separating with respect to a given support of W™ requires updating
W on this support in each execution of Step 3 of Algorithm 3.1. For large support this may
cause significant increase in computation time and memory consumption. In particular, for
large n, say n > 1000, updating W in dense form is computationally too expensive. Therefore
we concentrate on the sparse case.

For the separation routine we assume that X = W is a sparse matrix being given by a
weighted undirected graph G = (V, E) with node set V' = {1,...,n}, edge set E C {ij : i <
J» 1,7 € V} and edge weights z;; for ij € E.

The separation routine for odd-cycle inequalities (2) employs the exact separation routine
of [5] that uses shortest path computation in a graph having twice the number of nodes and
four times the number of edges. In order to speed up this computation we make use of the well
known trick to start the shortest path tree from both endpoints. In fact, due to symmetries
in the graph both shortest path trees are identical and only one has to be computed. We first
fix a random order of the nodes and then compute the shortest path for each node in this
order. If a node is already covered by a newly separated violated odd-cycle inequality it is
ignored in all subsequent shortest path computations of this call. For each starting node the
shortest path computation is stopped if an odd-cycle inequality is found that is violated by
at least 1076 or if there is no such inequality containing this node.

The separation routine expects —1 < z;; < 1. This would be guaranteed if W satisfies
diag(W*) = e and W™ = 0. Unfortunately, only the latter is guaranteed by Algorithm 3.1;
the deviation ||e — diag(W™)|| may still be quite considerable. We enforce the box constraints
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by three different approaches,
Tij = w;;/max{wit i eVY, Ty = w;;/‘/w;w;-'j, £ij = max{—l,min{w%, 1}} forij € E.

and call the separation routine for all three, X, X, and X. We then normalize each new
inequalities (A4, X) < b to ||A|| = 1 (A is a sparse symmetric matrix with Frobenius norm
one). We add those that are not yet contained in the current description and are violated by
at least 1075 with respect to the original W .

It remains to specify the set E. SBmethod offers several types of coefficient matrices, one of
them is SYMMETRIC_SPARSE. The cost matrix C is expected to be of this type. In the standard
setting F is set to contain the union of the support of the cost matrix and all other constraint
matrices of type SYMMETRIC_SPARSE. Since newly separated inequalities have their support
within £, this choice makes sure that the cost of one matrix vector multiplication within the
eigenvalue computation does not increase. Furthermore, because W is available on E, the
inner product <A,W> can be computed for all new inequalities (4;,-) X < b;. Consequently

AW is still available after the insertion of new constraints and there is no loss in the quality
of the model. As starting values for the new y; variables we choose y; = 0 and, like in (26),
the algorithm can continue without the need of recomputing any function values.

We will also consider a second setting where we modify E in the course of the algorithm.
If W is updated on E then W+ = PVt PT 4 ot W is not available in full; but if ot is small,
then le =~ [PV+PT]Z~]- for i ¢ E. These approximations may be used in the search for
edges that may be worth to add to £F. Employing the separation procedure on the complete
graph by including all approximations is computationally too expensive. As usual, one has
to resort to heuristics. After experimenting with a few we have settled, for the time being,
for the following routine which we call directly after the first separation step and then after
each tenth separation step.

Start by setting F to the union of the support of all SYMMETRIC_SPARSE cost and constraint
matrices currently contained in the description. For each node 7 € V (in increasing order)
we compute a shortest path tree on G = (V, E) with respect to edge weights z;; = 1 —
|wi§ w;w;;| Each edge 7j ¢ E induces a cycle C; with respect to this shortest path
tree. For each such cycle C; we find, with respect to the weight z7; = [PV"'PT]@-, the
“best” odd set F C C; (v. (2)) and add the edge 7j to E that gives rise to the “most
violated” odd cycle (even if the inequality is not violated). We also add the edge 7j with
j € argmin{[PVTP1];; : 7j ¢ E} to E and continue with the next node. The idea is to
add exactly two edges per node, one of them offering good possibilities for separation, the
other providing support for difficult decisions. Edges that did not give rise to new violated
inequalities in the following ten separation steps will be removed in reinitializing F in the
next call to this routine. After adding edges to F, the old W must be reinitialized and rebuilt
from scratch. This leads to a slight loss in the quality of the model but does not affect the
warm start otherwise.

6 Computational Results
In order to illustrate the numerical behavior of the cutting plane approach we present prelim-

inary results for a few max-cut instances on toroidal grid graphs and some bisection-instances
of sparse KKT system matrices provided by Boeing. The experiments seem to indicate that
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the proposed cutting plane approach works well. Another independent issue of interest is the
quality of the relaxations. To our astonishment, the results are rather discouraging for the
pure max-cut examples, but appear to be quite promising for our bisection instances.

The numerical results were computed on a Linux-PC with two Intel Pentium III 800 MHz
processors (256 KB Cache) and 1 GB of memory, but the code makes use of one processor only.
CPU-time refers to the user time returned by the UNIX-routine getrusage (); measurement
is started after completion of the input. We usually needed to run more than one process on
the machine, which probably caused time measurement to be unreliable. Indeed, we observed
significant deviations (up to 20% and more) for identical runs. Our computation times may
therefore only serve as a rough guideline.

The performance of SBmethod strongly depends on numerous parameters (see the manual
[17]). In order to make the runs more comparable for the different cutting plane settings, we
have fixed these as far as possible to the same constant values for all instances. In particular
we use a constant weight u = 1, parameters k = 0.1, & = 0.1, Ky = 0.6, gopt = 10~°, we set
the maximum number of columns to keep in the bundle P (v. (8)) to nx = 15, the maximum
number of columns to add to P to n4 = 5, and set a time limit of twenty hours.

The tables contain the following columns. Problem gives the name of the problem; n is the
order of the matrix (the number of {—1,1} variables in the quadratic {—1,1} program); m
gives the number of constraints at termination, nz displays the maximum number of elements
in which W is updated during the run (| E| of §5 plus diagonal elements); in feas. we report
the best lower bound that we know of? or that we could generate by Goemans-Williamson
rounding based on PV, PT combined with simple exchange heuristics; fierm is the value of
the upper bound at termination; time lists the CPU-time in hh:mm:ss; k is the value of the
iteration counter of Algorithm 3.1 at termination, inner gives the number of executions of
Step 1a) of Algorithm 3.1 (= k + 1+ inner iterations); desc. displays the number of descent
steps.

6.1 Max-cut on toroidal grid graphs

Large scale and sparse max-cut instances in pure form do not seem to appear frequently
in practice. The only application we are aware of is in the computation of ground states
for Ising spin glasses, see [23] and references therein. Experimentally it was observed that
on instances over toroidal grid graphs the relaxation by odd-cycle inequalities yields bounds
of very good quality. Linear programming approaches proved very successful on this class
of problems [23, 28]. We present results for four instances of three dimensional toroidal grid
graphs. Instances toruspm3-8-50 and toruspm3-8-50 have edge weights chosen uniformly form
{—1,1}, whereas the edge weights for torusg3-8-50 and torusg3-8-50 are taken according to
the Gaussian normal distribution around zero. They are part of the the 7 DIMACS challenge
test set and turned out to be rather difficult to solve by the linear programming techniques.

Let A be the weighted adjacency matrix of the respective graph, then we set C' = i(LTZ%I —
A) and use the elliptope (v. [9]) as initial semidefinite relaxation,

max (C, X) s.t. diag(X) =e, X = 0. (35)

In Table 1 we first give the results for (35), then for separating odd-cycle inequalities with

2The values for toruspm8-8-50, torusg3-8, and torusg3-15 were reported by Frauke Liers, personal commu-
nication, and 416.84814 was reported optimal for torusg3-8.
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Table 1: Max-cut on toroidal grid graphs

Problem n m nz feas. fterm time k  inner desc.
elliptope without cuts
toruspm3-8-50 512 512 0 456 527.8127 14 139 140 30
toruspm3-15-50 3375 3375 0 2944 3475.151 31:38 855 856 38
torusg3-8 512 512 0 416.84814 457.3618 19 201 202 39
torusg3-15 3375 3375 0 2841.96 3134.591 38:55 992 993 46
elliptope with odd-cycles on support

toruspm3-8-50 512 2790 2048 456 464.7413 20:00:01 73645 73675 67
toruspm3-15-50 3375 13822 13500 2944 3071.477 20:00:34 15932 15933 47
torusg3-8 512 2877 2048 416.84814 417.6862 20:00:01 50839 50870 64

torusg3-15 3375 13218 13500 2841.96 2879.676 20:00:36 15547 15549 46
elliptope with odd-cycles on extended support

toruspm3-8-50 512 3342 3910 456 464.8202 20:00:01 50303 51754 61
toruspm3-15-50 3375 15205 22323 2944 3073.534 20:01:00 16594 16866 44
torusg3-8 512 4113 4593 416.84814 417.7017 20:00:01 46787 48894 71

torusg3-15 3375 14496 22559 2841.96 2882.073 20:00:47 15057 15279 46

respect to the support of C as described in §5 and, finally, the results when including the
heuristic for enlarging the support on every tenth call to the separation procedure (v. §5).

The improvement of the bound when including separation is considerable, but computa-
tion time reaches the limit of 20 hours in all cases. Listing the final values provides little
insight into the development of the bound over time, therefore we also present plots in Table
2 that show this development with respect to a logarithmic time scale. It turns out, that
the cutting plane approaches improve the bound considerably even before the bound on the
elliptope converges. This shows that the warm start technique is very efficient. Enlarging the
support does not seem to help at all for these instances, yet performance does not deteriorate
much when employing it.

Even though the cutting plane approach is very successful in improving the basic semidefi-
nite relaxation of these instances, the results are surprisingly poor in comparison to the linear
programming bound that is based on separating only odd-cycles inequalities. Indeed, the val-
ues obtained by optimizing over the odd-cycle polytope alone are 464.7035 for toruspm3-8-50,
<3063.757 for toruspmd3-15-50, 417.6645 for torusg3-8, and <2873.773 for torusg3-15. What
is more, the linear programming approach needs considerable less computation time. The-
oretically, the bounds obtained by optimizing over the odd-cycle polytope cannot be better
than the bounds obtained by intersecting the odd-cycle polytope with the elliptope. There-
fore we have to blame this effect on the poor final convergence rate of the spectral bundle
method. The experiments suggest that for toroidal grid graphs the improvement obtained
by intersecting with the elliptope is only marginal (for smaller instances we have observed at
least some improvement). This is astonishing in view of the strong theoretical results on the
quality of the semidefinite bound [13, 10].

6.2 Graph bisection

The bisection instances were communicated to us by Sharon Filipowski from Boeing and
stem from nested bisection approaches for solving sparse symmetric linear systems; standard
bisection heuristics seem not to work well on these instances but no method was available to
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Table 2: Max-cut on toroidal grid graphs; the horizontal axis gives CPU time in
seconds in logarithmic scale, the vertical axis displays the upper bound; o refers to
the elliptope, ¢ to separation on the support, X to separation on extended support.
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judge the quality of the solutions produced. Each instance consists of a graph G = (V, E)
that represents the support structure of a sparse symmetric linear system. The task is to
partition V into two sets (S,V \ S) that differ in cardinality by at most 0.05 - n so that the
number of edges that have one endpoint in S and the other in V' \ S is minimized.

Let A denote the 0-1 adjacency matrix of G, then with C = (A — %I) (note the
change in sign to obtain a maximization problem) a canonical semidefinite relaxation (wv.

[30, 20, 24, 6]) reads

max (C, X) s.t. diag(X) =e, (eel,X) < [0.05-n]> X = 0. (36)
In SBmethod the constraint matrix A,,; = ee’ can be represented in this structured form by
the constraint class GRAM _DENSE. Therefore there is no need to work with a dense dual matrix
and the matrix vector multiplication is still efficient. On these instances the aggregation
mechanism often reduced the bundle size too much so that we forced the minimum number
of columns to be kept in P to 10 by setting nmin = 10 (see the manual [17]).

Table 3 lists our numerical results for the basic semidefinite relaxation, for the semidefinite
relaxation combined with odd-cycle cutting planes on the support of C, and for separating
odd-cycles inequalities on the dynamically enlarged support (v. §5). Plots of the progress of
the algorithm with respect to a logarithmic time scale are displayed in tables 4 and 5. In
order to obtain a better resolution of the relevant part we only show descent steps whose
function value is below zero.

Quite contrary to the max-cut instances on toroidal grid graphs, the separation of odd-
cycle inequalities on the support of C rarely yields significant improvement for our bisection
instances, whereas enlarging the support seems to help a lot in most cases. We add some
comments on the single instances. Using enlarged support allowed to prove optimality of the
feasible {—1,1} solutions of lowt01 and putt01. Extending the support also led to significant
improvements of the bounds for skwz02, orbe11_hc100, and heat02. For capt09 and, in par-
ticular, plnt01 the gap between the best feasible solution known and the upper bound is still
large. For the three large examples trai27, Ints02, and traj33 the time limit was too short
to reach definitive conclusions on the improvement; even the basic relaxation could not be
solved to sufficient precision within this time span. Furthermore, for these three instances
the computation time spent in the exact separation algorithm exceeds significantly the time
spent in the spectral bundle code (e.g., for traj33 on extended support, 17 hours are due to
separation!); the decrease in number of iterations and descent steps for the separation ver-
sions is mainly due to this effect and not to the increased work by updating a larger aggregate
matrix W. It should be noted, that the gap between feasible solution and bound of the basic
relaxation is relatively small for traj27, Ints02, and traj33, so there is not much room for
improvement.

The semidefinite relaxation for balanced bisection does not lend itself to comparison with
a pure linear relaxation. Although there is a wealth of heuristics for graph bisection (v. [31]
and references therein), we are not aware of any recent computational studies on bounds
for this particular problem. In [12] a polyhedral approach is discussed for the more general
node capacitated graph partitioning problem; computational results also include equipartition
problems for graphs with up to 300 nodes and 500 edges. The original version of the code of
[12] could not be run any longer, so we updated the code to work with CPLEX 7.1 [22] and
tested it on the two small examples lowt0! and putt01 (the separation routines were obviously
not designed for larger instances and far too slow for even capt09). We only computed the
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Table 3: Bisection instances.

Problem n m nz feas. fterm time k  inner desc.
relaxation (36) without cuts
lowt01 82 83 0 -13  -4.541642 1 14 15 13
putt01 115 116 0 -28  -18.94562 1 17 18 15
capt09 2063 2064 0 -6 -0.6457718 34:37 360 361 199
skwz02 2117 2118 0 -567 -493.8798 1:50 73 74 37
orbell_hcl00 2186 2187 0 -2087 -1839.536 4:51 76 77 41
plnt01 2817 2818 0 -74  -4.334505 38:16 472 622 446
heat02 5150 5151 0 -150 -9.940345 16:43 379 388 63
traj27 17148 17149 0 -8174 -8140.877 20:01:13 1213 1214 96
Ints02 17990 17991 0 -6589 -6063.601 20:01:35 2181 2182 71
traj33 20006 20007 0 -9593 -9496.117 20:00:24 719 719 94
relaxation (36) with odd-cycles on support
lowt01 82 179 342 -13  -4.542344 3 25 46 24
putt01 115 521 548 -28  -21.40906 16 106 188 84
capt09 2063 15613 12999 -6 -0.6586966 13:03:43 3999 11689 1369
skwz02 2117 46188 16118  -567 -506.2629 15:13:26 9430 9502 595
orbell_hcl00 2186 15860 40057 -2087 -1840.485 35:21 182 311 72
pint01 2817 43907 27816 -74  -4.541399 20:00:56 3067 5765 793
heat02 5150 16796 25056  -150  -9.940555  1:22:02 552 990 64
traj27 17148 48005 129781 -8174 -8118.609 20:24:18 1190 1191 43
Ints02 17990 18900 63873 -6589  -6029.048 20:36:48 1384 1394 50
traj33 20006 64164 261953 -9593  -9460.441 20:40:23 529 530 40
relaxation (36) with odd-cycles on extended support

lowt01 82 1230 1060 -13 -12.96362 25:17 6588 10505 101
putt01 115 1510 1482 -28  -27.99941 6:58 1887 3177 91
capt09 2063 14059 19527 -6 -4.142882 20:00:15 15332 23194 222
skwz02 2117 20347 28714  -567  -558.1742 20:00:31 19703 19718 191
orbell_hc100 2186 20107 50048 -2087 -2033.389 20:00:55 10726 10753 168
plnt01 2817 30619 35477 -74  -8.023619 20:01:22 5011 25567 335
heat02 5150 18009 43739  -150 -144.1614 20:01:57 7964 8007 167
traj27 17148 26396 170827 -8174  -8105.315 20:33:10 1116 1116 32
Ints02 17990 21985 104148 -6589  -5961.739 20:55:52 831 833 36
traj33 20006 30269 306952 -9593  -9454.076 21:31:32 364 365 35
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Table 4: Bisection instances; the horizontal axis gives CPU time in seconds in
logarithmic scale, the vertical axis displays the upper bound; o refers to relaxation
(36), © to separation on the support, X to separation on extended support.

lowt01 putt01
2 -10
_12%
& 12¢
b |
PSR O b
-6 4 -16f
%y —18|
s -8 X j s
% -20F
%
-1o0- % B -22f
fed X,
% ><
xx -24r X
o x
_1ol % | "
s -26 =
S on TR K K IO X< y’x&
»&Xxxx
-14 L L L L -28 L L 5x x X V.
107" 10° 10* 10° 10° 10* 107 10° 10' 10°
10g10(CPU seconds) 10g10(CPU seconds)
capt09 skwz02
0 0
o
-05r B
-100 -
b ]
*
%
sk 5 1 200 o
%
% o
b % ]
3 2& 3-300
a5k ]
%
>§(>%<
-3+ &X&N 1 -400
351 s R
s‘;\\ =500~
-4+ Hexx x ok oo |
-45 L L -600 L L L
10° ? 10* 10° 10! 10° 10° 10"
10g10(CPU seconds) 10g10(CPU seconds)
orbell_hcl100 plnt01
-600 0
b
-800 —
3
ol
-1000 - —
© sl
-1200 —
_al
3-1400| 4 E
®
sh
®
-1600 —
6l
-1800 —
b
2000~ —
gl
2200 ! ! !
1 2 3 4 5 -9 L L
10 10 10 10 10 10° 10° 10°

10g10(CPU seconds) 10g10(CPU seconds)

20



fy)

f(y)

Table 5: Bisection instances; the horizontal axis gives CPU time in seconds in
logarithmic scale, the vertical axis displays the upper bound; o refers to relaxation
(36), © to separation on the support, X to separation on extended support.
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root node with all separation procedures switched on. The linear programming approach
needed about twice the time to arrive at the same bound; about 95% of the total time were
spent in the linear programming solver CPLEX 7.1. It is quite likely that the performance of
the linear programming approach can be improved by finetuning it with respect to this class
of instances. Yet we believe that this is sufficient evidence that the semidefinite cutting plane
approach is competitive for these bisection problems.
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