
Estimating Missing Entries of a Partial Mean First

Passage Time Matrix

Masterarbeit

am Fachbereich Mathematik und Informatik

der Technischen Universität Berlin

vorgelegt von

Andreas Grever

17.11.2016

Gutachter:

PD Dr. Konstantin Fackeldey

PD Dr. Marcus Weber





Erklärung
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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Frage, wie die Matrix der erwarteten Trefferzeiten

(MFP-Matrix) einer Markov Kette abgeschätzt und vervollständigt werden kann, wenn

einige der Einträge bereits bekannt sind. Es wird eine Verbindung zur Theorie der

M-Matrizen gezeigt, die es ermöglicht obere und untere Schranken für die unbekan-

nten Einträge zu berechnen. Diese Intervalle können durch Intervallarithmetik weiterhin

eingegrenzt werden. Schließlich werden zwei Optimierungsansätze vorgestellt, die eine

Vervollständigung der partiellen Matrix berechnen.

Die Motivation für diese Arbeit stammt aus dem Bereich der Moleküldynamik. In

der Moleküldynamik wird das Verhalten von Molekülen mittels Computersimulationen

erforscht. Besonders ist man an Biomolekülen wie Proteinen oder Wirkstoffen für neue

Medikamente interessiert. Eine der Herausforderungen besteht in den großen Zeitskalen

die überwunden werden müssen, da die Zeitschritte der Simulation in der Größenordnung

von Femtosekunden (10−15s) liegen, während viele interessante Vorgänge wie die Faltung

von Proteinen einige Mikrosekunden benötigen. Zwar ist der auf Moleküldynamik spezial-

isierte Supercomputer Anton 2 von D. E. Shaw Research in New York in der Lage bis

zu 85 Mikrosekunden eines Proteins mit 23.558 Atomen an einem Tag zu berechnen,

gewöhnliche Maschinen sind allerdings weit entfernt von solchen Leistungen (siehe [41]).

Eine weitere Herausforderung ist die Analyse der hochdimensionalen Simulations-

daten, da jedes Atom drei Freiheitsgrade besitzt. Beispiele für Methoden, die Kom-

plexität reduzieren und gleichzeitig den stochastischen Charakter von Molekülbewegungen

berücksichtigen, sind “ Markov State Models ”(MSM, [36, 40]). In MSMs wird der Zu-

standsraum in Untermengen aufgeteilt und die Übergangswahrscheinlichkeiten zwischen

diesen berechnet. Diese Wahrscheinlichkeiten lassen sich als Übergangsmatrix darstellen,

welche wiederum zur Berechnung der Matrix der erwarteten Trefferzeiten (mean first pas-

sage times) verwendet werden kann. Die erwartete Trefferzeit mij gibt an wie lange der

Prozess, der in Zustand i gestartet ist, braucht, um Zustand j zu erreichen. Diese Werte

sind charakteristische Größen des Prozesses und enthalten wichtige Informationen. Für

den Wirkstoffdesign ist es zum Beispiel nicht nur wichtig, dass das Medikament mit ho-

her Wahrscheinlickeit an sein Ziel kommt, sondern auch, dass es möglichst lange dort

bleibt ([32]).

Die Kinetik von Biomolekülen wird in vielen Fällen modelliert mittels zwei Haupt-

mechanismen. Einerseits strebt das System einen Zustand niedriger Energie an wobei die

Energiefunktion viele lokale Minima besitzt. Gleichzeitig bewirkt eine sogenannte Brown-



sche Bewegung spontane Änderungen im System. In der Konsequenz hält sich das Molekül

für lange Perioden in der Nähe lokaler Minima auf und ändert seine Konformation nur

selten. Diese stabilen Zustände werden manchmal auch Metastabilitäten genannt ([36]).

In den letzten Jahren wurde vermehrt nach Methoden geforscht, mit denen Simulatio-

nen gelenkt werden können, sodass seltene Ereignisse häufiger und mit geringer Varianz

auftreten (siehe [11, 35]). Eine kleine Varianz bedeutet, dass ein beobachtetes Ereignis

mit hoher Wahrscheinlichkeit in der Nähe des Erwartungswertes liegt. Mit diesen Meth-

oden kann zum Beispiel die durchnittliche Zeit einen bestimmten Zustand zu verlassen

schneller und mit weniger Daten berechnet werden.

Die Einträge der Matrix der erwarteten Trefferzeiten (MFP-Matrix) können entweder

direkt mittels Simulationsdaten oder indirekt über die Übergangswahrscheinlichkeiten

berechnet werden. Das Ziel dieser Arbeit ist es zu zeigen, dass falls die erwarteten Tref-

ferzeiten direkt berechnet werden, es nicht nötig ist alle Zeiten zu berechnen. Schon ein

kleiner Teil der Einträge genügt um Intervalle anzugeben in denen sich die unbekannten

Werte befinden.

Es stellt sich heraus, dass eine positive Matrix N die MFP-Matrix einer Markov Kette

ist, falls die Einträge von N und die Einträge der Inversen der Matrix[
N e

e> 0

]
bestimmte Ungleichungen erfüllen, wobei e der Vektor mit ausschließlich Einsen ist. Die

Herleitung dieser Ungleichungen beruht auf der Theorie derM-Matrizen, mit dessen Hilfe

es möglich ist nicht nur die unbekannten Einträge der MFP-Matrix abzuschätzen, sondern

auch die Übergangswahscheinlichkeiten des zugrunde liegenden Prozesses.

Lineare Systeme für Matrizen und Vektoren deren Einträge durch Intervalle anstatt

Zahlen gegeben sind, können mittels Intervallarithmetik beschrieben werden. Methoden

aus dem Bereich der Intervallarithmetik können verwendet werden, um die bisherigen

Abschätzungen zu verbessern.

Um nicht nur Abschätzungen sondern auch eine konkrete Matrix zu erhalten, müssen

Matrizen X, Y gefunden werden sodass neben diversen linearen Bedingungen es gilt, dass

X die inverse Matrix zu Y ist. Mit anderen Worten soll ‖XY − I‖ über einer kon-

vexen Menge minimiert werden. Es werden zwei Ansätze vorgestellt um dieses Opti-

mierungsproblem zu lösen. Zunächst wird gezeigt, dass es sich um ein d. c. programming

Problem handelt. Anschließend wird eine linearisierte Variante des Problems formuliert

und auf zwei Beispiele angewendet.

Die Methoden, die in dieser Arbeit beschrieben werden bedeuten eine deutliche Zeit-

ersparnis im Vergleich zur direkten Berechnung von Trefferzeiten mittels Sampling von

Daten in hochdimensionalen Räumen.
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Introduction

The initial motivation for this thesis came from some new ideas in the field of molecular

dynamics. In molecular dynamics computer simulations are used to study the behavior

of molecules like proteins on an atomic level. One of the challenges in this field is to

overcome great gaps in spatial and temporal scale. While the simulation requires the

computation of forces between atoms in discrete time steps of femtoseconds (10−15s), the

events that are being studied often take place on the level of microseconds (10−6s), like the

folding of a protein. Though the specialized supercomputer Anton 2 built by D. E. Shaw

Research in New York simulates up to 85 microseconds per day for a protein with 23,558

atoms (see [41]), ordinary machines are far from such results, which makes methods that

reduce simulation time very interesting.

Another challenge of molecular dynamics is to analyze the complex high dimensional

simulation data. One approach to overcome complexity is to use coarse grained repre-

sentations of the domain. An example for such methods that at the same time reflects

the nondeterministic character of molecules in motion are Markov State Models ([36]). In

Markov State Models the state of the system at a any time is described by a probability

distribution that is propagated in time by a so called transfer operator ([40]). The domain

of the distribution function is partitioned into a finite number of subsets and the time

series of the simulation is used to compute the transition probabilities between these sub-

sets. The probabilities can be represented as a transition matrix, which itself can be used

to compute the matrix of mean first passage times between each pair of events, i.e., the

average time it will take to get from one state to another. Mean first passage times are

characteristic quantities of the process and give valuable information about the systems

behavior. In the field of drug design it is, for example, not only important that the drug

has a high tendency to reach its target, but also that it stays there sufficiently long ([32]).

The kinetics of biomolecules often involve several states in which the molecule resides

for a long time (metastabilities, see [36] and references therein). As a result, significant

changes occur rarely and on different timescales. Recently, developments have been made

in manipulating the simulation to steer the system, such that on the one hand rare events

are not rare anymore, and on the other hand reducing the variance of this event (see

[11, 35]). A small variance means that the observed event is likely to be close to the

expected or average outcome of multiple experiments. With these methods the average

time it takes to reach or leave a certain state can be computed faster using less data.

The matrix of mean first passage times (MFP-matrix) can either be sampled directly
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using simulations, or indirectly using a transition matrix. The aim of this thesis is to

show that if the mean first passage times are being computed directly, it is not necessary

to compute all of the matrix entries, but that only a fraction is needed to give intervals in

which the missing entries can be found. Furthermore, we present a strategy to complete

the matrix such that it defines a unique Markov chain that is at least close to the one

that was initially simulated.

The intervals can be utilized in various ways. Apart from defining the feasible set in

for matrix completion, large intervals can be used during simulation as an indicator for

which states should be sampled next to improve the estimates up to that point. Small

intervals can contain information on transition states, e.g. states that have to be visited,

to move from one metastability to another. It should be noted that these results are not

limited to molecular dynamics but in fact are applicable to any irreducible Markov chain.

The approach of this thesis is somewhat unusual, because in most situations the matrix

of transition probabilities is known and can be used to compute the matrix of mean first

passage times. This is why the problem of determining whether a positive matrix is the

MFP-matrix of a Markov chain will be called the inverse MFP-matrix problem (see also

[34]). Because some of the entries are assumed to be known the problem at hand is the

following.

MFP-matrix completion problem: Given a partial MFP-matrix, how can the missing

entries be chosen such that the completed matrix is the MFP-matrix of a Markov chain?

It will turn out that a positive matrix N is the MFP-matrix of a Markov chain if the

inverse of the matrix [
N e

e> 0

]
and N itself meet several linear conditions, where e is the vector ones. Conditions on the

inverse of a matrix are nonlinear and make the problem difficult to solve.

In the first chapter some basics of Markov chains are presented and it is shown how

to compute mean first passage times from transition matrices.

The MFP-matrix completion problem is formulated in chapter 2. The problem is

explored by drawing a connection between MFP-matrices and a class of matrices called

M-matrices.

In chapter 3 the theory of M-matrices is utilized in order find several inequalities

not only for mean first passage times but also for the transition probabilities and the

stationary distribution, i.e., the unknown entries are replaced by intervals.

Putting matrices specified by intervals into relation with each other leads to the field

of interval arithmetics. Methods to improve the information given by linear equations

involving intervals are described in chapter 4.

In chapter 5, to find a matrix that not only respects the upper and lower bounds but

also is a MFP-matrix of a Markov chain, the problem is formulated as a d.c. program

and numerical examples are discussed.



Chapter 1

The MFP-Matrix of a Markov Chain

Markov State Models (MSM) are a coarse graining method to analyze the structural

changes in molecular dynamics simulation data ([36]) by modeling the process as a mem-

oryless stochastic process, i.e., a Markov chain. This means that the state space is pro-

jected onto a finite number of subsets, such that the simulated time series can be viewed as

jumps in the network defined by these subsets. The subsets will be referred to as states.

The probabilities to jump from one state to another can be described by a stochastic

transition matrix. In this first chapter, it will be shown how the mean first passage times

of a Markov chain can be computed using simple matrix equations. After that the inverse

MFP-matrix problem can be formulated.

The basics from probability theory and Markov chains that will be introduced here

serve primarily as a motivation and illustration, because we will discuss the problem of

estimation and completion using the properties of the matrices and the equations that

relate them with each other.

Definition 1.1 (Notation). For the whole thesis the following notation will be used:

(i) The matrix E is the matrix with all entries equal to 1

(ii) The column vector e is the vector with all entries equal to 1

(iii) For a vector v the diagonal matrix, whose diagonal entries are given by v will be

denoted by diag(v). For a matrix A the vector, whose entries are the diagonal entries

of A will be denoted by diag(A).

(iv) In the context of matrices and vectors the relations ≤, <,≥, > are to be understood

as entrywise inequalities.

1.1. Markov Chains and Transition Probabilities

To understand the fundamental ideas of probability theory that we need in this chapter

some basic definition from the field of measure theory will be recalled. For a more detailed

introduction to probability theory see e.g. [7].

Definition 1.2. Let Ω be an arbitrary set and F a nonempty collection of subsets of Ω.
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If F satisfies

(i) A ∈ F then Ac := Ω \ A ∈ F , and

(ii) Ai ∈ F is a countable sequence of sets then ∪iAi ∈ F

it is called a σ-algebra. The tuple (Ω,F) is called a measurable space.

Definition 1.3. A measure µ : F → R on a measurable space (Ω,F) is a function with

(i) µ(A) ≥ µ(∅) = 0 for all A ∈ F ,

(ii) if Ai ∈ F is a countable sequence of disjoint sets, then

µ(∪iAi) =
∑
i

µ(Ai). (1.1)

If µ(Ω) = 1, it is a probability measure and will be denoted by P. The triple (Ω,F ,P) is

called a probability space.

Using a discretized time series on n states it would be possible to compute how often

a certain state has been visited and divide that number by the length of the time series

to obtain the probability that the system is found in that state. Though to describe

the dynamic of the system it would be more interesting to know where a system that is

residing at a state i will go next and how likely it is that it will go to a state j. Therefore,

we need to introduce the conditional probability.

Definition 1.4. Let (Ω,F ,P) be a probability space and A,B ∈ F . The conditional

probability of the event A given the event B is defined by

P(A|B) :=
P(A ∪B)

P(B)
.

In the following the notation P(A,B) := P(A∪B) will be used. We will now consider

a discrete-time stochastic process X : N0 → 1, · · · , n in a system of n states. The

function X is a random variable and can be seen as an evaluation of an experiment,

where at every time step k the process takes as a value one of the states, i.e. Xk = i for

k ∈ N0, i ∈ {1, · · · , n}.

Definition 1.5. A discrete-time stochastic process is called a Markov process if it meets

the Markov property

P(Xk = ik|Xk−1 = ik−1, · · · , X0 = i0) = P(Xk = ik|Xk−1 = ik−1) for all k ∈ N. (1.2)

It is called a Markov chain, if equation (1.2) does not depend on k.

The Markov property is often referred to as memoryless, because the future only

depends on the present state. To justify this assumption in molecular dynamics the time

steps and discretization have to be chosen with care.
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Because for Markov chains equation (1.2) does not depend on k, the conditional prob-

ability to jump from i to j in one step can be simply denoted by pij, which means that

every Markov chain on n states is defined by a transition matrix P .

Definition 1.6. A matrix P ∈ Rn×n with the properties

(i) P ≥ 0,

(ii) Pe=e

will be called transition matrix. A vector v ∈ Rn such that v ≥ 0 and v>e = 1 is called a

probability vector.

If an initial distribution is given by a probability vector v(0), v
(0)
i := P(X0 = i), the

distribution after one step is given by

P(X1 = i) =
n∑
k=1

P(X1 = i,X0 = k) =
n∑
k=1

P(X1 = i|X0 = k)P(X0 = k),

i.e. (v(1))> = (v(0))>P and more generally, the distribution at the k-th step is given by

(v(k))> = (v(0))>P k. The matrix P k is the k-th matrix product of P with itself and its

entries p
(k)
ij are the probabilities to start at i and be in j after k steps. This relationship

is summarized in the Chapman-Kolmogorov equation

Corollary 1.7 (Chapman-Kolmogorov equation,[7]).

P(Xk+h = j|X0 = i) =
n∑
s=1

P(Xk+h = j|Xk = s)P(Xk = s|X0 = i)

Apart from the interpretation of the initial distribution as the probability measure

describing the probability that a process can be found in a certain state at time 0, we may

also understand it as the given distribution of an ensemble of particles at the beginning

of the process. The transition probabilities pij are then interpreted as the percentage

of particles at state i that move to state j in one time step. This interpretation as an

ensemble is used especially in thermodynamics and therefore in molecular dynamics from

which our initial motivation stems.

In the next section the first passage time τij will be introduced, which is the first time

a process that started in state i reaches state j. For this time to be a finite number the

transition matrix has to be irreducible.

Definition 1.8 ([10]). An n× n matrix A with n ≥ 2 is called reducible if there exists a

permutation matrix S such that

S>AS =

(
A11 A12

0 A22

)
with A11, A22 square. A matrix is called irreducible if it is not reducible.
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It is easy to see that if A is reducible then Ak is reducible as well for every k ≥ 1.

From a probabilistic point of view a Markov chain defined by a reducible transition matrix

has a subset of states that can’t be left, not even after multiple steps. Eigenvalues and

eigenvectors can be used to analyze transition matrices and the systems they model (see

[5, 42]). A very useful tool in this context is the Perron-Frobenius-Theorem.

Definition 1.9. For a square matrix A the set of all eigenvalues of A is called the spectrum

and is denoted by σ(A). The spectral radius of A is defined by

ρ(A) := max{|λ|, λ ∈ σ(A)}

Lemma 1.10 (Perron-Frobenius-Teorem,[10]). Let A ≥ 0 be an irreducible matrix. Then

the following hold:

(i) The spectral radius ρ(A) is a simple eigenvalue of A

(ii) The corresponding eigenvector is elementwise positive and is the only eigenvector

with that property

(iii) If A has h eigenvectors with eigenvalues ρ(A) = λ1, · · · , λh such that |λi| = ρ(A)

for i = 1, · · · , h, then these eigenvalues are all simple and solve the equation λh −
ρ(A)h = 0. Moreover the Matrix can be reduced to the cyclic block form

0 A12 0 · · · 0

0 0 A23 · · · 0
...

. . . . . . . . .
...

0 0 0 · · · A(h−1)h

Ah1 0 0 · · · 0


where on the diagonal we have square matrices with zero entries.

In the case of an irreducible transition matrix P it holds that Pe = e, which means

that e is the eigenvector associated with the eigenvalue 1 = ρ(P ). Furthermore, the

Perron-Frobenius-Theorem guaranties the existence of a left eigenvalue such that

π>P = π>,
n∑
i=1

πi = 1,

where the second property can be achieved by scaling.

This positive left eigenvector π is called the stationary distribution of P i.e., if an

ensemble starts out at time zero distributed according to π, the distribution will stay

unchanged after each time step. The value h in the Perron-Frobenius-Theorem gives

another classification of processes. For h > 1 the process is called periodic with period h,

otherwise the process is called aperiodic. For an aperiodic irreducible transition matrix

there exists an additional property regarding the stationary distribution vector π, namely

lim
k→∞

P k = eπ>.
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This means that any initial distribution converges to the stationary distribution. The last

concept we want to introduce in this chapter is reversibility.

Definition 1.11 ([23]). Let P be an irreducible transition matrix of a Markov chain with

stationary distribution π and set Π := diag(π). The Markov chain is called reversible, if

the detailed balance condition

πipij = πjpji for all i, j = 1, . . . , n ⇔ ΠP = P>Π

is fulfilled, otherwise it is called irreversible.

The motivation for the term reversible becomes clear if we write πipij = P(X0 =

i,X1 = j) i.e., a jump from i to j is as likely as the opposite direction. Reversibility is

an important property in molecular dynamics on the one hand, because it is the behavior

one would expect from the reversible Newtonian equations. The symmetry of ΠP on the

other hand is an assumption in analytic methods like spectral clustering.
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1.2. From Transition Matrix to MFP-Matrix

The transition matrix in itself gives answers to the question what might happen in the

next time step. If we think of a Markov chain as a spatial process making small jumps,

the transition probabilities give us only information about the events near in time and

near in space.

In molecular dynamics, the system typically stays for a long time in certain so called

metastable states between which jumps occur very rarely. This raises the question: How

long do we have to expect to wait?

Definition 1.12. (i) The first passage time τij of a Markov chain is the random vari-

able describing the time the process X takes to reach the state j if it started in state

i, i.e.

τij := min
k
{k ∈ N|X0 = i,Xk = j,Xs 6= j s = 1, · · · , k − 1} i, j = 1, · · · , n

τii is also called the return time to i.

(ii) The mean first passage time (MFP) mij of a Markov chain is the expected time the

process that started in i takes to reach j and is defined by the number

mij := E[τij] =
∞∑
k=1

kP (τij = k)

It can be shown that the mean first passage times for an irreducible Markov chain

are always finite (see [23]), which is why we can consider the matrix M = mij ∈ Rn×n,

which we will call the mean first passage time matrix (MFP-matrix). The MFP-matrix

has obviously positive entries and we will develop in the following several relationships

between M and the transition matrix P . The following lemma is quite intuitive and it

will help us to relate the matrices M and P in form of a matrix equation.

Lemma 1.13 ([25]). Let τij, i, j = 1, · · · , n be the first passage time of a Markov chain

on n states. Then for k > 1 it holds that

P(τij = k) =
∑
s6=j

pisP(τsj = k − 1).
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Proof. Assuming k > 1, we write:

P(τij = k) = P(Xk = j,Xl 6= j, j = 2, · · · , k − 1|X0 = i)

=
P(Xk = j,Xl 6= j j = 1, · · · , k − 1, X0 = i)

P(X0 = i)

=
∑
s 6=j

P(Xk = j,Xl 6= j j = 2, · · · , k − 1, X1 = s,X0 = i)

P(X0 = i)

=
∑
s 6=j

P(Xk = j,Xl 6= j j = 2, · · · , k − 1|X1 = s,X0 = i)P(X1 = s,X0 = i)

P(X0 = i)

=
∑
s 6=j

P(Xk = j,Xl 6= j j = 2, · · · , k − 1|X1 = s)P(X1 = s|X0 = i)

=
∑
s 6=j

pisP(τsj = k − 1)

Theorem 1.14 ([23]). The MFP-matrix for an irreducible transition matrix P with sta-

tionary distribution π is the unique solution of the matrix equation

M = E + P (M −Mdg)

where Mdg is the diagonal matrix with the same diagonal entries as M . Furthermore the

diagonal is given by mii = π−1i for i = 1, . . . , n

Proof. We compute M entrywise:

mij : = E[τij] =
∞∑
k=1

kP (τij = k) = pij +
∞∑
k=2

kP (τij = k)

= pij +
∞∑
k=2

k
∑
s 6=j

pisP (τsj = k − 1) = pij +
∑
s 6=j

pis

∞∑
k=1

(k + 1)P (τsj = k)

= pij +
∑
s 6=j

pis

[
∞∑
k=1

kP (τsj = k) +
∞∑
k=1

P (τsj = k)

]
= pij +

∑
s 6=j

pismsj +
∑
s 6=j

pis

= 1 +
∑
s 6=j

pismsj

The last line is equivalent to the desired matrix equation

M = E + P (M −Mdg)⇔ (I − P )M = E − PMdg. (1.3)
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If we multiply the right equation with π>

0 = π>(I − P )M = π>(E − PMdg) = e> − π>Mdg

we see that mii = π−1i has to hold.

Now let us assume, that M, M̃ are solutions of (1.3). Taking the difference and using

that Mdg = M̃dg we get

M − M̃ = P (M − M̃)

and see that from the Perron-Frobenius-Theorem it follows that the columns of M−M̃ are

multiples of e. We know that the diagonal entries are 0 which means that M−M̃ = 0.

In the following we will write Mdg := Π−1 with Π being the diagonal matrix with π as

entries and set G := (I − P ).

The equation (I − P )M = E − PΠ−1 already indicated a connection between the

MFP-matrix and the inverse of (I − P ), but of course, due to π>(I − P ) = (I − P )e = 0,

this matrix is singular. With the concept of generalized inverses we will be able to describe

the MFP-matrix further and show some interesting properties.

Definition 1.15 ([1]). Let A ∈ Rn×m be any matrix and consider the following conditions

for a matrix X ∈ Rm×n

(1) AXA = A

(2) XAX = X

(3) (AX)> = AX

(4) (XA)> = XA.

If X fulfills any of the above conditions it is called a generalized inverse of A. In the

case of A,X being square matrices of the same order there is in addition the condition

(5) AX = XA.

A generalized inverse X satisfying the set of conditions {i1, · · · , ik} ⊂ {1, · · · , 5} will be

called a {i1, · · · , ik}-inverse.

Probably the most commonly used generalized inverse is the Moore-Penrose-Inverse,

which is the uniquely defined {1, 2, 3, 4}-inverse. It is used in particular to solve singular

linear equations. Jeffrey J. Hunter summarized in [15] several generalized inverses and

described how to use them to compute the MFP-matrix, though in the theory of Markov

chains it is common to use the {1, 2, 5}-inverse that goes by the name generalized group

inverse. Carl D. Meyer for example showed in [30] the role of the generalized group inverse

in the theory of Markov chains and described probabilistic interpretations of its entries.

Another advantage of the generalized group inverse is the fact that the spectral prop-

erties are very similar to those of a real inverse. The generalized group inverse of a matrix

A is typically denoted by A#.
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Corollary 1.16. For a transition matrix P the generalized group inverse of G := I − P
given by

G# := (I − P )# =
[
I − P + eπ>

]−1 − eπ>
is uniquely defined and has the following properties:

(i) G#e = π>G# = 0

(ii) I −GG# = eπ>

(iii) If σ(P ) = {1, λ2, . . . , λn} is the spectrum of P then σ(G#) = {0, 1
1−λ2 , . . . ,

1
1−λn}

Proof. Following [8] it holds that any matrix that fulfills conditions (1), (2) and (5) is

the unique solution. This can be shown by assuming that A#
1 and A#

2 are two different

generalized group inverses of the matrix A and simple application of the conditions:

AA#
1 = (AA#

2 A)A#
1 = A#

2 (AA#
1 A) = A#

2 A

A#
1 = A#

1 AA
#
1 = A#

2 AA
#
1 = A#

2 AA
#
2 = A#

2

Next it will be shown that G# is the generalized inverse of G by first showing (i) and (ii).

The vectors e and π are right and left eigenvectors of
[
I − P + eπ>

]
to the eigenvalue 1

and thereby eigenvectors of
[
I − P + eπ>

]−1
as well. Property (i) follows from π>e = 1.

With the same argument the product GG# can be computed:

GG# = (I − P )(
[
I − P + eπ>

]−1 − eπ>)

= (I − P + eπ> − eπ>)
[
I − P + eπ>

]−1 − (I − P )eπ>

= I − eπ>
[
I − P + eπ>

]−1
= I − eπ>

The equation for G#G works analogously, which shows conditions (5). Condition (1)

and (2) we get be multiplying the last equation in property (ii) with G from the right

and G# from the left respectively.

Let v be an eigenvalue of a matrix A for the non zero eigenvalue λ. Using condition (1)

and (5) for generalized inverses we see that

λv = Av = AA#Av = A#A2v = λ2A#v ⇔ A#v =
1

λ
v.

If λ is an eigenvalue of P , 1− λ is an eigenvalue of G, which shows (iii).

The formula for G# presented in the corollary can be interpreted as first adding the

vectors spanning the kernel of I − P as a rank one matrix to create a proper inverse and

afterwards subtracting that rank one matrix such that G and G# have the same kernel.

It will be useful to introduce in addition to the MFP-matrix M the matrix

N := M − Π−1,
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which is just the matrix M with zeros on the diagonal and therefore will also be referred

to as MFP-matrix. Plugging N into equation (1.3) and using the last theorem shows that

there is a direct connection between G# and N :

(I − P )N = E − Π−1 = (eπ> − I)Π−1 = −(I − P )G#Π−1

⇔ (I − P )(G# +NΠ)Π−1 = 0

⇔ (I − P )(G# +NΠ) = 0

Because e is a simple eigenvalue of P the columns of G# + NΠ must be either zero or

another multiple of e. We write NΠ = ed>−G with some vector d. The diagonal entries

of N are zero, which means that the vector d consists of the diagonal entries of G. We

summarize this relationship with a theorem.

Theorem 1.17 ([15]). Let P be the irreducible transition matrix of a Markov chain, π the

corresponding stationary vector, G# the generalized group inverse of (I − P ). Then the

MFP-matrix M is given by

mij =


g#jj − g

#
ij

πj
i 6= j

1

πi
i = j.

The next lemma shows what effect the addition of rank one matrices have on the

spectrum if eigenvectors are involved.

Lemma 1.18 ([17]). Let A be a square matrix with spectrum σ(A) = {λ1, λ2, · · · , λn} and

u a right eigenvector of A associated with the eigenvalue λ1. For a vector v the spectrum

of the perturbed matrix A+ uv> is given by σ(A+ uv>) = {λ1 + v>u, λ2, · · · , λn}

The property of the trace operator that trace(A) =
∑

i λi where the λi are the eigen-

values of A yields the following.

Corollary 1.19. The spectrum σ(NΠ) is determined by the spectrum of the transition

matrix σ(P ) = {1, λ2, . . . , λn} and is given by

σ(NΠ) = {
n∑
i=2

1

1− λi
,− 1

1− λ2
, . . . ,− 1

1− λn
}

Proof. We write NΠ as rank 1 perturbation of the generalized inverse

NΠ = ed> −G#

where d is the vector of the diagonal entries of G#. The eigenvalues of −G# are the

same as those oft G# with reversed signs and the same eigenvectors. The vector e is an

eigenvector of G# coresponding to the eigenvalue 0 so we can use the last lemma to get

σ(NΠ) = {d>e,− 1

1− λ2
, . . . ,− 1

1− λn
}.

Because d>e = trace(G#) the corollary is shown.
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The eigenvalue d>e =
∑n

i=2

1

1− λi
is the spectral radius of NΠ and is connected to

the Kemeny constant.

Definition 1.20. For a transition matrix P with spectrum σ(P ) = {1, λ2, · · · , λn} the

Kemeny constant is defined by

κ̃ := κ̃(P ) :=
n∑
i=2

1

1− λi
+ 1

and κ = κ̃− 1 will be called the reduced Kemeny constant.

Remark 1.21. It was argued in [16] that the Kemeny constant could be interpreted as a

measure for the expected mixing time,i.e., the expected time until a process that started in

an arbitrary state is close to the stationary distribution. From Corollary 1.19 it immedi-

ately follows that

Mπ = κ̃e Nπ = κe,

which states a direct connection between MFP matrix and Kemeny constant. This also

means that, if the matrix N is known, we can compute the stationary distribution by first

solving Nx = e and then setting κ =
∑

i xi. The vector π is given by π = κ−1x.

In [23] Kemeny and Snell introduced the matrix

Z =
[
I − P + eπ>

]−1
= G# + eπ>

and called it the fundamental matrix, because many of the interesting properties of the

process can be deduced from it. Carl D. Meyer has argued in [30], that everywhere

the matrix Z is used it can be replaced by the group inverse G# and showed that its

computation is cheaper.

It was shown that the MFP-matrices M and N are not only directly connected to the

group inverse, but hold also information on the stationary vector, the Kemeny constant

and the spectrum of P . This shows how useful the MFP-matrix can be for the analysis

of Markov chains and would deserve the title ”fundamental matrix” as well.

After stating the basic properties and connections between transition matrices and

MFP-matrices, we are ready to address the problem setting of this thesis.



Chapter 2

Two inverse Problems

So far we have seen how to compute the MFP-matrix given the corresponding transition

matrix P , but the main question of this thesis is connected to the inverse problem. We

assume that some of the mean first passage times have been computed directly, so the

setting from which we start is of the following kind.

Definition 2.1. A matrix, in which some entries are specified by real numbers while the

remaining entries are free to be chosen will be called a partial matrix.

The topic of this thesis can then be described in the following way.

MFP-matrix completion problem: Given a partial MFP-matrix, how can the missing

entries be chosen such that the completed matrix is the MFP-matrix of a Markov chain?

This chapter is based on the ideas described by M.Neumann and Nung-Sing Sze in [34].

In their paper they showed a connection between the so called inverse MFP-problem and

the inverse M-matrix problem. The properties ofM-matrices will be utilized in the next

chapter to find estimates on the missing mean first passage times.

2.1. inverse MFP-matrix problem

The inverse MFP-problem for a nonnegative, square matrix N will be understood as the

question under what conditions there exists a Markov chain, such that N is the MFP-

matrix of that Markov chain.

There are several reasons why we will work with the matrix N instead of the matrix M .

The diagonal entries of M can be recovered from N by applying Remark 1.21 and many

of the formulas take a simpler form if N is used. Furthermore, if it comes to molecular

dynamics the methods to speed up the computation of mean first passage times are not

necessarily applicable to the return times, i.e., the diagonal entries. Another advantage of

the matrix N is that from Corollary 1.19 it is clear that the inverse of N exists, because

all eigenvalues of NΠ are non zero, so we can write

(I − P )N = E − Π−1 ⇔ Π(I − P ) = (πe> − I)N−1. (2.1)

The next lemma states conditions for N−1 such that N is an MFP-matrix.
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Lemma 2.2 ([34]). Suppose that N is a nonnegative invertible matrix with diagonal

entries equal to zero. Let N−1 := (zij) and Π = diag(π). Then N = M − Π−1 for some

MFP-matrix M of an irreducible transition matrix P with stationary distribution π if and

only if 

∑n
k=1 zik > 0 for all i = 1, · · · , n

zij ≥
∑n

k=1 zik
∑n

k=1 zkj∑n
k,l=1 slk

for all i 6= j, i, j = 1, · · · , n

zii

∑n
k,l=1 zlk∑n
k=1 zik

−
∑n

k=1 zki ≥ −1 for all i = 1, · · · , n

(2.2)

and any matrix A = aij whose off-diagonal entries are given by

aij = zij −
∑n

k=1 zik
∑n

k=1 zkj∑n
k,l=1 slk

for all i 6= j, i, j = 1, · · · , n (2.3)

is irreducible.

Proof. Let’s assume that N is a nonnegative invertible matrix with diagonal entries equal

to zero and N−1 such that (2.2) and (2.3) hold. Define the vector

πi =

∑n
k=1 zik∑n
k,l=1 zlk

> 0 for all i = 1, · · · , n

and the diagonal matrix Π := diag(π). It needs to be shown that P = I + (Π−1−E)N−1

is an irreducible transition matrix. The entries of (Π−1 − E)N−1 are given by

zij

∑n
k=1 zkj∑n
k,l=1 zlk

−
n∑
k=1

zkj for all i, j = 1, · · · , n

which due to condition (2.3) means that P is irreducible. From (2.2) follows that P is

nonnegative. We chose π such that it is the staionary vector of P , i. e. π>P = π> > 0

and
∑n

k=1 πk = 1 as well as (Π−1 − E)N−1e = 0⇒ Pe = e.

If on the other hand M is the MFP-matrix of an irreducible transition matrix P with

stationary distribution π and N = M − Π−1, N−1 is given by equation (2.1) and the

conditions (2.2) and (2.3) hold naturally.

The conditions in Lemma 2.2 can be rewritten as

(i) N−1e > 0 (ii) Π(I − P ) = (πe> − I)N−1 ≤ Π

if π = N−1e
N−1e

. Let’s consider the block matrix

N :=

[
N e

e> 0

]
.



Chapter 2. Two inverse Problems 17

Taking the inverse of this block matrix leads to the following expression:

N e

e> 0

−1 =

N
−1 − N−1ee>N−1

e>N−1e

N−1e

e>N−1e

e>N−1

e>N−1e
− 1

e>N−1e

 =

−Π(I − P ) π

e>N−1κ −κ

 (2.4)

where κ = 1
e>N−1e

is the reduced Kemeny constant. In fact, the first equality is always

true as long as the inverse N−1 exists and e>N−1e = 0.

Corollary 2.3. Let A ∈ Rn×n be a nonsingular matrix with diag(A) = 0 and otherwise

positive entries such that the inverseA e

e> 0

−1 =:

[
U v

w z

]
(2.5)

exists. The matrix A is the MFP-matrix of an irreducible Markov chain on n states with

stationary distribution v if the following hold:

(i) U is irreducible

(iii) diag(v)(E−I) ≥ U ≥ −diag(v) > −I.

(ii) v > 0

Proof. Because of (2.12) it holds that

Ue = e>U = 0, we = e>v = 1. (2.6)

Define the matrix P := I + diag(v)−1U . From condition (iii) it follows that P ≥ 0

and with (2.6) it is easy to see that v>P = v> and Pe = e. This means that P is a

transition matrix with stationary distribution v > 0. The irreducibility of U means that

P is irreducible. By setting π = v we see that A is the MFP-matrix N from the equations

(2.4) and (2.1).

This corollary makes it possible to decide whether a matrix is a MFP-matrix by

checking whether the entries of N are inside certain upper and lower bounds and U is

irreducible. Tough checking the irreducibility of a matrix is not easily done. Next we will

see a second inverse relationship which will lead us to the theory of M-matrices.

2.2. inverse M-matrix problem

The term M-matrix is not to be confused with the MFP-Matrix M. The M-matrix was

named after the mathematician Minkowski by Alexander Ostrowski (see [43]).
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Definition 2.4. Any matrix A of the form

A = sI − T

with s > 0, T ≥ 0 for which s ≥ ρ(T ) is called an M-Matrix. If s = ρ(T ), A is a singular

M-Matrix, otherwise it is nonsingular.

We note that the previously introduced G = I − P is an example of a singular M-

matrix. The following theorem will tell us more about principal submatrices of G. Recall

that a principal submatrix of a matrix A is the submatrix one gets by deleting the same

rows and columns of A.

Lemma 2.5 ([3]). (i) Let A be a singular, irreducible M-matrix. Then each principal

submatrix of A other than A itself is a nonsingular M-matrix.

(ii) Let A be a nonsingularM-matrix. Then each principal minor of A is a nonsingular

M-matrix.

A nonsingular matrix, whose inverse is an M-matrix will be called IM-matrix (in-

verse M-matrix). In the next chapter we will find out more about the structure of

M-matrices and their inverses, but to proof the main theorem of this chapter, we need

some information about the signs of their entries. Let A be a nonsingular M-matrix,

A = sI − T = s(I − s−1T ). Because ρ(s−1T ) < 1 we can form the inverse by a Neumann

series

A−1 =
1

s

(
I − T

s

)−1
=

1

s

∞∑
k=0

(
T

s

)k
≥ 0

and see that IM-matrices are nonnegative. This is not true for the generalized group

inverse of a singular M-matrix because we have seen that G#e = 0 in the previous

chapter. It is obvious from the definition that the off diagonal entries of anM-matrix are

nonpositive but we can also infer that the diagonal entries of both an M-matrix and its

inverse are positive by writing

n∑
k=1

aika
(−)
ki = 1 ⇔ aiia

(−)
ii = 1−

∑
k 6=i

aika
(−)
ki ≥ 1 i = 1, . . . , n

Indeed we have the following characterization.

Lemma 2.6 ([29]). Suppose A is a real matrix with nonpositive offdiagonal elements.

Then A is a nonsingular M-matrix if and only if A−1 ≥ 0

Using this Lemma we can define the inverseM-matrix problem as the question under

what conditions a nonnegative, nonsingular matrix is the inverse of an M-matrix. To

connect this problem to the inverse MFP-matrix problem we introduce the (n − 1) ×
n matrices

S(k) := [e1, · · · , ek−1,−e, ek, · · · , en−1]
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where the ei are the standard base vectors in Rn−1. In the following we will use the

notation Ak,j for the (n − 1) × (n − 1) submatrix of an n × n matrix A that we get by

removing the k-th row and j-th column and Ak to indicate that only the k-th row has

been deleted.

Lemma 2.7. Suppose that P is the transition matrix of a Markov chain on n states

with the MFP-matrix M and the stationary distribution vector π. Let G = I − P and

Π = diag(π1, · · · , πn). For k = 1, · · · , n define

H(k) := −S(k)N(S(k))>

Then

Πk,kGk,kH
(k) = I

Proof. First we note that

Πk,kGk,ke = (π1p1,k, · · · , πk−1pk−1,k, πk+1pk+1,k, · · · , πnpn,k1)> (2.7)

which is the k-th column of ΠkGk. It follows that

Πk,kGk,kS
(k) = (ΠG)k

Similarly using that ΠGN = ΠE − I we see that

Πk,kGk,kS
(k)N = (ΠG)kN = (ΠE − I)k.

Finally, using that S(k)e = 0 and that S(k)I>k = I we get that

ΠGS(k)NS(k)> = −I ⇔ Πk,kGk,kH
(k) = I

The entries of H(n) are given by

h
(n)
ij =

{
min +mnj −mij i 6= j

min +mni i = j.

The notation for k 6= n can get quite confusing:

H(k) = −
[
I −e 0

0 −e I

]N11 N12 N13

N21 0 N23

N31 N32 N33

 I 0

−e> −e>
0 I


= −

[
N11 − eN21 −N12e

> N13 − eN23 −N12e
>

N31 − eN21 −N32e
> N33 − eN23 −N32e

>

]
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such that the entries are given by

h
(k)
ij =

{
mĩk +mkj̃ −mĩj̃ i 6= j

mĩk +mkĩ i = j
where ĩ =

{
i i < k

i+ 1 i ≥ k.
(2.8)

Because this notation is hard to read and the relations between N and H is less clear,

we will often only describe the case k = n and write H := H(n). Nevertheless all the

properties that hold for H(n) also hold for the other H(k).

From the matrices H(k) and N the transition matrix P can be recovered with the row

and column sum relations as in (2.7) and similarly

e>(Hk)−1 = (πkpk,1, · · · , πkpk,k−1, πkpk,k+1, · · · , πkpk,n).

The stationary distribution vector π can be computed from N with Remark 1.21. The

next theorem gives a relation between the inverse MFP-matrix problem and the inverse

M-matrix problem.

Theorem 2.8 ([34]). Let H ∈ R(n−1)×(n−1). Then the following are equivalent:

(i) H is nonsingular, H−1 is a row and column diagonally dominant M-matrix, and

trace((I + E)H−1) ≤ 1

(ii) There exists an irreducible Markov chain on n states with a transition matrix P ∈
Rn×n and a stationary distribution vector π such that

Πn,nGn,nH = I.

where G = I − P , Π = diag(π).

(iii) There exists an MFP-matrix M of a Markov chain on n states, such that

H = −S(n)N(S(n))>.

where N is the matrix M with zero entries on the diagonal.

Proof. From Lemma 2.7 and the uniqueness of the inverse it is clear that (ii) and (iii)

are equivalent. We will show the equivalence of (i) and (ii).

Suppose first that (ii) holds. As described in the proof of lemma 2.7, the row and

column sums of H−1 = Πn,nGn,n are given by the nonnegative vectors

H−1e = (π1p1,n, · · · , πn−1pn−1,n)> (2.9)

e>H−1 = (πnpn,1, · · · , πnpn,n−1) (2.10)

⇒ e>H−1e = πn(1− pnn). (2.11)
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Furthermore it holds, that

trace((I + E)H−1) = trace(H−1) + trace(EH−1)

=
n−1∑
k=1

πk(1− pkk) +
n−1∑
k=1

πnpnk

=
n−1∑
k=1

πk −
n−1∑
k=1

πkpkk + πn(1− pnn)

= 1−
n∑
k=1

πkpkk

≤ 1

To see that H−1 is anM matrix recall that the principal submatrices of G are nonsingular

M-matrices. From Lemma 2.6 it follows that the set of M-matrices is closed under

multiplication with positive diagonal matrices, which makes Πn,nGn,n an M-matrix as

well.

Now assume, that (i) holds. The diagonal of EH−1 is given by eH−1 ≥ 0. Because H

is nonsingular eH−1 6= 0. This means that

trace(H−1) < trace(H−1) + trace(EH−1) = trace((I + E)H−1) ≤ 1.

Let d := {d1, . . . , dn−1} be the vector of diagonal entries of H−1, which are strictly positive

because H−1 is a nonsingularM-matrix. Because trace(H−1) ≤ 1 we can choose a vector

π = π1, . . . , πn such that πi ≥ di, i = 1, . . . , n− 1 and
∑n

i=1 πi = 1. Set Π := diag(π) and

P := I − Π−1
[

H−1 −H−1e
−e>H−1 e>H−1e

]
The diagonal dominance together with the sign structure of the entries of an M-matrix

guarantees that the off diagonal entries of P are nonnegative and π was chosen such that

the diagonal entries of P are nonnegative. Furthermore we have π>P = π> and Pe = e,

which makes P a transition matrix with stationary distribution π.

The matrix P is irreducible if and only if the block matrix

H̃−1 :=

[
H−1 −H−1e
−e>H−1 e>H−1e

]
is irreducible. Because H−1e 6= 0 and e>H−1 6= 0 the block matrix is only reducible, if

H−1 is reducible. Assume, that H−1 is reducible and Q a permutation matrix such that

QH−1Q> is block upper triangular as in Definition 1.8. The equation[
Q 0

0 1

] [
H−1 −H−1e
−e>H−1 e>H−1e

] [
QT 0

0 1

]
=

[
QH−1Q> −QH−1e
−e>H−1Q> e>H−1e

]
=

[
QH−1Q> −QH−1Q>e
−e>QH−1Q> e>QH−1Q>e

]
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shows that we can without loss of generality assume that H−1 itself is already in block

upper triangular form and therefore Q = I. We write

H−1 =

[
(H−1)1,1 (H−1)1,2

0 (H−1)2,2

]
and see that H̃−1 is only reducible if e>(H−1)1,1 = 0, but (H−1)1,1 is nonsingular which

means that H̃−1 is irreducible.

From the last proof we can give properties of H and H−1 for some special cases.

Remark 2.9. (i) If the transition matrix P is reversible i.e., ΠP = (ΠP )> the matrices

H and H−1 are symmetric.

(ii) If the diagonal entries of the transition matrix P are all equal to zero the trace

inequality becomes an equality i.e.,

trace((I + E)H−1) = 1.

Such a case is not uncommon and is given for so called Embedded Markov Chains.

(iii) In [24] one can find a probabilistic interpretation of the entries of H. Let N ik
j be

the expected number of visits to j on a path from i to k, then

hij :=
N ik
j

πj
.

While in the proof of Theorem 2.8 the choice of the stationary distribution was arbi-

trary as long as its entries were greater than the diagonal entries of H̃−1, in practice the

stationary distribution can be computed using equation (2.1) by writing[
H−1 −H−1e
−e>H−1 e>H−1e

]
N = πe> − I

An advantage of Theorem 2.8 is that the conditions given in (i) are sometimes easier

to check than the irreducibility in (ii), which can be applied to Corollary 2.3. Note

that for H := H(k) for some k = 1, . . . , n, H−1 is the principal submatrix of N−1 that

we get by deleting the k-th and n + 1-st rows and columns. The inequalities given in

Corollary 2.3 make sure H−1 has the sign pattern of an M-matrix. If its inverse that

is given by H = −S(k)A(S(k))> has nonnegative entries, H−1 is an M matrix and the

transition matrix I + diag(v)−1U is irreducible because of Theorem 2.8. This means

that the condition “U is irreducible” can be replaced by H = −S(k)A(S(k))> ≥ 0. This

property will be used to update Corollary 2.3.
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Corollary 2.10. Let A ∈ Rn×n be a nonsingular matrix with diag(A) = 0 and otherwise

positive entries such that the inverseA e

e> 0

−1 =:

[
U v

w z

]
(2.12)

exists. The matrix A is the MFP-matrix of an irreducible Markov chain on n states with

stationary distribution v if the following hold:

(i) S(k)A(S(k))> ≤ 0

(iii) diag(v)(E−I) ≥ U ≥ −diag(v) > −I.

(ii) v > 0

The introduction of theM-matrix has given us a new perspective on the inverse MFP-

matrix problem. In the next chapter we will develop some inequalities for the entries of

M based on both, the properties of mean first passage times and the class ofM-matrices.



Chapter 3

Inequalities for Mean First Passage Times

Before we attempt to complete a partial MFP-matrix we will develop upper and lower

bounds for the missing entries and the transition probabilities. As it turns out determining

entries such that the completed matrix is an MFP-matrix requires that certain inverse

matrices have the correct sign pattern. Having bounds on the inverse makes the problem

very hard to solve but even if a solution has been found it is not necessarily clear whether

this solution is close to the original process. With the bounds presented in this chapter it

will be possible to give first estimates, to narrow down the set of possible solutions, and

evaluate uncertainties in the solutions.

Mean first passage times can be understood as a distance measure for a random walk

on a graph that is weighted by the transition matrix P . Though this distance is not a

metric because it is not symmetric, we have the following triangle inequality.

Theorem 3.1 ([26]). Let M be the MFP-matrix of an irreducible Markov chain on n

states. Then for i, j, k = 1, . . . , n it holds that

mik +mkj ≥ mij.

Equality holds if and only if j is distinct from both i and k, and in addition, every path

from state i to state k passes through state j.

Note that these triangle inequalities are basically the entries of the matrices H(k) from

the last chapter, which shows again that H(k) ≥ 0. We illustrate this theorem with an

example.

Example 3.2. Figure 3.1 shows a transition network with three subsets (blue, red and

green) with each containing three states. The probabilities to stay in a group is much

higher than to leave it. Between the groups only jumps in one direction are possible which

creates a directed cycle between the groups. Any path from blue to green has to pass through

red. We therefore have for example m36 = m69 = 30 and m39 = 60. In section 5.2 we will

explore this example further.

The triangle inequality already yields upper and lower bounds for an unknown en-

try mij:

max{mik −mjk,mkj −mki, 1} ≤ mij ≤ mik +mkj k = 1, . . . , n
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Figure 3.1: A cyclic process between three sets

Defining a digraph using a partial MFP-matrix with edges between states if their mean

first passage time is known, the triangle inequality gives upper and lower bounds for each

entry if the graph is strongly connected, i.e., if every state can reach any other state.

In other words, the time mij can be approximated if there is a path i1, . . . , is such that

mi1i2 , . . . ,mis−1is are known, then mij ≤
∑s−1

k=1mikik+1
. In the following we will improve

these bounds by using the IM-matrices H(k).

Recall that a nonsingular M-matrix A is defined by a matrix T ≥ 0 and a value

s > ρ(T ) such that A = sI − T . Let λ1, . . . , λn be the eigenvalues of T with |λi| < s. It

follows from T being real valued, that det(A) =
∑n

i=1(s− λi) > 0.

There are various parallels between M and IM-matrices. In Theorem 2.5 it was

stated that each principal submatrix of a nonsingular M-matrix is itself a nonsingular

M-matrix. The same holds for IM-matrices.

Lemma 3.3 ([18]). Let A be a nonsingular IM-matrix. Then each principal submatrix

of A is a nonsingular IM-matrix.

Proof. It follows from Lemma 2.6, that for every permutation matrix Q the matrices QAQ

and QA−1Q are IM andM-matrices respectively. This means, it is enough to show that

the leading principal submatrices of A are IM-matrices.

Let B := A−1 and using that the principal minors of B are positive we write

B =

(
B11 B12

B21 B22

)
=

(
B11 −B12B

−1
22 B21 B12B

−1
22

0 I

)(
I 0

B21 B22

)
=

(
I 0

B21B
−1
11 B22 −B21B

−1
11 B12

)(
B11 B12

0 I

)
to see that det(B) = det(B11) det(B22−B21B

−1
11 B12) = det(B22) det(B11−B12B

−1
22 B21) > 0
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and A can therefore be written using the Schur-complement

A =

(
A11 A12

A21 A22

)

=

 [B11 −B12B
−1
22 B21]

−1 −B−111 B12[B22 −B21B
−1
11 B12]

−1

−[B22 −B21B
−1
11 B12]

−1B21B
−1
11 [B22 −B21B

−1
11 B12]

−1



=

 [B11 −B12B
−1
22 B21]

−1 −[B11 −B12B
−1
22 B21]

−1B12B
−1
22

−B−122 B21[B11 −B12B
−1
22 B21]

−1 [B22 −B21B
−1
11 B12]

−1

 .

Because B11, B22 are M-matrices and B12, B21 are nonpositive, A−111 = B11 − B12B
−1
22 B21

has only nonpositive offdiagonal entries and it follows with Lemma 2.6 that A12 is an

IM-matrix.The same holds for A22 and in fact any principal submatrix.

In the notation of the last proof, let A11 be the leading principal submatrix of order

n−1. The matrix A11−A12A
−1
22 A21 is then an IM-matrix as well and for i, j = 1, . . . , n−1

it holds that
ainanj
an

≤ aij.

As it turns out, this inequality is just a special case.

Definition 3.4. Let A ≥ 0 a matrix of order n with positive diagonal entries. We call A

a path product (PP) matrix if for every triple i, j, k = 1, . . . , n we have

aikakj
akk

≤ aij.

If for i = j the inequality is strict, we call A a strict path product matrix (SPP-matrix).

Lemma 3.5 ([20]). Every IM-matrix is an SPP-matrix.

Proof. Let A be the 2×2 principal submatrix given by i and k. We know from Theorem 3.3

that A is a nonsingular IM-matrix. and therefore

0 < det(A) = aiiakk − aikaki

which is the strict inequality needed for SPP-matrices. Now let A be the 3× 3 principal

submatrix given by the distinct coordinates i, j, k

A =

aii aik aij
aki akk akj
aji ajk ajj


The adjugate adj(A) of a matrix A is given via

adj(A)ij = (−1)i+j det(A{j, i})
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and if A is nonsingular its inverse is given via

A−1 =
1

det(A)
adj(A).

Applying this formula to theM-matrix C := A−1 and taking advantage of its sign pattern

gives

c31 =
aikakj − aijakk

det(A)
≤ 0

⇒ aikakj − aijakk ≤ 0

⇔ aikakj
akk

≤ aij

The SPP-property gives lower bounds on the inverse of an IM-matrix.

Theorem 3.6. For an M-matrix A = {aij}i,j=1,...,n and its inverse A−1 := B =

{bij}i,j=1,...,n the following inequalities hold:

(i) aij ≥ −
bij

biibjj − bijbji

(ii) aii ≥
bjj

biibjj − bijbji
for all j 6= i

Proof. Inequality (i) and (ii) are a result of applying the SPP-property in the following

way:

0 =
n∑
k=1

aikbkj = aijbjjbii + aiibijbii +
∑
k 6=i,j

aikbkjbii

≤ aijbjjbii + aiibijbii +
∑
k 6=i,j

aikbkibij

= aijbjjbii + aiibijbii + (1− aijbji − aiibii)bij
= bij + aij(bjjbii − bijbji)

⇒ aij ≥ −
bij

biibjj − bijbji

0 =
n∑
k=1

aikbkj = aijbjjbji + aiibijbji +
∑
k 6=i,j

aikbkjbji

≥ aijbjjbji + aiibijbji +
∑
k 6=i,j

aikbkibjj

= aijbjjbji + aiibijbji + (1− aijbji − aiibii)bjj
= bjj − aii(bjjbii − bijbji)

⇒ aii ≥
bjj

biibjj − bijbji
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In particular the inequality (i) implies, that bij = 0 ⇒ aij = 0. We should note that

the SPP-property for IM-matrices and Theorem 3.6 can also be seen as special cases of

more general results. The proof of Lemma 3.5 indicates that similar, but more complex

inequalities can be found for higher dimensional submatrices and applying the following

lemma for |α| = 2 results in Theorem 3.6.

Lemma 3.7 ([21]). Let A be an M- or IM-matrix and ∅ 6= α ⊂ {1, . . . , n}. If the

notation A[α] refers to the submatrix of A with respect to the set α, then

(i) (A−1[α])−1 ≤ A[α]

(ii) A[α]−1 ≤ A−1[α]

Let A be an M-matrix, B its inverse and α = {i, j} ⊂ {1, . . . , n}, i 6= j. The

inequalities from Theorem 3.6 follow from

A[α]−1 :=

[
aii aij
aji ajj

]−1
=

[
ajj −aij
−aji aii

]
1

aiiajj − ajiaij
≤
[
bii bij
bji bjj

]
= A−1[α].

Plugging the entries of the IM-matrices H(k) into the SPP-property improves the

triangle inequalities from Theorem 3.1. For that we introduce the notation

qkij =

{
mik +mkj −mij i 6= j

mik +mki i = j.
k 6= i, j.

This notation makes it easier to see the relationship between H(k) and the mean first

passage times.

Theorem 3.8. Let M be the MFP-matrix of an irreducible Markov chain on n states and

akij given as above. For fixed states k, s = 1, . . . , n, s 6= k and every i, j 6= k, the following

inequalities hold:

mij ≤ mik +mkj −
qkisq

k
sj

qkss
(3.1)

mij ≥ mik +mkj −
qkiiq

k
sj

qksi
if qksi 6= 0 (3.2)

mij ≥ mik +mkj −
qkjjq

k
is

qkjs
if qkjs 6= 0 (3.3)

More generally, for distinct i, j, k, s it holds that

mij ≤ mik +mkj −
(mik +mks −mis)(msk +mkj −msj)

(msk +mks)
(3.4)
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The inequalities are just a result of reordering the SPP-property for the matrices H(k).

The formulation implies, that the k-th and s-th rows and columns are known.

Remark 3.9. (i) The upper bound (3.1) is clearly a strict improvement to the triangle

inequality. To see that the lower bounds (3.2) and (3.3) improve the estimates

assume that qkjs 6= 0 and that mij ≥ mis −mjs ≥ mik −mjk.

mij ≥ mik +mkj −
qkjjq

k
is

qkjs
± qkjj

= mik −mjk +
qkjj
qkjs

(qkjs − qkis)± (mis −mjs)

= mis −mjs + (mis −mjs − (mik −mjk))

(
qkjj
qkjs
− 1

)

= mis −mjs + (mis −mjs − (mik −mjk))
qjns
qkjs

≥ mis −mjs

An analogues proof works for the inequality (ii) and if mij ≥ mik−mjk ≥ mis−mjs

we only need to swap k and s.

(ii) Note that

qkijq
k
ss − qkisqksj = qsijq

s
kk − qsikqskj.

This means that we can swap s and k in (3.1).

(iii) For (3.1) to (3.3) we did not assume, that i 6= j. In particular

1

πi
= mii ≤ qkii −

qkisq
k
si

qkss

follows from Corollary 3.11.

Theorem 3.1 said, that mij = mik + mkj if and only if i can reach j only by passing

k. With the SPP-property we can give conditions under which this is the case.

Corollary 3.10. Let M be the MFP-matrix of an irreducible Markov chain on n states.

Then for distinct states i, j, k = 1, . . . , n we have

mik +mkj = mij.

if one of the following two conditions hold:
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(i) There is a state s such that

msk +mkj = msj ∧ msk +mki > msi

(ii) There is a state s such that

mik +mks = mis ∧ mjk +mks > mjs

Proof. We will again use the notation qkij:

qksiq
k
ij ≤ qkiiq

k
sj

and

qkijq
k
js ≤ qkjjq

k
is

With qkii, q
k
jj > 0, the left hand sides are zero if qkis = qksj = 0 i.e., qksj = 0 and qksi 6= 0

implies qkij = 0 and analogously for the second equation.

The inequalities of Theorem 3.6 applied to (H(k))−1 = (Π(I − P ))k,k result in the

following corollary.

Corollary 3.11. Let P = {pij}i,j=1,...,n be an irreducible transition matrix with stationary

distribution π = {πi}i=1,...,n and MFP-matrix M = {mij}i,j=1,...,n. For H = H(n) = P =

{pij}i,j=1,...,n−1 and i < n it holds that

πi ≥ πi(1− pii) ≥
hjj

hiihjj − hijhji
≥ hij
hiihjj − hijhji

≥ πipij

More generally, for distinct coordinates k, i, j the following inequalities hold:

πi(1− pii) ≥
mjk +mkj

(mik +mki)(mjk +mkj)− (mik +mkj −mij)(mjk +mki −mji)

πipij ≤
mik +mkj −mij

(mik +mki)(mjk +mkj)− (mik +mkj −mij)(mjk +mki −mji)

These inequalities give a lower bound on H−1. An upper bound is given by the identity

matrix, because πi(1− pii) ≤ 1 and πipij > 0. These inequalities guarantee the same sign

pattern as an M-matrix, but only those matrices inside these intervals, whose inverses

are non-negative are in fact M-matrices. In the same way, only those matrices H inside

the intervals specified by equations (3.1)-(3.3) are IM-matrices whose inverses have non-

positive off-diagonal entries. In other words, we have two matrices whose entries are only

given by intervals, but we know that these matrices must be inverse to each other. In

the next chapter it is shown how the solutions of linear systems given by intervals can be

approached.



Chapter 4

Interval Arithmetic

In the last chapter lower and upper bounds for the matrices H(k), (H(k))−1 and M , have

been developed. This means that for every matrix entry we know an interval that includes

the correct value. Interval arithmetic is a tool to formalize computations using intervals

instead of numbers. In this chapter we want to give a short introduction to interval

arithmetic and it will be shown how the estimates can be improved. For the definitions

and notation we will follow [33].

The set of all real intervals will be denoted by IR. Every interval x ∈ IR is defined by

numbers x, x ∈ R such that

x := [x, x] := {x̃ ∈ R|x ≤ x̃ ≤ x}

where x = inf(x), x := sup(x). If x = x it follows that x ∈ R. Analogously we can define

an X ∈ IRn×m if there are matrices X,X ∈ Rn×m such that X is given by

X := [X,X] := {X̃ ∈ Rn×m|xij ≤ x̃ij ≤ xij, i = 1, . . . , n; j = 1, . . . ,m}.

Instead of the infima and suprema an interval can also be determined by its midpoint and

radius

Ǎ := mid(A) := 0.5(A+ A) rad(A) := 0.5(A− A)

For a bounded set S ⊂ Rm×n the smallest interval that contains S is called the hull of S

and is denoted by �S such that

�S = [inf(S), sup(S)].

Intervals can be compared by

x ≥ y ⇔ x ≥ y x ≤ y ⇔ x ≤ y.

The basic arithmetic rules for intervals are quite intuitive. Addition and subtraction are

given by

x+ y = [x+ y, x+ y]

x− y = [x− y, x+ y]
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xy x ≥ 0 0 ∈ x x ≤ 0

x ≥ 0 [xy, xy] [xy, xy] [xy, xy]

0 ∈ x [xy, xy] [min{xy, xy},max{xy, xy}] [xy, xy]

x ≤ 0 [xy, xy] [xy, xy] [xy, xy]

Table 4.1: multiplication of intervals

x/y y > 0 y < 0

x ≥ 0 [x/y, x/y] [x/y, x/y]

0 ∈ x [x/y, x/y] [x/y, x/y]

x ≤ 0 [x/y, x/y] [x/y, x/y]

Table 4.2: division of intervals

while multiplication and division are summarized in table 4.1 and 4.2. More complex

operations like matrix products inherit these rules.

Applying the lower and upper bounds from chapter 3 to the inverse problems in

chapter 2 means that the MFP-matrix completion problem can be stated in the form

“for interval matrices A,B find X ∈ A, Y ∈ B such that XY = I”. The columnwise

computation of the intervals for the inverse matrix then takes the form

Ax = b A ∈ IRm×n; b ∈ IRm. (4.1)

where b is one of the standard basis vectors. Using equations like Nπ = κe can be used

to compute intervals for the stationary distribution. The solution set for (4.1) is defined

by

Σ(A, b) := {x̃ ∈ Rn|Ãx̃ = b̃, Ã ∈ A, b̃ ∈ b}.

Theorem 4.1. Let A ∈ IRm×n, b ∈ IRm. Then

Σ(A, b) = {x̃ ∈ Rn|Ax̃ ∩ b 6= 0} = {x̃ ∈ Rn|0 ∈ Ax̃− b}

Corollary 4.2. Let A ∈ IRm×n, b ∈ IRm. Then

x̃ ∈ Σ(A, b)⇔ |Ǎx̃− b̌| ≤ rad(A)|x̃|+ rad(b)

The inequality in the last corollary implies the existence of a diagonal matrix D, such

that Dx̃ = |x̃| and

(Ǎ− rad(A)D)x̃ ≤ b (Ǎ+ rad(A)D)x̃ ≥ b.
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In general only the hull �Σ(A, b) or an enclosure of it can be computed. There are classes

of matrices for which these methods work better than for others.

Definition 4.3. Let A ∈ IRn×n and 〈A〉 be given by

〈A〉ij :=

{
min(|Ãii| ∈ Aii) i = j

−max(|Ãij| ∈ Aij) i 6= j

then

(i) A is called regular, if every Ã ∈ A is nonsingular.

(ii) A is called strongly regular, if Ǎ−1A is regular.

(iii) A is called an H-matrix if 〈A〉 is an M-matrix.

Lemma 4.4. Let A ∈ IRn×n and Ǎ nonsingular. Then the following are equivalent:

(i) A is called strongly regular.

(ii) ρ(|Ǎ−1|rad(A)) < 1.

(iii) Ǎ−1A is an H-matrix.

Standard linear equations are typically solved using the LU-decomposition followed

by forward and backward substitution. In some cases this method is also applicable to

linear interval equations, though the relations are given by

A ⊆ LU, Ly ⊇ b, Ux ⊇ y.

If an LU-decomposition exists, A is regular and if xG is the solution of the forward and

backward substitution, it holds that Σ(A, b) ⊆ xG.

Theorem 4.5. Let A ∈ IRn×n be an H-matrix. Then A has a LU-decomposition (L,U).

If 〈A〉 = A then 〈A〉 = 〈L〉〈U〉
Even if A is not strongly regular, the matrix interval Ǎ−1A should be close to the

identity matrix I, which is why Ǎ is used for preconditioning.

If, either from some general condition or as result of a method like Gauss elimination,

there is a known enclosure x0 ⊇ Σ(A, b), an iterative method like interval Gauss-Seidel

might be used to tighten the bounds via

xj+1
i :=

bi −
∑

k<iAikx
j+1
k −

∑
k>iAikx

j
k

Aii
∩ xji i = 1, . . . , n.

In [33] several special cases to compute the inverse interval matrix are discussed, but it

should be noted that it was shown in [4] that it is NP -hard to compute the exact bounds

on the elements of an inverse interval matrix.

It cannot be guaranteed that any of the interval matrices from the previous chap-

ters are strongly regular or H-matrices, though numerical experiments have shown that

interval arithmetics yield improved bounds. Implementations of interval arithmetics for

MATLAB/Octave are available in the software package INTLAB (see [39]).
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Completing a Partial MFP-Matrix

The matrix completion problem received broader attention in the last years due to the

“Netflix Prize”, which was a competition to improve a system of movie recommendations

based on a matrix that consisted of movie ratings given by users (see [2]). A key assump-

tion was that the matrix in question had a low rank, because users with similar taste

would give similar ratings. A common assumption for molecular systems with, say, m

metastabilities is that the spectrum of the transition matrix shows a spectral gap after

the m-th eigenvalue. The spectral gap could be used as a motivation for a low rank

assumption on N , but to retrieve the transition matrix P we need N and H to be nonsin-

gular. Moreover, the inequalities developed so far already give estimates on the entries,

that can be used to analyze the system. We will focus on the problem of finding a real

MFP-matrix.

Another approach to matrix completion is determinant maximization [28], which has

been applied to the IM-matrix completion problem in the past. In [19] and [12] conditions

are given under which a partial matrix can be completed to an IM-matrix. The authors

show that if a partial matrix can be completed to an IM-matrix a solution is given by

replacing the unknown entries with zeros. Johnson and Smith show in [19] even that this

solution is maximizing the determinant. Setting missing entries of the IM-matrix H to

zero would in most cases contradict the lower bounds, that are already known, so these

approaches don’t seem to find the solutions we are looking for.

Instead, we will use a point of view from interval arithmetics. For the MFP-matrix N

we again define the (n+ 1)× (n+ 1) dimensional matrices

N :=

[
N e

e> 0

]
, N−1 =

[
−Π(I − P ) π

e>N−1κ −κ

]
. (5.1)

and H := H(k) for some k = 1, . . . , n. Recall that H = S(k)N(S(k))> and H−1 is the

principal submatrix of N−1 that we get by deleting the k-th and n+1-st row and column.

Let XN , YN−1 , XH , YH−1 be the interval matrices such that N ∈ XN , N−1 ∈ YN−1 , H ∈
XH , H

−1 ∈ YH−1 . First the two problems that we developed to solve the MFP-completion

problem will be reformulated. Following the ideas from section 2.1 and Corollary 2.10 the

problem of finding the matrices N and N−1 can be formulated as:
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Problem 1: Let the matrices X, Y ∈ R(n+1)×(n+1) be given by

X :=

[
X11 e

e> 0

]
, Y :=

[
Y11 Y12
Y21 Y22

]
where the blocks have the same dimensions as the blocks of N , N−1 in (5.1). Then the

matrices X, Y define a solution to the MFP-matrix completion problem if they meet the

conditions

(1.i) XY = I

(1.ii) X ∈ XN , Y ∈ YN−1

(1.iii) Y12 ≥ −diag(Y11)

(1.iv) S(k)X11(S
(k))> ≤ 0.

Similarly, following section 2.2 the problem of finding the matrices H and H−1 can be

formulated as:

Problem 2: The matrices X, Y ∈ R(n−1)×(n−1) define a solution to the MFP-matrix

completion problem if they meet the conditions

(2.i) XY = I

(2.ii) X ∈ XH , Y ∈ YH−1

(2.iii) Y e ≥ 0, e>Y ≥ 0

(2.iv) trace((I + E)Y ) ≤ 1.

The main problem is the equation XY = I, because for both problems all remaining

conditions are linear. A condition for a vector x is linear if it has the form Ax ≤ b for a

matrix A and a vector b. To see that the conditions (ii)-(iv) in Problem 1 and Problem 2

can be formulated as linear conditions we introduce the following notation.

Definition 5.1 ([13]). For arbitrary matrices A ∈ Rn×m, B ∈ Rs×t the Kronecker product

C := A⊗B is defined by the matrix

C :=

a11B · · · a1mB
...

. . .
...

an1B · · · anmB

 .
For any matrix A ∈ Rn×m the vectorization vec(A) : Rn×m → Rnm is the column vector

obtained by stacking the columns of A on top of another.

The following lemma shows how matrix equations can be formulated as linear equa-

tions.

Lemma 5.2 ([13]). For matrices A ∈ Rn×m, X ∈ Rm×s B ∈ Rs×t, and C ∈ Rn×t it holds

that

AXB = C ⇔ (B> ⊗ A)vec(X) = vec(C).

There is a unique solution X to this matrix equation if and only if A and B are nonsin-

gular.
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How can it be achieved that XY = I under the given conditions? In the following

it will be shown that the MFP-problem might be solved using a difference of convex

functions programming (d.c. programming) approach.

5.1. Formulation as a D.C. Programming Problem

First some facts about convex and concave functions will be stated.

Definition 5.3 ([14]). A set C is called convex if for all x, y ∈ C and every α ∈ (0, 1)

it holds that αx + (1 − α)y ∈ C. A function f : Rn → R is called convex if for every

α ∈ (0, 1) it holds that

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

Similarly f is called concave if for every α ∈ (0, 1) it holds that

f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y).

Lemma 5.4 ([14]). Let f and g be convex functions, then it holds that

(i) −f is a concave function

(ii) f + g and max(f, g) are convex functions

(iii) if f is differentiable and ∇f is its gradient, then

f(x) ≥ f(y) + (x− y)>∇f(y)

(iv) the epigraph of f

epi(f) := {(x, t)|t ∈ R, f(x) ≤ t}

is a convex set.

Definition 5.5 ([14]). A real-valued function f defined on Rn is called d.c. if, for all

x ∈ Rn, f can be expressed in the form

f(x) = p(x)− q(x)

where p, q are convex functions. A global optimization problem is called a d.c. program-

ming problem or a d.c program if it has the form

min f(x)

s.t. x ∈ C
gj(x) ≤ 0 j = 1, . . . ,m

where C is a closed convex subset of Rn and all functions f and gj are d.c.
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We will now show that the condition XY = I can be achieved by minimizing a d.c.

function.

Lemma 5.6. The function

F : Rn×n × Rn×n → R
F (X, Y ) = ‖XY − I‖2,

where ‖ · ‖ is the Frobenius norm, is a d.c. function.

Proof. Let x1, . . . , xn ∈ Rn be the rows of the matrix X, y1, . . . , yn ∈ Rn the columns of

the matrix Y and

δij =

{
1 if i = j

0 else.

Then F can be written as

F (X, Y ) = ‖XY − I‖2 =
n∑

i,j=1

(x>i yj − δi,j)2

=
n∑

i,j=1

[
1

4
‖xi + yj‖2 −

1

4
‖xi − yj‖2 − δi,j

]2
=

n∑
i,j=1

2

[
1

16
‖xi + yj‖4 +

(
1

4
‖xi − yj‖2 + δij

)2
]

−
[

1

4
‖xi + yj‖4 +

1

4
‖xi − yj‖2 + δij

]2
=: p(X, Y )− q(X, Y )

Because (x, y)→ ‖x+y‖2 is convex and the square of a positive convex function is convex

it follows that p and q are convex and F is a d.c. function.

The convex function p and q can be simplified further by

q(X, Y ) =
n∑

i,j=1

[
1

4

(
‖xi + yj‖2 + ‖xi − yj‖2

)
+ δij

]2
=

n∑
i,j=1

[
1

4

(
2‖xi‖2 + 2‖yj‖2

)
+ δij

]2
=

n∑
i,j=1

1

4

(
‖xi‖2 + ‖yj‖2

)2
+

n∑
i=1

‖xi‖2 + ‖yi‖2 + n

=
n∑

i,j=1

1

4

(
‖xi‖2 + ‖yj‖2

)2
+ ‖X‖2 + ‖Y ‖2 + n.
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and

p(X, Y ) =
n∑

i,j=1

2

[
1

16
‖xi + yj‖4 +

(
1

4
‖xi − yj‖2 + δij

)2
]

=
n∑

i,j=1

1

8

(
‖xi + yj‖4 + ‖xi − yj‖4

)
+

n∑
i=1

‖xi − yi‖2 + 2n

=
n∑

i,j=1

1

8

(
‖xi + yj‖4 + ‖xi − yj‖4

)
+ ‖X − Y ‖2 + 2n

As described in [14] the d.c. program can be formulated as a concave program over a

convex set using an additional variable t ∈ R:

min t− q(X, Y ) (5.2)

s.t. p(X, Y ) ≤ t (5.3)

(X, Y, t) ∈ C (5.4)

Because p is convex the set of all X, Y, t satisfying (5.3) and (5.4) is convex as well. It is a

standard result of global optimization, that a concave function over a convex set attains

its minimum on the boundary of that set. In the above problem this property is very

intuitive, because the variable t can be decreased until p(X, Y ) = t and the minimum is

attained if q(X, Y ) = t.

The set C of feasible solutions is of the form

C = {(x, t) ∈ R2n2 × R | x ≤ x ≤ x, t ≤ t ≤ t, Ax ≤ b},

where A and b describe the linear conditions stated in the beginning of this chapter and

x = vec

([
X

Y

])
. We can give two additional types of linear conditions. Because p and q

are convex, it holds for any fixed x0 ∈ R2n2
by Lemma 5.4 that

t ≥ p(x) ≥ p(x0) + (x− x0)>∇p(x0) ⇔
[
x> t

] [∇p(x0)
−1

]
≤ x>0∇p(x0)− p(x0)

t ≥ q(x) ≥ q(x0) + (x− x0)>∇q(x0) ⇔
[
x> t

] [∇q(x0)
−1

]
≤ x>0∇q(x0)− q(x0).

From the chapter on interval arithmetic Corollary 4.2 can be utilized in the form

(X̌H − rad(XH)Di)yi ≤ ei (X̌H + rad(XH)Di)yi ≥ ei

(X̌N − rad(XN )Di)yi ≤ ei (X̌N + rad(XN )Di)yi ≥ ei
(5.5)

where the yi are again the columns of Y respectively and Di is the diagonal matrix such

that |yi| = Diyi. The matrix Di is known, because all the signs of the entries of H−1 and

N−1 are known except those for e>N−1 but the last row and column of N are known.
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Algorithm 1 Alternating Minimization

1: Input: initial matrix X0; feasible set C; tolerance tol ; maximal number of iterations

K

2: Output: matrices X, Y

3: for k = 1 to K do

4: Yk := minY ‖Xk−1Y − I‖ s.t. [Xk−1, Y ] ∈ C
5: Xk := minX ‖XYk − I‖ s.t. [X, Yk] ∈ C
6: if ‖XkYk − I‖ < tol then

7: break

8: end if

9: end for

This means that for XN the last row and column of rad(XN ) are zero so that the signs

of e>N−1 do not matter. Because H and N both have only nonnegative entries, it also

follows from Corollary 4.2 that

YH−1X ≤ I YH−1X ≥ I for X ∈ XH

YN−1X ≤ I YN−1X ≥ I for X ∈ XN .
(5.6)

The inequalities (5.5) and (5.6) further narrow down the feasible set C.
The d.c. program (5.2)-(5.4) can be solved using so called Branch-and-Bound -

Algorithms (see [14], chapter 4.6). In these methods the set of feasible solutions is relaxed

and partitioned into subsets, in which a solution can be found easier. Each subset, whose

optimal solution is worse than the best solution that has been found up to that point,

will be cut from the set of feasible solutions. For this thesis such an algorithm has not

been implemented. This is partly due to a lack of time, but also because the focus of this

thesis was to create a theoretical basis with which the cost of simulations for sampling

mean first passage times can be reduced and not the algorithmic treatment of global

optimization problems. Instead, a linearization has been formulated and applied.

5.2. Linearization and Numerical Examples

As a preprocessing step we solved for each variable easier linear programs of the form

min /max xi

s.t. x ∈ C
(5.7)

to find lower and upper bounds that at the same time meet the linear conditions specified

by the feasible set C.
In order to compute a suboptimal solution, a simplified problem has been solved. For

a fixed matrix X0 the objective function F (Y ) = ‖X0Y − I‖2 can be written as a linear
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program via

min ε (5.8)

s.t. X0Y − εE ≤ I (5.9)

X0Y − εE ≥ I (5.10)

where ε is an additional slack variable. Algorithm 1 has been inspired by some elements

of the solutions of the Netflix Prize (see [27]). The Algorithm takes some initial matrix

X0, fixes alternately either X or Y and computes the optimal solution relative to the fixed

matrix. In each iteration it holds that ‖XkYk − I‖ ≤ ‖Xk−1Yk−1 − I‖ because

‖XkYk − I‖ = min
X

‖XYk − I‖

≤ ‖Xk−1Yk − I‖
= min

Y
‖Xk−1Y − I‖

≤ ‖Xk−1Yk−1 − I‖.

Though these linear problems are relatively easy to solve, there is no guarantee that this

approach will lead to an optimal solution, i. e., matrices that are inverse to each other.

The sequence ak := ‖XkYk − I‖ is a bounded monotonically decreasing sequence and

therefore will converge, but we do not know the rate of convergence. It is also not clear

whether the

In the first application we will return to Example 3.2 and see how well the estimates

work if the graph corresponding to the transition matrix has a certain structure. In the

second example we will look at a data set from the field of molecular dynamics, from

where the initial motivation for this thesis came. In both cases th knowledge of certain

rows and columns was assumed. The work flow was the same as the structure of this

thesis implied, i. e.

• The inequalities of chapter 3 have been applied to attain upper and lower bounds

on H,N , and N−1.

• The interval Gauss-Seidel has been used to tighten these bounds

• The preprocessing (5.7 has been solved or a C that contained apart from the condi-

tions (ii)-(iv) in Problem 1 and Problem 2 also the inequalities (5.5) and (5.6)

• As a start value for Algorithm 1 the midpoint matrices X̌N and X̌H have been

chosen

Cycle of three Cluster As described in Example 3.2 the graph in figure 3.1 describes

a process with three sets of states between which jumps occur relatively rare. Every jump

between the main sets involves the three nodes 3, 6 and 9. We assumed that the rows and

columns of N for the states 3, 6 and 9 are known, which corresponds to 42 of the overall
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81 mean first passage times. After the preprocessing step for H := H(9) we are left with

the radii of the two interval matrices XH and YH−1

rad(XH) =



0 11.9032 0 0 0 0 0 0

11.9032 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 11.9032 0 0 0

0 0 0 11.9032 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 11.9032

0 0 0 0 0 0 11.9032 0



rad(YH−1) =



0.0487 0.0570 0.0302 0 0 0 0 0

0.0570 0.0487 0.0302 0 0 0 0 0

0.0626 0.0626 0.0194 0 0 0 0 0

0 0 0 0.0487 0.0570 0.0302 0 0

0 0 0 0.0570 0.0487 0.0302 0 0

0 0 0 0.0626 0.0626 0.0194 0 0

0 0 0 0 0 0 0.0487 0.0570

0 0 0 0 0 0 0.0570 0.0487


.

We see that the number of free variables in H and therefore in N has been reduced to 6.

Also already a lot of zero values in H−1 were found, which correspond to zero values in P .

The remaining entries in H−1 have been narrowed down to intervals with the approximate

length of 0.1. In fact, when we added the condition pii = 0 as it is indicated in Figure 3.1,

the matrix Y̌H−1 is the same matrix with respect to the transition probabilities in the

graph, i.e., the preprocessing not only already solved the problem but even found the

correct solution. The preprocessing for N and N−1 yields the same results.

Butane The initial motivation to estimate mean first passage times and transition prob-

abilities from an incomplete MFP-matrix came from molecular dynamics, which is why

we want to look at a data set from a simulation of a small molecule.

The transition matrix P shown in figure 5.1a has been constructed from a time series

of the dihedral angle that is defined by the four carbon atoms of butane. The three blocks

of P are related to the three macroscopic states in which butane spends most of its time.

They are called metastabilities. In the last example, to estimate the missing entries we

chose those states that needed to be visited on most paths in the graph. With the same

motivation in this case we chose one state from each metastability, i.e., the states 5, 11,

and 17 in figure 5.1a. After upper and lower bounds have been computed, Algorithm 1

was applied for X0 = X̌N and K = 100. The transition matrix that was extracted from

the resulting estimate of N−1 had a similar block structure as the original matrix and

can be seen in figure 5.1b.
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The PCCA+ algorithm is a kind of spectral clustering algorithm that can be used

to partition the set of states of a transition matrix such that the probability to stay in

a certain partition is maximized. The identification of such a partitioning is a common

analysis tool in molecular dynamics (see [5, 6]). Applying PCCA+ to the two transition

matrices yields the same partitioning which supports the impression that the solution

describes the dynamic of the system well.

(a) original transition matrix

(b) estimation based on MFPs of the states 5, 11, and 17 and subsequent application of Algorithm 1.

Figure 5.1: transition matrix based on simulation data of butane in water.
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Conclusion

In molecular dynamics the computation of mean first passage times needs a lot of time,

energy and data, so we started out with the question whether it is possible to attain

information about the full system from a smaller data set. In the representation of mean

first passage times as a matrix the question was how to determine the missing entries of

a partial matrix such that the completed matrix is the MFP-matrix for an irreducible

transition matrix.

M.Neumann and Nung-Sing Sze ([34]) have worked on the general problem of deciding

whether a positive matrix is a MFP-matrix and showed a connection between MFP-

matrices and M-matrices. We used this relationship to develop lower and upper bounds

not only for mean first passage times but also for the transition probabilities and the

stationary distribution based on the knowledge of a subset of states. On the one hand these

intervals can be used to compute an estimation using for example a d.c. programming

approach as described in chapter 4. The inverse MFP-matrix problem is only solved if a

global minimum of the optimization problem is found.

On the other hand if the bounds are too large we can use the length of the intervals

as an indicator which mean first passage time should be computed next to improve the

estimates.

Another interesting application of such estimates would be, if there is a complete MFP-

matrix describing a system and either the system itself (say a molecule) or some simulation

parameter is changed. We assume that the graph associated with the transition matrix of

the altered system is similar to the graph of the initial system. Then the states that yield

good estimates on the initial system, should also approximate the altered system well.

As of now the linear algorithm does not take much advantage of the particular problem

and future work should be invested in a more efficient implementation. Also a thorough

application of the general formulas indicated in Theorem 3.7 would probably lead to a

further improvement of the results.
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