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Abstract

Two traffic streams ®;, ®5 are offered a link. The calls of ®; require
exponential holding times with parameter p and are accepted if less than
C; trunks are occupied. Approximating the ®; by appropriate renewal
processes meeting their first two moments, defined as the moments of the
numbers of calls in virtual links of infinite capacity to which the traffic
streams as freed traffics are virtually directed and where the calls get
fresh exponential i.i.d. holding times with parameter p, stable recursive
algorithms of complexity O(max(C1,C>)) are derived for the first two
defined as above moments of the individual overflow and freed carried
traffics. The results offer a unified handling of both overflow and carried
traffics in circuit switching networks with trunk reservation, providing a
basis for new two-moment network dimensioning algorithms.

Mathematics Subject Classification (MSC 2000): 60K25, 68M20,
60G10.

Keywords: trunk reservation; overflow traffic; freed carried traffic; fac-
torial moments; peakedness; two-moment method; circuit switching net-
work.

1 Introduction and model description

In teletraffic engineering a traffic stream arriving at a link in a circuit switch-
ing network can be described as freed traffic (ft) by a pair (®, F(t)), where
the first component is a stationary point process ® = {T,}5° _,, on the
real line R, where ... < Ty < 0 < T} < ... denote the arrival instants,
cf. e.g. [BFL], and the second component is the distribution function of
the ii.d. holding times. Directing (®, F(¢)) virtually to a virtual link of

!This work was supported by a grant from the Siemens AG.



infinite capacity, where the holding times are i.i.d. sampled with distribu-
tion F(t), i.e. considering a G/GI /oo system, the factorial moments M,
k € N := {1,2,...}, of the number of occupied trunks give the moment
characterization of (®,F(t)). In particular, the mean M and peakedness
Z, defined by M := M(y), Z := 1 — M1y + M3 /My (variance-to-mean ra-
tio), give the two-moment characterization of (®,F(¢)). It is well-known
that link blocking probabilities of peaky traffic (Z > 1) can be substantially
larger than those seen by Poisson traffic (Z = 1) with the same mean. The
opposite occurs in case of smooth traffic (Z < 1). Thus there is a need of
working with two-moment characterizations of traffic streams.

In case of a freed overflow traffic (fot) (@', F(t)), whose arrival times
are the arrival times of blocked by a link calls, this notion of peakedness Z'
corresponds to the commonly used one. In case of a freed carried traffic (fct)
(", F(t)), cf. [v.Do], whose arrival times are the arrival times of accepted by
a link calls, this notion of peakedness Z" differs from the variance-to-mean
ratio of the number of busy trunks in the link considered,' a quantity which
is normally used, cf. [Wilk], [Katz], [Desc|, [Gira], and which corresponds
to the description of a traffic stream by a stationary marked point process,
where the marks are the holding times.

It were [HH] who observed the incommensurability of both concepts
of traffics for the GI/M/C/0 system (renewal arrival process, exponential
holding times), when working with two-moment characterizations of traffic
streams, and that the corresponding peakedness factors may differ consid-
erably even in case of the carried traffic of a Poisson arrival process. In
their paper a numerical algorithm for Z” is developed, but it is numerically
instable for larger links and of rather high complexity, cf. [HH] or [BB2]
Remark 3.1. These problems prevented for a long time the rigorous use of
the concept of ft in network analysis algorithms, although this would be de-
sirable as mentioned in [Gira] p.111. Therefore in practice widely a mixed
concept is used (the same holding times are used for the carried traffic, but
not in the whole network), cf. [Katz], [Desc]. However, recently the authors
derived an explicit representation of Z” for the GI/M/C/0 system offering a
unified handling of both overflow and carried traffics in networks, cf. [BB2].

In the following we assume that the holding times are exponential, and
by choosing the mean holding time as time unit, with parameter y =1, i.e.
F(t) :=1—exp(—t), t € Ry, and we suppress the second component F'(t)
in the description of a ft. Because of exponential holding times, for a given

'Note that, although carried arrivals of calls are accepted simultaneously at the link
considered and at the virtual link, the departure times are different in general.



mean M, the peakedness Z varies within the interval [Z,;, (M), c0), where
Zimin(M) := (1 — exp(—M~1))~! — M, cf. [v.Do] p. 3, [FK]. If moreover the
ft ® is a renewal process with inter-arrival time distribution A(t), then its
factorial moments M) are given by, cf. e.g. [Taka],

k—1 “(
JA*(5)

M EAH1A*] k€N, (1.1)

where A*(s) denotes the LST of A(t) and EA = —A*'(0) is the mean inter-
arrival time.
p=1 p=1

©) @
&, : (My, Z1) @ carried traffic ®} @

Ni(t) + Na(t) < Ch - of type-1 calls

: Ni'(t) - (MY, ZY)
Py : (MQ, Z2) ) carried link
Ni(t) + Na(t) < Co

—_

n=

overflow traffic &)
of type-1 calls

&

®0O

(N1(t), N2(t)) Ni(t) : (M1, Z1)
primary link overflow link

Figure 1.1: Link of capacity C = max(Cy,Cs) and trunk reservation level
|C1—Cs|. Each accepted (non-accepted) type-1 call generates a virtual call,
which arrives at a virtual carried (overflow) link of infinite capacity, where
the holding time is independent of the required holding time of its generating
call. The holding times of all calls are exponential with mean 1.

The basic model considered in this paper, cf. Figure 1.1, is a link of
capacity (trunk size) C offered two ft ®; of calls (type-i calls) which are
characterized by their mean M; and peakedness Z;, i € {1,2}. The calls
require one trunk and are accepted according to a trunk reservation (tr)
strategy, which is a very efficient and simple admission strategy for limiting
excessive alternative routing, prioritizing direct traffic and preventing net-
work instabilities, cf. e.g. [Krup], [Robe], [Reim], [BGZ], [Ross|, [BM], [BB1]



and the references therein. In particular, an arriving type-: call will be ac-
cepted as long as less than C; trunks are occupied, where C'=max(C1, C2)
and |C; —Cq| is the tr level. The protected stream (C; = C) can be con-
sidered a primary or direct traffic. The other stream, representing fot and
fct from other links in a network, is handicapped by tr. For i € {1,2}, the
factorial moments of the number N;(t) of type-i calls in the virtual over-
flow link at time ¢, in particular the mean M, and peakedness Z;, and the
factorial moments of the number N/'(¢) of type-i calls in the virtual carried
link at time ¢, in particular the mean M and peakedness Z', give moment
characterizations of the fot ®; and of the fct @/ of type-i calls, respectively.

The aim of this paper is to derive numerically stable and efficient algo-
rithms for computing the means and peakedness factors of the individual fot
and fct. The results provide a basis for net-planning tools with tr strategy
links based on a fitting of the first two moments and on a unified handling
of all call streams.

The paper is organized as follows. In Section 2 the arrival streams &;,
i € {1,2}, are modeled by renewal processes with Coxian inter-arrival time
distributions meeting their first two moments. In Section 3 stable non linear
recursive algorithms of complexity O(C?) for the kth factorial moments,
k € N, of the individual fot and fct are developed. By paralleling the
algorithms with respect to k, a numerically stable algorithm of complexity
O(C) for the means and peakedness factors of the individual fot and fct is
constructed. Some numerical results are presented in Section 4.

2 Modeling by a Markov process

Consider the model of a link with tr in steady state given in Figure 1.1.
Let us model the arrival stream ®;, 7 € {1,2}, by a renewal process with a
two-phases Coxian inter-arrival time distribution

Ai(t) = (1= 1) Ex, (1) + 1i(Ex*Eg,)(),  tER;, (2.1)
with parameters \;,o; € (0,00), r; € (0,1], where E,(t) := 1 — exp(—~t)
and * denotes the convolution. Then after elementary algebra from (1.1) for
the mean M; and peakedness Z; of the ft ®; we obtain

;) _ Airi(Ai(1—r;) —ay)
_ Z;=1+ .
a;+ i (ai—{—)\in)(l—i—ai—f—/\im)
For given positive M; and Z; of the arrival stream ®;, for the parameters
Ai, a; and r; we find the necessary and sufficient conditions

i >max(M;/Z;, Mi+Z;—1), N2(1—Z;) <(\i— M) (M;+ Z; — 1),

M; = (2.2)



e ()\i—Mi)(Ai—(Mi-i-Zi—l)) o — M;\r;
' Ai(NiZi— M;) N M

(2.3)

The range of mean and peakedness, for which corresponding parameters \;,
«; and r; exist, is precisely

In the following we assume that (2.4) is satisfied. (If in practical situations
Z; < Zpyin(M;) arises, then a reasonable approximation is to replace Z; by
Zyin(M;).) For the parameter A; we choose

5M?2—2M;—1
AM;+1

covering the whole feasible region of (M;, Z;) given by (2.4). In case of Z; > 1
the renewal processes defined by (2.1) are the interrupted Poisson processes,
cf. [Kucz]. Thus in this case instead of (2.5) also Rapp’s approximation
Xi(1—1;) = M;Z; + 3Z;(Z; — 1) could be applied, cf. [Gira] p. 115.

For constructing a Markov process for the system dynamics the following
stochastically equivalent description of the ®; by random switches is used.
The state M;(t) of switch 7 at time ¢, s € {1,2}, may take the value 1 or 0.
If M;(t) =1, then type-i calls are generated according to a Poisson process
of intensity A;, else no type-i calls are generated. After each generation of a
type-i call with probability r; switch ¢ changes into state 0. The switch stays
in state 0 for an exponential period with mean 1/; and changes then into
state 1. Obviously, switch i generates a renewal process with inter-arrival
time distribution (2.1).

Additionally to the variables N/(t) and N/ (t) defined in Section 1, let us
introduce the vectors M(t) := (Mi(t), M2(t)) of the states of the switches
and N (t) := (N1(t), N2(t)) of the numbers N;(¢) of type-i calls in the primary
link at time ¢. Since in the following without loss of generality we consider
only the fot and fct of type-1 calls, let

N'(t) == Ni(t), M =M, Z':=12Z,

A= (MZ'—Fl)ZZ’ + (2.5)

N"(t):= N{(t), M":=M], Zz":=2Z] (2.6)
for notational convenience. Further let

0i(0) == 1N, wi(1) == (1—ry) N, i €{1,2}. (2.7)
The process N (t) is non Markovian with the state space

Q= {n = (nl,ng) € Zﬁ_ :mp < Ch, no < Co, nitng < C}



However, (M(t),N(t),N'(t)) and (M (t), N(t), N"(t)) are Markov processes

with the joint state space X:={0,1}2xQxZ,. Let
p'(m,n,l):=P(M(t)=m,N(t)=n,N'(t)=1), (m,n,l) €X, (2.8)
p"(m,n,1):=P(M(@#)=m,N(t)=n,N"(t)=1), (m,n,l)eX (2.9)

its stationary distributions, where p'(m,n,[):= p”(m,n,l):=0 for all infea-

sible states (m,n,l) € {0,1}2x (Z3\ (2xZ,)).
The balance equations for p'(m,n,l) read

( Z (][{mZ =0}a; +T{m; =1}(p;(0)+; (1)) —I—ni) —i—l) p'(m,n,l)

2
= Z I{m;=1}a;p'(mi(m),n,1) + Z(ni+1)p'(m,n+ei, l)

i=1 =1

+ ) pi(ma)I{|n| < C}p' (ms(m) +es,n—e;, 1)

i=1
2
+ Y 0i(mi)I{|n| > Ci}p' (mi(m) +eg,n, I - T{i=1})
=1
+ (l-l-l)p'(m,n,l—i—l), (m,n,l) e X, (210)
where e; are the unit vectors in R?, m;(m) := m—m;e; and |n|:= ny+no.

Analogously, the balance equations for p”(m,n,[) read

< Z (]I{mz =0}a;+I{m;= 1}(<p,~(0)+<pi(1))+ni) —H) p"(m,n,l)

2
= M{mi=1}aip" (mi(m),n, 1) + > (ni+1)p" (m, n+e;, 1)
i=1 i=1

2
+ 3 i(ma)T{|n| < Ci}p" (mi(m) +ei,n—e;, |- T{i=1})

=1
2
+ > pi(ma)T{|n| > Ci}p" (mi(m) +ei, m, 1)
i=1
+ ((+1)p" (m,n,1+1), (m,n,l) € X. (2.11)

Note that (2.10) and (2.11) remain valid for (m,n,l) € {0,1}2 xZ3. The
normalizing conditions read

Z p'(m,n,l) =1, Z p’(m,n,l) = 1. (2.12)

(m,n,l)eX (m,n,l)eX

6



The mean M’ and peakedness Z' of the fot of type-1 calls are given by

M' = Z Ip'(m,n,l), (2.13)
(m,n,l)eX
1
Z'=1—- M+ T Y Wi-1)p'(m,n,0) (2.14)
(m,n,l)eX

and the mean M" and peakedness Z” of the fct of type-1 calls by

M'= Y 1p'(m,n,l), (2.15)
(m,n,l)eX
1
Z'=1-M"+ -5 > i(=1)p" (m,mn,1). (2.16)
(m,n,l)eX

3 Algorithms for the moments of the fot and fct

In this section we develop numerically stable recursive algorithms for the
factorial moments of the fot and fct of type-1 calls. For m € {0,1}2, £ € Z,
k€ Z+ let

qz(mae) = (_1)\m\ Z (l‘l'l_k)k:pl(ma'n’al)a (31)
(n)EQXZ 4, |n|=¢L
gi(m, ) :== (=)™ " (1=K p"(m,n,1) (3.2)

() EQXZ 4, |n|=L

be signed kth partial factorial moments of N'(¢) and N”(¢) on the condition
{M(t) = m, Ny(t)+ Na(t) = £}, respectively. Obviously, the signed zeroth
partial factorial moments of N'(t) and N”(t) coincide. Moreover, we have

Q;c(mag):qg(mag)zo, m € {0, 1}25 tez\{0,1,...,C}. (33)

3.1 Stable algorithm of complexity O(C?) for the fot

In this subsection we develop a numerically stable recursive algorithm for the
partial factorial moments gj (m, £) of the fot of type-1 calls, whose complexity
is O(C?) in case of fixed order k.

For fixed m € {0,1}2,¢ € Z., k € Z,, multiplying the balance equations
(2.10) by (=1)I™l(14+1—k);, summing over (n,l) € Z3 with |n| < £, using

(42— k)p=(+1—k)p+E(+2— k)51 (3.4)



and some algebra yield

2 V4
(E+1)g(m, £+1) = > T{<Cj, mi=1}pi(1)gk(m, £) + kY qi(m, j)
i=1 §=0
L—T{¢<C;,m;=0}

2 V4 2
+ Zaz‘ZqL(M(m),j)JrZ%(U) > gi(mi(m)+ei )

i=1  §=0 j=0
rna.x(Z,lel)

+E(-D)™i(m1) Y gi_i(m(m)+er, ). (3.5)
Jj=C1

Note that for £=0,1,...,C;—1 the Recursion (3.5) is a homogeneous one.
Because of gj(m,C+1) =0, m € {0,1}?, from (3.5) for £=C it follows

2

kaj(m) + Y (g (rs(m) 01 (0)df (ms(m) + ) )

C
= k(=11 (m1) Y gp_i(mi(m)+er, ), me{0,1}%, (3.6)
j=C1
where
C
di(m) =3 dilm,j), me {0,112, (3.7)
=0

are corresponding signed kth partial factorial moments of N'(t) on the con-

dition {M(t) =m}. In case of k=0 from (3.6) and from the normalizing
condition

> ()mlgg(m) =1, (38)
me{0,1}2
cf. (2.12), we obtain

2
dom) =11 i ;ﬁ;%;mo) . me {0,112 (3.9)

In case of k € N the quantities gj,(m), m € {0,1}?, can be computed by

solving the linear system of equations (3.6) if the right-hand side of (3.6) is
given.



In view of (2.7) and (3.1), multiplying (3.6) by (—1)™! and summing
over m € {0,1}? yields

o (41 p (mn, )= > (=1)™g(m)

(m,n,l)eX me{0,1}2
C
=2 > (hoa((1 1), )=k ((1,0),5)), KEN. (3.10)
j=C1
From (2.13), (2.14) and (3.10) for M’ and Z' we obtain
C
M= x0 Y (ab((1,1),9) =45 ((1,0),)). (3.11)
Jj=C1
P
7' =1-M'+ 2L 3 (d((1,1),) =i (1,0),5))- (3.12)
J=C1

The time congestion B of the type-1 calls is given by the probability that
at least C trunks are occupied, i.e., it holds
(&
B =" (ab((1,1), )~ ab((1,0), 1)~ a5((0,1), 1) +35((0,0),) ) - (3.13)
j=C1

In view of (3.5), the signed kth partial factorial moments g;(m,¥£) of
N'(t) can be computed recursively with respect to k. For fixed k € Z, the
signed kth partial factorial moments of N'(t) can be computed numerically
stable recursively with respect to £ € {0,1,...,C} as follows:
Algorithm 3.1 Let k € Z be fized. For fized L € {0,...,C}, m' € {0,1}2
let (q;c,m,’L(m,E))f:’Ol be the four-dimensional sequence that is defined by the
homogenized recursion (3.5) and by the condition

L
Zq}c,m,,L(m,j) ={m=m'}, me{0,1}>. (3.14)
=0
Especially, from (3.5), (3.14) it follows that for L € {0,...,C}, m' € {0,1}?
1
! _ r_
Gy, (m, 1) = = (L' =m)k

2 2
+ ) Im'=mi(m)}os + Y T{m' =mi(m)+ei}pi(0)
i=1 i=1
2
+ Y L <CH "™ 0i(mi) gy (mi(m) +ei, 1)) (3.15)
i=1

9



Since the four sequences (q;c,m,,L(m,ﬁ))fiol, m' € {0,1}2, are linearly inde-

pendent, there are uniquely determined coefficients By (K, L), such that

qk m/, L(m e Z IBm m”(k L)qk m!’ L—|—1(m E)
m"e{0,1}2
0e{0,...,L+1}, m' €{0,1}2. (3.16)

In view of (3.14), summing over £ € {0,...,L+1} yields
B m”(ka L) = ][{mlzmll}+q;c,m’,L(mlla L+1) (317)

Using the inverse (B, . (k, L)) of the matriz (B mn (k, L)) from (3.16) it
follows
qk m! L—|—1(m £) Z ﬂm' m (K, L)Qk m", r(m, 4),

m"e{0,1}2
te{0,...,L+1}, m' €{0,1}2, (3.18)

i.e., the sequences (q}cjm,,L_H(m,E))f:'"Ol, m! € {0,1}2, can be computed from

(qjcym,’L(m,E))fjol, m' € {0,1}2. In particular, in view of (3.14), summing

over £ € {0,...,L} yields
Qo L1 (my L+1) = T{m' =m} =By (K, L), m' € {0, 1}2. (3.19)

Subsequently, gy, . 1. 1(m, L+2), m' € {0, 1}2, can be computed via (3.15).

For fized L € {0,...,C} let (g, 1, (m, E))L"'1 be the four-dimensional
sequence that is defined by (3.5) and by the condition

Z q;c,*,L(m’j) = Oa m € {0, 1}2, (320)

in case of k=0 or L<Cy being the sequence of zero-vectors. In particular,
from (3.5), (3.20) it follows that for L € {0,...,C}, m' € {0,1}?

max(L,C1—1)
1 .
G (m, L+1) = 77 (RD™r(m) Y gy (m(m)+er,)
Jj=C1
+ Z]I{L<C} 1)-mi (mi)q;,*,L(wi(m)+ei,L)). (3.21)

Since the right-hand sides of
Qk*L+1(m £) —Qk*L(m £) - Z Qk*L(m L+1)ka' L+1(m £),

m'€{0,1}?
£e€{0,...,L+1}, (3.22)

10



satisfy the recursion (3.5) and, in view of (3.14), (3.20), sum up to zero, it
holds (3.22), and qj, , ;. (m,L+2) is given by (3.21). Finally, from (3.5),
(3.7), (3.14), (3.20) for m € {0,1}2, £ € {0,...,C} we obtain

G(m.0) = gy om0+ Y au(m) g o(m, 0). (3.23)
m’€{0,1}2

Remark 3.1 Because of the non-initial condition (3.14), the existence of
the four-dimensional sequences (q}c7m,,L(m,€))f:"L01 has to be proven. Assume
that there exist L € {0,...,C} and m' € {0,1}? such that the corresponding
sequence does not exist. Replacing C; by min(Cy, L), ¢ € {1,2}, and thus
C by min(C, L), in view of (3.5), only the definition of the last item of this
sequence changes. Therefore without loss of generality we may assume that
L = C. Let § denote the vector space of the four-dimensional sequences
(Gk(m, £))74" satisfying the homogenized recursion (3.5). Since the four
sequences from S defined by the unit vectors of R* as first items form a
basis in S, the dimension of S is four. Summing up the first C + 1 items of
the sequences from S defines a linear mapping H : S — R*. As at least one
of the unit vectors of R* does not belong to the image of H, the dimension
of the image of H is less than four. Thus there exists a nontrivial sequence
((j,t(m,ﬁ))?:*bl € S in the kernel of H, i.e.

C
Z (jlt(maj) =0, me¢ {Oa 1}2' (3'24)
=0

Because of (3.24), from the homogenized recursion (3.5) for £ = C it follows
Gi(m,C+1) =0, me{0,1}2 (3.25)

Taking in the homogenized recursion (3.5) the differences of successive equa-
tions, because of (3.25), it follows that gj(m,£) is a nontrivial solution of
the homogeneous linear system of equations

(Z (1{mi =0}as+T{mi =1}(¢:(0)+:(1)) +<e+k)) Gi(m, 0)

2
= = > Mmi=1}agi(mi(m), £) + T{L< CHE+ )G (m, £+1)
i=1

2

+ Z(—l)l_m"gai(m,')]l{()<£§Ci}(j,’;(m(m)—i-ei,é—l)

11



2
+ 3 (=1 (mi) 1{L > i} (mi(m) +ei, 8),
i=1
(m,£) € {0,1}* x {0,...,C}. (3.26)
Adding g (m,£) on both sides of (3.26), taking the absolute values on both
sides and applying then the triangle inequality to the right-hand side yields

(Z (1{mi =0} s+ Tfmi=1}pi (0)+4:(1))) +<e+k)) G (m, )]

=1

2
<Y M{mi=1}ailgi(mi(m), )] + {E< CHL+1)|G; (m, £+1)]
=1

+ 3 i(mi) I{0 << Ci}| Gy (mi(m) +ei, £1)]

=1

2
+ 3 pilm) 1{e> Gl (mim)+ei, O],

i=1
(m,£) € {0,1}% x {0,...,C}, (3.27)
where equality in (3.27) for fived (m,£) € {0,1}2 x{0,...,C—1} would imply
Gr(m,2) G;(m,£+1) > 0, and G;(m,£) = 0 would imply G;(m,£+1) =0 in
case of equality in (3.27). Therefore, because of (3.24), equality in all the
inequalities (3.27) would provide g (m,£) =0, (m,£) € {0,1}? x {0,...,C},
being a contradiction. Thus at least one of the inequalities in (3.27) is strict.

However, summing up the inequalities (3.27) yields the contradiction

> k|G (m, £)| <.

(m,£)e{0,1}2x{0,...,C}

3.2 Stable algorithm of complexity O(C?) for the fct

In this subsection we develop a numerically stable recursive algorithm for the
partial factorial moments gj/ (m, £) of the fct of type-1 calls, whose complexity
is O(C?) in case of fixed order k. We proceed analogously to Subsection 3.1,
where some results obtained there are used.

For fixed m € {0,1}2, £ € Z,, k € Z, multiplying the balance equations
(2.11) by (=1)I™/(14+1—E);, summing over (n,l) € Z3 with |n| < £, using
(3.4) and some algebra yield

2 )2

(E+1)gp(m, £41) = Y T{L<Ci, mi=1}p;(1)gy(m, £) + kY _ gi(m, 5)
i—1 =0

12



£—T{€<C;, m;=0}

2 l
+ D)@y dim +Z% S g(mi(m)+ei, )

i=1 ;=0 =0
mln(é,Cl)—l
+h(=D™i(mi) Y gii(m(m) e, j). (3.28)
j=0

Because of g (m,C+1) =0, m € {0,1}2, from (3.28) for £=C it follows
2
)+ Z (ozzq,c (mi(m +soz(0)q§c'(7ri(m)+ei))
- k(—l)l—mlsm(ml)(qz1<m<m)+e1)

- Z g1 (m1(m)+er, )), m € {0,1}2, (3.29)

j=C1

where

C
gi(m) ==Y _qi(m,5), me{0,1}’, (3.30)

Jj=0

are corresponding signed kth partial factorial moments of N”(¢) on the con-
dition {M (t)=m}. Obviously, we have gj(m)=g(m), m € {0,1}>. In case
of k€N the quantities g} (m), m € {0,1}2, can be computed by solving the
linear system of equations (3.29) if the right-hand side of (3.29) is given.

In view of (2.7) and (3.2), multiplying (3.29) by (—1)/™ and summing
over m € {0,1}? yields

S (UH1=k)yp (o) = Y (=1)™gj(m)

(m,n,l)eX me{0,1}2
Ci—-1
=2 > (@1 (1L, ~d1((1,0),5)), ke (3.31)
j=0
From (2.15), (2.16) and (3.31) for M" and Z" we obtain
Ci1—1
=x Y (61,1, -45((1,0),9)), (3.32)
j=0
)\ Ci1—-1
1 . .
2" =1=M"+ =5 S (d((1,1,9) 6 ((1,0),5)) (3.33)
j=0

13



Because of (3.7), (3.9), (3.11), (2.7) and (2.3), from (3.32) it follows

C
M = (ab((1,1)=ab((1,0)) = A D= (ab((1,1). /) —ab((1,0),.))

Jj=C1

YN M =M - M. (3.34)

Yag + ¢1(0)
In view of (3.32), (2.7) and (2.3), from (3.29) for k=1 we obtain
¢/((1,1))—4¢1((1,0))
Ci—1
— el O el S (a0, 0.9)-a6((1,0).9)

§=0

=

"
Y
Thus because of (3.30), (3.34), from (3.33) it follows

2" =1 MY (g (1) g (1,0)))

C
- P (.. )~ ((1.0).5))
C
= 2 M-S (D) - (@0.0). (336)
j=C1

= (Z1+M;-1) (3.35)

In view of (3.28), the signed kth partial factorial moments g} (m,£) of
N"(t) can be computed recursively with respect to k, where the initial val-
ues are given by g (m,£) = gh(m,£), (m,£) € {0,1}* x {0,1,...,C}. For
fixed k € N, the signed kth partial factorial moments of N”(¢) can be com-
puted recursively with respect to £. Using the fact that Equations (3.5) and
(3.28) represent two recursions with respect to £ € Z, which have the same
homogenization, we can compute the signed kth partial factorial moments
of N"(t) numerically stable recursively with respect to £ € {0,1,...,C} as
follows:

Algorithm 3.2 Let k € N be fized. Further, for fized L € {0,...,C} let
(qg7*,L(m,£))f;01 be the four-dimensional sequence that is defined by (3.28)
and by the condition

L
Z qg,*,L(maj) =0, me {07 1}2 (337)
Jj=0

14



Especially, from (3.28), (3.37) it follows that for L € {0,...,C}, m' € {0,1}2

min(L,C1)—1
1 .
@ (m, L4 1) = 1 (KD ™pntm) D0 gl (m(m) +er, )
§=0
+ Z HL<CH-1)' ™pimi)gf. o (m(m)+e;, 1)).  (3.38)
i=1
Since the right-hand sides of
qg,*,L—l—l(ma e) Qk * L Z Qk: * L m,a L+1)q;c,m’,L+1(ma e)a
m'€{0,1}?
2e{0,...,L+1}, (3.39)

satisfy the recursion (3.28), and, in view of (3.14), (3.37), sum up to zero, it
holds (3.39). After computing g, 1 ,,(m,£) for £ € {0,..., L+1} via (3.39),
Qs 111 (m, L+2) can be computed via (3.38). Finally, from (3.28), (3.30),
(3.37), (3.14) for m € {0,1}2, £ € {0,...,C} we obtain

qg(ma e) = qg,*,c’(ma E) + Z Q;c,(m,)qz:,m’,c (m7 E) (340)
m’'€{0,1}2

3.3 Parallelized stable algorithm of complexity O(C)

By paralleling the Algorithms 3.1 and 3.2 with respect to & € {0,1}, in this
subsection we set up a numerically stable recursive algorithm of complexity
O(C) for the means and peakedness factors of the fot and fct of type-1 calls.
For k€ Z,, L €{0,...,C}, m' € {0,1}? let
max(L,C1—1)
sﬁc,m,,L(m) = Z qfc,ml,L(m,j), (3.41)
Jj=C1

in case of L < C; being the four-dimensional zero-vector. From (3.18) for
L<C it follows

S p41(M) = H{LA1>C1}a 141 (m, L+1)
+ > B (b L)l g, (m). (3.42)
m"e{0,1}2

For fixed L € {0,...,C}, m' € {0,1}? let (q;n,,L(m,é))f:""o1 be the four-
dimensional sequence that is defined by the recursion
2

(L4+1)qpy 1 (m, £+1) = Z 1{¢< C;, mi=1}p;(1)q;, 1,(m, £)
i=1

15



2 14

14
+ Zq';n’,L(maj) + Z Q; Z O, (i (M), 5)
=0 i=1 =0

£—T{€<C;,m;=0}

+ Z% > (i (M) +ei, )

§=0
max(¢,C1—1)
+(D)™or(m) D g p(m(m)ter, i),
j=C1
e€{0,...,L}, me{0,1}2 (3.43)
and by the condition
Z G (M, 5) =0, m € {0,1}%, (3.44)

in case of L < C being the sequence of zero-vectors. In particular, from
(3.41), (3.43), (3.44) it follows that for L € {0,...,C}, m € {0,1}2

1
G (0, L41) = 1= (1) 01 ()5 g 1 (1 (m) 1)

+ Z]I{L<C} 1)i-mi (mi)q;n,,L(ﬁi(m)—l—ei,L)). (3.45)

Since, because of (3.5), (3.18) and (3.43), the right-hand sides of

qm/ L+1 m, f Z ,Bml mu O L
m"e{0,1}2

(q;nu,L(m,ﬁ) — Z q,:nu,L(mmgL+1)qll,m’”,L—|—1(m7£)> ’
mllle{071}2

£€H{0,...,L+1}, me{0,1}%, (3.46)

satisfy the modified recursion (3.43), where L is replaced by L+1, and, in
view of (3.14), (3.44), their sum over £ € {0,...,L+1} equals zero, it holds
(3.46) for L € {0,...,C—1}. In particular, in view of (3.19), it follows

q;n/,L+1(m, L+1) = Z 6m/ m' (0 L)ﬂmm (]., L)
mll,mllle{071}2
QLn”,L(mI”a L+1), m € {Oa 1}2' (347)
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Moreover, since, because of (3.5), (3.23), (3.43) and ¢qp, o(m,¢) = 0 for
(m,£) € {0,1}2 x {0,...,C}, the right-hand sides of

QQ(mae) = Z Q(I)(ml)q;n’,C(mae) + Z qll(ml)qll,m’,C(maé)a

m'e€{0,1}? m'€{0,1}?
e{0,...,C}, me{0,1}? (3.48)
satisfy the recursion (3.5) for k=1, and, in view of (3.14), (3.44) and (3.7),
their sum over £ € {0,...,C} equals the corresponding sum for the left-hand
sides, it holds (3.48). For L € {0,...,C}, m' € {0,1}? let
max(L,C; —1)
s;n,yL(m) = Z q;n,,L(m,j), (3.49)
j=C1

in case of L < C being the four-dimensional zero-vector. From (3.46), (3.41)
for L < C' we obtain

s;n,,m_l(m) = Z ,B:n,,mu((),L)(][{L—l—lzCl}q;nu,L(m,L—l—l)
m!'€{0,1}2
+ slrn”,L(m) _ Z q;nu,L(mlll,L+1)Sll,mm,L+1(m)>. (350)
m”'6{0,1}2
Analogously, for fixed L € {0,...,C}, m' € {0,1}? let (q;'n,7L(m,€))f:+01
be the four-dimensional sequence that is defined by the recursion
2

(€+1)qzz,,L(m,€+ 1) = Z I{¢< C;, mizl}goi(l)q;'n,’L(m,é)
i=1
2 l

¢
+ Zqﬁk,L(m,j) + Z % Z Gy 1, (i (), 5)

{—T{£<C;,m;=0}

2
+ Y @0 D g p(mi(m)tes, )
i=1

j=0
min(¢,C1)—1
+ (_l)ml(pl(ml) Z Q6,m’,L(7T1(m)+elaj)a
§=0
te{0,...,L}, me{0,1}? (3.51)
and by the condition
L
Z qvl”lrL’,L(maj) =0, me {07 1}2 (352)
§=0
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In particular, because of (3.14), (3.41), (3.51) and (3.52), it follows that for
Le{0,...,C}, me {0,1}?

1

e (1™ ) B = (m) o)

F (1) 1 (1) TL < 1}l g1 (1 (m) 1, L)

+ (—1)1_m1 1(ma) I{L > C }s e 1, (w1 (m) +€1)

qm, r(m,L+1) =

+ZI{L<0} 1)y (mi) gy (mi(m) i L)) . (3.53)

Since, because of (3.5), (3.18) and (3.51), the right-hand sides of

qm/ L—|—1 m, f Z ,Bml m” 0 L

m€{0,1}2
7 " n !
(qmu’L(m,E) - Z qmu,L(m ,L-I-l)ql,mm,L+1(m,€)),
m”’€{0,1}2

0e{0,...,L+1}, me{0,1}%, (3.54)

satisfy the modified recursion (3.51), where L is replaced by L+1, and, in
view of (3.14), (3.52), their sum over £ € {0,...,L+1} equals zero, it holds
(3.54) for L € {0,...,C—1}. In particular, in view of (3.19), it follows

q;‘IrL’,L+1(m’L+1) = Z Bm’ m”(O L) m/"\m (1’L)
m//’mule{(),l}z
I3 m 2
G (M, L+1), m € {0,1}". (3.55)

Moreover, since, because of (3.5), (3.23) and (3.51) as well as q; , ~(m,£) =0
and gj(m, £) = g (m, £) for (m,£) € {0,1}?>x{0,...,C}, the right-hand sides
of

qi’(m,f) = Z qa(ml)qvl!rL’,C(m’e) + Z qlll(ml)qll,m’,c(maé)’
m’€{0,1}2 m'€{0,1}2
e{0,...,C}, me{0,1}? (3.56)
satisfy the recursion (3.28) for k=1, and, in view of (3.14), (3.52) and (3.30),

their sum over £ € {0,...,C} equals the corresponding sum for the left-hand
sides, it holds (3.56). For L € {0,...,C}, m' € {0,1}? let

max(L,C1 —1)
Spn(m) = Y gy i (m, ), (3.57)
j=C1
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in case of L < (4 being the four-dimensional zero-vector. From (3.54), (3.41)
for L <C we obtain

S;'n/,L_H(m) = Z ,Br*nl,mu(O,L)(][{L—F].ZCl}qng,L(m,L—Fl)
m'" €{0,1}2

+ 3;—,n”7L(m) . Z qxl”’[,(m”,’ L+1)Sll,mm,L+1(m)> . (358)

m//le{0,1}2
Because of (3.23), (3.41), it holds
c
so(m) =Y ap(m.j) = Y ao(m')spp c(m). (3.59)
j=C1 m'€{0,1}?
In view of (3.41), (3.49), from (3.48) it follows
c
si(m):= Y q¢i(m, )
Jj=C1
= Y ()t o) + @) 51 e o)) (3.60)
m!/€{0,1}2
and, in view of (3.41), (3.57), from (3.56)
c
si(m):= Y df(m,j)
Jj=C1
= Y ()5 clm) +alm)s) g clm). (361)
m’€{0,1}2

Finally, from (3.11), (3.12), (3.13), (3.34), (3.36), (3.59), (3.60) and (3.61)
we obtain the representations

B = $h((1,1)) — sh{(1,0)) — s((0,1)) + sh{(0,0)). (3.62)
M = X (s6((1,1)) = sp((1,0))) (3.63)
Z—1- M+ %(sg(u, 1) - $((1.0). (3.64)
M" = M, — M, (3.65)
7" = 74+ M — %(3'{((1, 1) - $((1,0))). (3.66)



Algorithm 3.3 The sequence of the 128-dimensional vectors

(qé),m’,L(ma L)a qll,m’,L(m’ L)a q';n’,L(m, L)a q'xz’,L (ma L)7

$0,m0,£. (M) 81t 1 (1), St 1 (), S5 1. () (3.67)

can be computed recursively with respect to L € {0,...,C} as follows:
From (3.14), (3.44), (3.52), (3.41), (3.49), (3.57) we obtain the vector
(3.67) for L=0:

(I{m=m'}, I{m=m'},0,0,
I{C, =0, m=m'}, 1{C, =0, m=m'},0,0). (3.68)

Given the vector (3.67) for any L € {0,...,C—1}, then g}, ; (m, L+1) can be
computed via (3.45), gy 1 (m, L+1) via (3.53). Moreover, o mr.1,(m, L+1)
and ¢ . 1.(m, L+1) can be computed via (3.15). Subsequently, 5., ,.»(0,L),
ﬁ:n,,m,,’(l,’L) can be determined from (3.17) and then q{),m,,L_i_l('r’n,L—i—l),
@ 41 (M, L+1) from (3.19). The sums sg 11 (m), 80 1, (m) can
be computed from (3.42) and then s, , ; ,(m), SZ,,L_H(’I?’L) from (3.50) and
(3.58), respectively. The quantities q;n,’L+1(m,L+ 1) and qxl,,L_H(m,L—l—l)
are given by (3.47) and (3.55), respectively.

Because of (3.59) and (3.9), the sum siy(m) can be determined from
80.mr,c(m), m' € {0, 1}2. Since thus the right-hand sides of (3.6) and (3.29)
are given, the quantities ¢i(m), ¢} (m) can be computed by solving the linear
systems of equations (3.6) and (3.29), respectively. Finally, the sums s (m)

and s (m) can be computed using (3.60) and (3.61), respectively.

Algorithm 3.3 is numerically stable. It is non linear as matrices are
inverted. Its complexity is O(C), its memory requirement O(1). The re-
cursive computation of the 128-dimensional sequence (3.67) is visualized in
Figure 3.1.

Remark 3.2 A more precise analysis of Algorithm 3.3 shows that the length
of vector (3.67) can be reduced to 92 by omitting the following entries:

qi,m’,L((O’O)’L)’ Q;n’,L((OaO)aL)a Q’Z’ZI,L((O’O)’L)’ Sll,m’,L((O,l))a
81,m,0(0,0)), 8py £((0, 1)), s £,((0,0)), 8 £((0, 1)), s, ,((0,0)).
Moreover, in case of L <C1y it holds

36,m',L(m) =0, Sll,m’,L(m) =0, S;n’,L(m) =0, S;In',L(m) =0.
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@y 1. (m, L+1)

q;'n’,L+1(m; L+1)
(3.47)

q"r;L’,L+1(m; L+1)
(3.55)

36,m’,L+1(m)
(3.42)

s’m',L+1 (m)
(3.50)

q;n’ ,L (m: L) N (3 45)
"
Q! (m, L+1)

qxz’,L(ma L) — L (3 53)

q(')  .(m, L) ﬁ:m,m(oa L) I q('),m/,LH (m, L+1) |
" 2 (3.15), B17) (3.19)

qll ! L(m7 L) ﬂ:nl,m(]-a L) L] q’l,m’,L+1(m7 L+]_)
o (3.15), (3.17) | (3.19)
sg,m’,L(m) _—:

8 m! (m)

$1.me, (M) 1, ,L+1(3 42) -
Slm',L(m)
S{r’n’,L(m)

slrln’,L+1 (m)
(3.58)

Figure 3.1: Recursive computation of the 128-dimensional sequence (3.67).
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Thus in case of C1=C the length of vector (3.67) can additionally be reduced
to 52 as we have

S(),m’,C(m) = q{),m’,C(m’ C)’ SII,m’,C(m) = qi,m’,C(ma C),
S'Im’,C(m) = q;n’,C(m’ C), S;In',c(m) = q;;z’,C(m, C).

Paralleling the computation for the type-1 and type-2 calls thus we have to
handle a common vector of length 144. However, the length of this common
vector can additionally be reduced to 116 as the quantities gf .., ;(m, L) and
q'l,m,7L(m,L) are independent of the type. o

4 Numerical results

The Algorithm 3.3 has been implemented in a C-program, which allows up to
a link of capacity 10° for given M;, Z; and C;, i € {1,2}, a numerically stable
and very efficient computation of the means and peakedness factors of the
individual fot and fct and of the individual time congestion for both traffic
streams. In case of a Pentium processor with 200 MHz the computation time
amounts to approximately 22 ms for C'=1000.

Numerical experiments not reported here have shown that there is no
great difference in the means and peakedness factors of the departure streams
if in case of Z; > 1 Rapp’s well-known approximation for the parameters of
the interrupted Poisson process is used instead of (2.5), justifying the use
of (2.5) also in this case. In particular, (2.5) is used throughout Table 4.1,
where a numerical example is given for a link of capacity C = 1000. The
first arrival stream with mean M; = 600 is protected, i.e. C;y = C, the other
input parameters Z1, My, Z and Cy vary accordingly. For the used param-
eters the link works in the domain of critical loading, which seems to be the
most interesting case from a practical point of view. The results in Table 4.1
illustrate the strong dependence of M}, Z!" and M|, Z!, i € {1,2}, on the
tr parameter Co, in particular the protection of the first input stream. The
last block of data in Table 4.1, where for comparison Poisson arrival pro-
cesses are chosen, illustrates the strong impact of the peakedness of arrival
processes on the means of the departure streams and hence the advantage
of two-moment over one-moment methods.
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Table 4.1: Link of capacity C1=C=1000 with given mean M, =600 of the
protected first arrival stream.

Zy | Ma Zy C» My zy My VA My Zy M Zy

0.8 |1 300 0.8 990 || 600.00 0.80 0.00 2.10 | 299.96 0.80 0.04 8.28
0.8 | 400 0.8 990 || 599.97 0.80 0.03 2.10 | 372.03 1.36 27.97 12.53
0.8 | 500 0.8 990 || 599.91 0.80 0.09 2.09 | 384.85 2.00 | 115.15 6.58
0.8 | 300 0.8 995 || 600.00 0.80 0.00 2.24 | 299.98 0.80 0.02 7.60
0.8 | 400 0.8 995 || 599.41 0.79 0.59 2.29 | 375.92 1.25 24.08 12.51
0.8 |1 500 0.8 995 | 597.87 0.78 213 210 | 391.53 1.88 | 108.47 6.58
0.8 | 300 0.8 1000 || 599.99 0.80 0.01  5.60 | 300.00 0.80 0.00 3.31
0.8 | 400 0.8 1000 || 586.73 0.79 | 13.27 8.32 | 391.03 0.80 8.97 591
0.8 | 500 0.8 1000 | 541.80 0.88 | 58.20 4.23 | 451.20 0.87 48.80 3.69

0.8 | 300 8.0 990 || 600.00 0.80 0.00 2.10 | 294.16 6.54 5.84 28.75
0.8 | 400 80 990 || 599.98 0.80 0.02 210 | 348.48 3.59 51.52 30.48
0.8 | 500 8.0 990 || 599.96 0.80 0.04 2.09 | 368.25 2.61 | 131.75 24.72
0.8 1300 80 995 | 599.95 0.80 0.06 2.27 | 295.00 6.69 5.00 28.20
0.8 | 400 8.0 995 || 599.60 0.80 040 2.24 | 351.91 3.68 48.09 30.64
0.8 | 500 8.0 995 || 599.09 0.79 091 217 | 373.25 2.60 | 126.75 24.97
0.8 | 300 8.0 1000 || 598.75 0.80 1.25 8.04 | 296.69 7.03 3.31 21.53
0.8 | 400 8.0 1000 || 588.98 0.86 | 11.02 7.68 | 364.61 4.11 35.39 24.78
0.8 | 500 8.0 1000 || 573.63 0.92 | 26.37 5.69 | 401.61 2.67 98.39 21.07

8.0 | 300 8.0 990 || 591.28 6.69 8.72 25.65 | 288.11 6.89 11.89 27.39
8.0 | 400 8.0 990 || 575.06 5.62 | 24.94 22.52 | 353.30 6.03 46.70 29.47
8.0 | 500 8.0 990 || 556.56 5.04 | 43.44 18.74 | 396.28 5.63 | 103.72 26.97
8.0 | 300 8.0 995 || 589.27 6.50 | 10.73 28.65 | 290.85 6.95 9.15 23.55
8.0 | 400 8.0 995 || 567.91 5.30 | 32.09 25.17 | 362.11 5.85 37.89 26.17
8.0 | 500 8.0 995 | 542.35 4.67 | 57.65 20.45 | 412.81 5.14 87.19 24.64
8.0 | 300 8.0 1000 || 586.52 6.30 | 13.48 33.52 | 294.15 7.15 5.85 17.65
8.0 | 400 8.0 1000 || 557.64 5.04 | 42.36 29.84 | 373.68 5.93 26.32 20.77
8.0 | 500 8.0 1000 | 521.03 4.47 | 78.97 23.92 | 436.02 4.94 63.98 20.55

1.0 | 300 1.0 990 (| 600.00 1.00 0.00 2.53 | 299.88 1.00 0.12 10.07
1.0 | 400 1.0 990 || 599.89 1.00 0.11 253 | 369.78 1.54 30.22 14.04
1.0 | 500 1.0 990 | 599.65 0.99 0.35 249 | 383.97 2.22 | 116.03 7.90
1.0 | 300 1.0 995 || 600.00 1.00 0.00 2.85 | 299.93 1.00 0.07  9.03
1.0 | 400 1.0 995 || 598.73 0.97 1.27 293 | 37418 1.40 25.82 13.66
1.0 | 500 1.0 995 || 595.76 0.95 424 254 | 39238 2.01 | 107.62 7.72
1.0 | 300 1.0 1000 | 599.96 1.00 0.04 6.90 | 299.98 1.00 0.02 3.95
1.0 | 400 1.0 1000 | 585.11 0.92 | 14.89 9.36 | 390.08 0.94 9.92  6.57
1.0 | 500 1.0 1000 | 540.82 0.97 | 59.18 5.06 | 450.69 0.97 49.31 4.39
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