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Abstract

We propose (Mixed Integer) Second Order Cone Programming formulations to
find approximate and exact D−optimal designs for 2k factorial experiments for
Generalized Linear Models (GLMs). Locally optimal designs are addressed with
Second Order Cone Programming (SOCP) and Mixed Integer Second Order Cone
Programming (MISOCP) formulations. The formulations are extended for sce-
narios of parametric uncertainty employing the Bayesian framework for log det
D−optimality criterion. A quasi Monte-Carlo sampling procedure based on the
Hammersley sequence is used for integrating the optimality criterion in the para-
metric region. The problems are solved in GAMS environment using CPLEX solver.
We demonstrate the application of the algorithm with the logistic, probit and com-
plementary log-log models and consider full and fractional factorial designs.
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1. Motivation

We consider the problem of determining model-based D−optimal designs of
2k factorial experiments for Generalized Linear Models where k is the number of
factors considered in the study. Our setup is that we have a given Generalized
Linear Model defined on a design space formed by combinations of {−1,+1} of
np covariates, and a given total number of observations, N, available for the study.
The design problem is to find the number of replicates (if any) at each of these
design points, n ∈ N0, subject to the requirement that they sum to N A standard
approach to deal with the problem is to compute approximate optimal designs,
which can be seen as a continuous relaxation of the M-bODE problem, and can
be interpreted as the optimal proportions wi of trials to perform on the design
point xi ∈ {−1,+1}k. The practical implementation of the approximate design
requires approximating N × wi, ∀i, to integer values such that

∑2k

i=1 N × wi = N.
In contrast to the exact designs, approximate designs can be computed by using
convex programming techniques in polynomial time (with respect to the number
of design points).

Recently, it has been shown that the D−optimality criterion can be represented
by using Second Order Cone (SOC)-inequalities. Let us designate the design ob-
tained by maximizing the expectation of the determinant of the Fisher Informa-
tion Matrix (FIM) raised to the power 1/np, where np is the number of parame-
ters in the model over their prior distribution as det-root-np Bayesian D−optimal
designs. The Bayesian D−optimal designs obtained by maximizing the expec-
tation of the logarithm of the determinant of the FIM over the prior distribution
of the model parameters proposed by Chaloner and Larntz (1989) are called log-
det Bayesian D−optimal designs. Both criteria assume that the uncertainty of the
parameters can be adequately captured in the prior distribution. Typically, there
are several different forms of the Bayesian D−optimality criterion, see Berger and
Wong (2005) but the log − det criterion is the most common one for non-linear
models for three reasons: i. it arises naturally from the expected gain of the Shan-
non information (Chaloner and Verdinelli, 1995; Lindley, 1956); ii. this criterion
is concave, so a global equivalence theorem hold (Firth and Hinde, 1997); and
finally iii. its numerical results are the most satisfactory, see Atkinson et al. (2007,
pag. 297).

Sagnol and Harman (2015) proposed a MISOCP formulation to find exact
D−optimal designs for linear models (Sagnol and Harman, 2015). The expansion
of the SOCP and MISOCP formulations to handle det-root-np Bayesian D−optimal
designs employing the ideas of Duarte and Wong (2015) was already discussed in
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Sagnol and Harman (2015, Appendix). Following the same research line, Har-
man and Filová (2016) developed the R package OptimalDesign which relies on
the SOCP and MISOCP formulations to find optimal designs for linear models
assuming a pre-defined set of candidate points in the design space. This setup
was tested with several models and design spaces, and among them is the op-
timal design of 2k factorial plans for linear models. Here we use their ideas to
develop formulations to: i. find exact locally D−optimal designs for generalized
linear models on the discrete design space xi ∈ {−1,+1}k, i.e. 2k factorial de-
signs; and ii. compute exact log-det Bayesian D−optimal designs for generalized
linear models on the same design space. The formulation for computing locally
D−optimal designs is similar to that proposed by Sagnol and Harman (2015) for
linear models, and is considered here as the departure point in the use of MISOCP
for computing factorial designs for GLMs.

From our knowledge, this is the first paper to present a MISOCP formula-
tion to find exact log-det Bayesian D−optimal designs and using a branch-and-cut
algorithm to find the solution of the problems. Furthermore, it is the first work ad-
dressing the design of factorial plans of experiments for generalized linear models
via MISOCP.

1.1. Prior work
Mathematical programming (MP) algorithms have improved substantially over

the last two decades and they can be used to systematically solve the M-bODE
problem. The basic paradigm is to reformulate the M-bODE problem to canon-
ical forms that can be handled by specialized solvers, examples are semidefinite
programming (SDP) (Vandenberghe and Boyd, 1996) and SOCP (Sagnol, 2011).
The strengths of MP algorithms are that i. they rely on efficient software which
commonly requires mild computational times to find the optimum; ii. they can be
addressed in polynomial time using interior point methods; and iii. they can easily
integrate additional constraints imposed to the designs. Among the applications of
MP algorithms for finding M-bODE is Linear Programming (Gaivoronski, 1986;
Harman and Jurík, 2008), SOCP (Lu and Pong, 2013; Sagnol, 2011), MISOCP
(Sagnol and Harman, 2015) and SDP (Duarte and Wong, 2015; Fedorov and Lee,
2000; Filová et al., 2011; Papp, 2012).

The interest in GLMs increased during the latest decades, since it expands the
classic linear model so that the dependent variable is linearly related to the fac-
tors and covariates via a specified link function of nonlinear nature. The model
allows for the dependent variable to have a non-normal distribution, and covers
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different statistical models, such as linear regression for normally distributed re-
sponses, logistic models for binary data, log-linear models for count data, and
complementary log-log models for interval-censored survival data, among others.
Several authors addressed the theoretical issues of the optimal design of experi-
ments for GLMs (Li and Majumdar, 2008; Wang et al., 2006; Yang and Stufken,
2009; Zhang and Ye, 2014). Woods et al. (2006), Dror and Steinberg (2008),
Waterhouse et al. (2008) and Woods and van de Ven (2011) developed numerical
methods to find optimal designs for GLMs with quantitative covariates and, conse-
quently, continuous design spaces. Other authors used the problem as benchmark
for testing different algorithms (e.g. King and Wong (2000) and Duarte and Wong
(2015)).

In this paper we consider the optimal design of 2k factorial experiments for
GLMs assuming that the covariates are qualitative factors with two levels coded
as −1 and +1, see Yang et al. (2016, Sec. 1) for a motivating example. Theoreti-
cal results for the 22 problem were obtained by Graßhoff and Schwabe (2008) and
Yang et al. (2012), while Dorta-Guerra et al. (2008) studied the general case of the
2k factorial design. To find locally D−optimal designs for 2k factorial experiments
for GLMs (Yang et al., 2016) proposed a numerical algorithm based on functional
analysis, subsequently expanded to find EW −D−optimal designs and adapted for
fractional factorial setups, where EW stands for expectation weighted and is char-
acterized by replacing the expectation of the information matrix under the prior
by the information matrix at θ̄ where θ̄ =

∫
Θ
θ π(θ) d(θ), and π(θ) is the prior that

represents the parameter uncertainty. In contrast, our proposed algorithm is based
on SOCP and MISOCP formulations and is a general framework that can be used
for all GLMs and other generalized additive models, local and Bayesian optimal
setups, full and fractional factorial designs. Our formulations can also be used
for computing constrained optimal designs since they can easily accommodate
additional constraints; e.g. budget constraints (Harman et al., 2016).

In this work we assume the design space is intrinsically discrete, and each
factor can have only two possible values {−1,+1}. To handle the dependence of
the FIM over the model parameters we use a Bayesian framework where each
parameter follows an a priori established probability function.

1.2. Paper organization
In what follows, Section 2 presents mathematical background for the SOCP

and MISOCP formulations and the details about the integration method. Section 3
presents the SOCP and MISOCP formulations for locally D−optimal designs for
2k factorial experiments for GLMs, and Section 4 extends them to scenarios with
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parametric uncertainty. Section 5 demonstrates the application of the algorithm
for obtaining optimal designs for fractional factorial experiments, and Section 6
offers the conclusions.

2. Mathematical background

This section provides the background material required by the mathematical
formulation for obtaining optimal designs for 2k factorial experiments using SOCP
and MISOCP. In subsection 2.1 we review the fundamentals of GLMs and respec-
tive FIMs. Section 2.2 introduces the conceptual basis for Second Order Cone
(SOC)-representability of sets and functions. Subsection 2.3 introduces Bayesian
optimal designs, and subsection 2.4 presents the numerical approach used for in-
tegration of the optimality criterion over the parameters domain. In the following,
we use bold face lowercase letters to represent vectors, bold face capital letters
for continuous domains, blackboard bold capital letters for discrete domains, and
capital letters for matrices. Finite sets containing ι elements are compactly repre-
sented by [ι] = {1, · · · , ι}.

2.1. Generalized Linear Models
This section introduces the fundamentals of GLMs. In this work we focus on

the use of GLMs in problems where the response of interest is binary, i.e the data
is assumed to follow a Bernoulli distribution.

Consider an experiment, conducted with the purpose of constructing the dose-
response curve for identifying the relationship between the dose of the drug and
its effect on patients, where the measured outcome of interest is either a “suc-
cess” or “failure”, coded as 1 and 0, respectively. In our experimental setup, the
probability of “success” or “failure” depends on the combination of k qualitative
factors and on a set of unknown parameters θ ∈ Θ ⊂ Rnp . A treatment is repre-
sented by a binary vector x ∈ {−1,+1}k, which indicates a combination of factor
levels: xi = +1 or xi = −1 indicates that the ith factor is set to its high or low
level in the treatment x, respectively. In this work we assume that the unknown
parameter θ belongs to the np-dimensional cartesian box Θ = ×

np

j=1[θLO
j , θUP

j ],
with each interval [θLO

j , θUP
j ] representing the plausible range of values for the jth

parameter. However, it would be straightforward to generalize our approach to
non-rectangular parameter regions.

The classic statistical modeling paradigm can not be applied to the probabil-
ity of “success” because the response is by definition constrained to fall between
0 and 1. Instead, the outcome is modeled in terms of conditional expectation
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E[y|x, θ]. For binary outcomes taking the values 0 and 1, the probability of “suc-
cess” is modeled by a function f : {−1, 1}k ×Θ→ [0, 1], such that the treatment x
induces a binary response y ∈ {0, 1}, satisfying

E[y|x, θ] = P(y = 1|x, θ) = f (x, θ). (1)

Let us first consider an approximate design ξa, which allocates a weight wi ≥ 0
on the ith treatment xi ∈ {−1, 1}k, i ∈ [2k], with

∑2k

i=1 wi = 1. For a given number-
ing X = {x1, . . . , x2k} of all 2k treatments in {−1,+1}k, such a design can simply be
represented by a vector of nonnegative weights w summing to 1. Hence, we iden-
tify the set Ξa of all feasible approximate designs with the (2k − 1)-dimensional
simplex Ξa ≡

{
w ∈ R2k

: wi ≥ 0, ∀i ∈ [2k],
∑2k

i=1 wi = 1
}
.

Similarly, an N−exact design ξe is defined by the number of replications ni ∈

N0 for the ith treatment xi ∈ X, with
∑2k

i=1 ni = N. We identify the set Ξe
N of feasible

N−exact designs ξe = {(xi, ni)}, i ∈ [2k], with

Ξe
N ≡

w ∈ R2k
: ∃n1, . . . , n2k ∈ N0, wi =

ni

N
,

2k∑
i=1

ni = N

 .
The worth of the design ξ is measured by a convex functional of its FIM. The

elements of the normalized FIM obtained after adjusting for the sample size are
the negative of the expectation of the second order derivatives of the log-likelihood
of (1), L(ξ, θ), with respect to the parameters. This matrix is proportional to

M(ξ, θ) = − E
(
∂L(ξ, θ)
∂θ

∂L(ξ, θ)
∂θᵀ

)
=

∫
x∈X

M(x, θ) d ξ(x)

=

2k∑
i=1

wi h(xi, θ) hᵀ(xi, θ), (2)

where M(ξ, θ) is the global FIM from the design ξ at θ, M(x, θ) is the elemen-
tal FIM from point x, and h(xi, θ) ∈ Rnp is the vector of derivatives of the log-
likelihood with respect to θ at point xi ∈ {−1,+1}k. For the GLM model (1), the
terms h(xi, θ) used to construct the FIM for GLMs are (Atkinson et al., 2007):

h(xi, θ) =
1√

E[y|xi, θ] (1 − E[y|xi, θ])

∂E[y|xi, θ]
∂θ

. (3)

The volume of the asymptotic confidence region of θ to determine from the
design is proportional to det[M−1/2(ξ, θ)], and consequently the maximization of
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the determinant (or its geometric mean) of the FIM leads to the smallest possible
volume. For a given nominal value of θ, a locally D−optimal approximate design,
ξa

D, is obtained from

ξa
D ∈ arg max

ξa∈Ξa
{det[M(ξa, θ)]}1/np , (4)

and for some N ≥ np, a locally D−optimal N−exact design, ξe
D solves

ξe
D ∈ arg max

ξe∈Ξe
N

{det[M(ξe, θ)]}1/np . (5)

When locally D−optimal designs are considered, maximizing {det[M(ξa, θ)]}1/np

is equivalent to maximizing log {det[M(ξa, θ)]}. Along the paper we address and
present numerical experiments for the most common case, in which the function
f (x, θ) = P(y = 1|x, θ) has the form

f (x, θ) = `
(
κ(x)ᵀθ

)
,

in which κ : [−1, 1]k → Rnp is a set of np known regression functions, typically
polynomials, and ` : R → [0, 1] is a so-called link function. This framework
includes GLMs for the linear predictor f (x, θ) = `

(
xᵀθ

)
, but also more compli-

cated models with an intercept and interaction terms such as Scheffé’s mixture
models. For example, we will give numerical results for a model of the form
`
(
(1, x1, x2, x3, x4, x1 × x3)ᵀ θ

)
in Section 5. Table 1 lists common GLMs used for

modeling binary outcome processes.

Table 1: GLMs used for testing the algorithm.

Model Designation Model

Logistic logit E[y|x, θ] =
exp(θᵀ κ(x))

1 + exp(θᵀ κ(x))
Probit probit E[y|x, θ] = Φ(θᵀ κ(x))†

Complementary log-log CLL E[y|x, θ] = 1 − exp[− exp(θᵀ κ(x))]
† - Φ(x) is the cdf of the standard normal distribution at x.

2.2. SOC-representability
In this section we review the concept of SOC-representability and apply it for

reformulating the M-bODE problem as a SOCP. Following, we use the theoretical
results of Ben-Tal et al. (2009):

7



Definition 2.1. (SOC-representability of a set). A convex set S ⊂ Rn is second-
order cone representable if S is the projection of a set in a higher-dimensional
space that can be described by a set of second-order cone inequalities. That is, S
is SOC-representable if and only if there exist Ai ∈ Rni×(n+m), λi ∈ Rni , υi ∈ Rn+m

and δi ∈ R for i ∈ [Nc] such that:

x ∈ S ⇐⇒ ∃y, ∀i ∈ [Nc] :

∥∥∥∥∥∥Ai

[
x
y

]
+ λi

∥∥∥∥∥∥ ≤ υᵀi
[
x
y

]
+ δi

A direct application of Definition (2.1) is the rotated cone of inequalities (Al-
izadeh and Goldfarb, 2001; Lobo et al., 1998) where the set S = {(x, t, u) ∈
Rm ×R×R : ‖x‖2 ≤ t u, t ≥ 0, u ≥ 0} ⊂ Rn+2 is SOC-representable. Specifically,
a constraint of the form ‖x‖2 ≤ t u, t ≥ 0, u ≥ 0 is equivalent to the second-order
cone constraint ∥∥∥∥∥∥

(
2 x

t − u

)∥∥∥∥∥∥ ≤ t + u. (6)

The concept of SOC-representability can be extended to functions according
to Ben-Tal et al. (2009):

Definition 2.2. (SOC-representability of a function). A convex or concave func-
tion f : S ⊂ Rn → R is SOC-representable if and only if the epigraph of f ,
{(t, x) : f (x) ≤ t} or the hypograph {(t, x) : f (x) ≥ t}], respectively, is SOC-
representable.

Based on the Definitions (2.1-2.2), the problem of maximizing a concave
SOC-representable function (or minimizing a convex one) over a SOC-representable
set can be cast as a SOC program. This property can find application, for exam-
ple, in constructing the epigraph of the geometric mean of q positive variables
x ∈ Rn

+, that is f (x) =
∏q

i=1 x1/q
i , used in §3-4. In the following we demonstrate

the construction of SOC-representations for the geometric mean assuming a gen-
eral number of q variables xi.

Let us introduce an auxiliary variable u ∈ Rl1×l2
+ that serves to store products of

two variables of the previous level of aggregation where l2 = dlog(q)/ log(2)e−1 is
the number of aggregation levels required by the representation, d•e is the operator
that rounds the result of the internal operation to the upper integer, and l1 is the
number of different variables required in each level of aggregation l ∈ [l2]:

l1,1(l) =bq/2lc, l ∈ [l2]

l1,2(l) =q mod(2l), l ∈ [l2]
l1(l) =l1,1(l) + l1,2(l), l ∈ [l2],
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and b•c is the result of the approximation for the lower integer value, and a mod(b)
is the reminder of the division of a by b. For t ∈ R+, x ∈ Rq

+ we have tq ≤
∏q

i=1 xi

such that

∃u ∈ Rl1×l2
+ :



u2
l,1 ≤ x2l−1 x2l, l ∈ [l1,1(1)]

u2
l,1 ≤ x2l−1 ul,1, l ∈ [l1,2(1)]

u2
l,m ≤ u2l−1,m−1 u2l,m−1, l ∈ [l1,1(m)], m ∈ {2, · · · , l2}

u2
l,m ≤ u2l−1,m−1 ul,m, l ∈ [l1,2(m)], m ∈ {2, · · · , l2}

t2 ≤ u2l−1,l2 u2l,l2

(7)

The inequalities in (7) can then be expressed as second-order cone inequali-
ties, see (6). The concave monomial function f (x) =

∏q
i=1 xϑi

i , required by the
Bayesian optimal design problem, is also SOC-representable if x ∈ Rn

+, ϑi ∈

Q, i ∈ [n],
∑n

i=1 ϑi ≤ 1 where Q is the set of rational numbers (Ben-Tal et al.,
2009). Consequently, it can also be represented by a set of second-order cone
inequalities similar to (6).

2.3. Locally and Bayesian optimal designs
GLMs are nonlinear by construction, and for that class of models, the FIM

depends on the parameters and consequently all design criteria depend on the un-
known parameters that we want to estimate. When nominal values are assumed
for the parameters, the resulting designs are called locally optimal. The design
strategies commonly used to handle the dependence noticed above include the use
of: i. a sequence of locally optimal designs, each computed using the latest exper-
imental results (Ford et al., 1989); ii. Bayesian designs that optimize the expecta-
tion of the optimality criterion over the prior distribution of the model parameters
(Chaloner and Larntz, 1989), which is assumed to be known; and iii. minimax
designs that minimize the worst design inefficiency from the unknown values of
the model parameters (Imhof, 2001; Wong, 1992). In subsequent sections we fo-
cus on the Bayesian optimal design setup, which assumes that a prior density π(θ)
is available for θ. The approximate log-det Bayesian D−optimal design, ξa

BayesD,
solves

ξa
BayesD = arg max

ξa∈Ξa

∫
Θ

log {det[M(ξa, θ)]} π(θ) dθ, (8)

and a similar representation is used for the exact design.
To assess the performance of the computed exact locally D−optimal designs

ξe, we use an optimal approximate design ξa as reference and express the effi-
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ciency as

EffD =

(
det[M(ξe, θ)]
det[M(ξa, θ)]

)1/np

(9)

To construct a measure to assess the efficiency of the exact log-det Bayesian

D−optimal designs let φ(ξ) = exp
[
Φ(ξ)

1
np

]
be a rescaled criterion so that φ(ξ)

coincides with the positvely homogeneous det-root-np criterion when Θ is a sin-
gleton, and Φ(ξ) :=

∫
Θ

log {det[M(ξ, θ)]} π(θ) dθ. Now, the log-det Bayesian
D−optimal efficiency is the ratio φ(ξe)/φ(ξa) which reads

EffD =

[
exp

(∫
Θ

log(det[M(ξe, θ)]) π(θ) d(θ)−

−

∫
Θ

log(det[M(ξa, θ)]) π(θ) d(θ)
)]1/np

. (10)

Notice the efficiency of the exact designs are computed relatively to optimal
approximate designs, and can be seen as a measure of the loss of efficiency due to
imposing integer constraints on the design weights for a given N. So if a design ξe

has an efficiency of 90%, it does not mean that ξe is not truly N−exact optimal, but
only that 10% of efficiency was lost in rounding the optimal approximate design
ξa.

2.4. Numerical integration scheme
The problem of finding Bayesian D−optimal designs requires integrating the

optimality criterion over the parametric domain, see (8). In this section we in-
troduce the numerical approach used in our work. Duarte and Wong (2015) use
Gaussian Quadrature Formulas (GQF) for computing Bayesian designs via SDP,
having found that they are accurate but as the dimensionality of the integration
domain increases the size of the MP problem generated becomes computationally
prohibitive. One possible strategy to overcome this issue is decreasing the num-
ber of collocation points which, however, reduces the accuracy of the integration
scheme.

To keep the MP problem tractable without compromising the accuracy, we use
a quasi-random Monte Carlo sampling scheme for integrating a general function
γ(θ), θ ∈ Rnp in the closed domain Θ ⊂ Rnp (Caflisch, 1998). This approach is
less accurate than GQF but avoids the exponential increase of the MP problem as
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the dimensionality of the parameter’s domain increases. The integral approxima-
tion is ∫

Θ

γ(θ) d θ ≈
∏m

i=1(θUP
i − θ

LO
i )

Ns

Ns∑
j=1

γ(θ j), (11)

where Ns is the number of sampling points and the np−dimensional points θ j are
generated using a quasi-random number generator. We use the Hammersley num-
ber sequence, a multi-dimensional low-discrepancy sequence (Hammersley and
Handscomb, 1964) which denotes advantages over purely random approaches be-
cause it distributes the points more adequately and sample the most important
points more frequently. Diwekar and Kalagnanam (1997) demonstrates the ad-
vantages of the Hammersley sequence for sampling in stochastic optimization
problems such as (8).

3. Locally D−optimal designs

In this section, we use the SOCP and MISOCP formulations to find, respec-
tively, locally approximate and exact D−optimal designs for 2k factorial experi-
ments for the GLMs listed in §2.1. In subsection 3.1 we present the formulations
for obtaining D−optimal designs and in subsection 3.2 we present results for the
case of a link function applied to a linear predictor f (x, θ) = `(xᵀθ), i.e., k = np.
The extension of the formulations to more complex models is considered in Sec-
tion 5.

3.1. SOCP and MISOCP formulations for locally D−optimal 2k factorial experi-
ments

This subsection presents the formulations for locally D−optimal designs for 2k

factorial experiments. First, we address the approximate optimal design problem
and subsequently extend the formulation for finding exact optimal designs. In
both cases we use the formulations presented in Sagnol and Harman (2015).

Let us first consider the approximate optimal design problem and recall that
the goal is to find D−optimal designs for 2k factorial plans. The set of points of
the design is denoted by X where each treatment is a combination of values −1
and +1. For compactness we use hi ∈ Rnp to represent h(xi, θ) where Θ = {θ} is
a singleton and h(xi, θ) is given by (3). Standard basis vectors with the value 1 in
jth position are denoted by e j ∈ Rnp and vectors of size j with all entries being 1’s
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are represented by 1 j. The SOCP formulation for the approximate design is:

max
zi∈Rnp ,T∈R2k×np

+ ,

J∈Rnp×np ,w∈R2k
+

np∏
j=1

J1/np

j, j (12a)

s.t.
2k∑

i=1

hi zᵀi = J (12b)

J j, j′ = 0, j′ ∈ [np], j′ ≥ j + 1 (12c)

‖zT
i ᵀ e j‖

2 ≤ Ti, j wi, i ∈ [2k], j ∈ [np] (12d)
2k∑

i=1

Ti, j ≤ J j, j, j ∈ [np] (12e)

wᵀ 12k = 1 (12f)

where the vectors zi’s and the matrices T and J contain auxiliary variables, and
the weights of each design point are stored in vector w. Equation (12d) is SOC-
representable, c.f. Equation (6), and the complete SOCP problem is obtained af-
ter replacing the geometric mean in Equation (12a) by the corresponding SOC-
representation (Equations (7)) with q = np.

The formulation for the exact optimal design problem is similar to (12) except
for the continuous weight variables that are replaced by quotients ni/N, ni ∈ N0,
which only affects Equations (12d) and (12f):

max
zi∈Rnp ,T∈R2k×np

+ ,

J∈Rnp×np ,n∈N2k
0

np∏
j=1

J1/np

j, j (13a)

s.t.
2k∑

i=1

hi zᵀi = J (13b)

J j, j′ = 0, j′ ∈ [np], j′ ≥ j + 1 (13c)

‖zᵀi e j‖
2 ≤ Ti, j

ni

N
, i ∈ [2k], j ∈ [np] (13d)

2k∑
i=1

Ti, j ≤ J j, j, j ∈ [np] (13e)

nᵀ 12k = N (13f)
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The problems (12) and (13) as well as those formulated in Section 4 were
coded in a high-level modeling system for mathematical programming, GAMS (GAMS
Development Corporation, 2013). Subsequently, they were solved employing
CPLEX that implements a barrier interior point algorithm (IBM, 2015) and sup-
ports conic constraints. To handle the integer variables in the MISOCP problem,
CPLEX uses a branch and cut algorithm. The tolerance required for convergence
in all problems addressed in subsequent sections is 10−5. All computation in this
paper were carried using on an Intel Core i7 machine running 64 bits Windows 10
operating system with 2.80 GHz.

3.2. Numerical experiments
This section demonstrates the application of the formulations in §3 for obtain-

ing locally D−optimal designs for 2k factorial experiments. We consider k = 4
(4 factors) and the linear predictor θᵀ x, i.e., κ(x) = x. The plausibility region is
a singleton set, θ ∈ Θ ≡ {0.15} × {0.20} × {0.25} × {0.2}. Table 2 presents the
approximate and exact designs for this setup. For logit and probit models the op-
timal approximate designs are uniform where by uniform we mean designs with
uniform allocation on its support points. Factorial models admit a large class of
D−optimal designs (with the same FIM), and the uniform design is one of them.
In contrast, the optimal design for the CLL model only requires one half of the
experiments with all the remaining points equally replicated, practically being a
fractional 24−1 design.

The CPU times required by the algorithm for approximate designs are notice-
ably shorter compared to those reported for other problems. The main reasons
contributing for such a trend are i. the efficiency of the solver; ii. the efficiency
of the SOCP formulation, specifically for relatively small size MP problems; and
iii. the small number of points in the design.

The last three columns of Table 2 display the optimal exact designs for the
same singleton set and N = 20. The exact designs found are consistent with the
approximate, with a few minor differences emerging from the comparison. First,
the exact designs for logit and probit models are slightly different in the latest
case. Second, the CPU time increases on average about 10 times relatively to that
required by approximate designs due to the complexity of solving the MISOCP
problems. The exact design for the CLL model still includes one half of the points,
and some of the treatments are to be replicated 3 times. The efficiencies of the ex-
act D−optimal designs obtained with equation (9) are in the last line of Table 2.
The values are very close to 1.0 with a slightly less efficient design obtained for
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the CLL model. For logit and probit models the inefficiency of the designs is al-
most zero, so the exact designs we have computed are as good as the approximate
designs.

Table 2: Approximate and exact locally D−optimal designs for 24 factorial experiments on GLMs
in Table 1, Θ ≡ {0.15} × {0.20} × {0.25} × {0.2} and N = 20.

Factor levels Approximate designs Exact designs

x1 x2 x3 x4 logit probit CLL logit probit CLL

-1 -1 -1 -1 0.0625 0.0625 0.1250 1 2 3
-1 -1 -1 1 0.0625 0.0625 0.0000 1 1 0
-1 -1 1 -1 0.0625 0.0625 0.0000 1 1 0
-1 -1 1 1 0.0625 0.0625 0.1250 1 2 3
-1 1 -1 -1 0.0625 0.0625 0.0000 2 1 0
-1 1 -1 1 0.0625 0.0625 0.1250 1 1 2
-1 1 1 -1 0.0625 0.0625 0.1250 1 1 2
-1 1 1 1 0.0625 0.0625 0.0000 1 1 0
1 -1 -1 -1 0.0625 0.0625 0.0000 2 1 0
1 -1 -1 1 0.0625 0.0625 0.1250 1 2 3
1 -1 1 -1 0.0625 0.0625 0.1250 1 2 3
1 -1 1 1 0.0625 0.0625 0.0000 1 1 0
1 1 -1 -1 0.0625 0.0625 0.1250 1 1 2
1 1 -1 1 0.0625 0.0625 0.0000 2 1 0
1 1 1 -1 0.0625 0.0625 0.0000 2 1 0
1 1 1 1 0.0625 0.0625 0.1250 1 1 2

CPU (s) 0.011 0.014 0.013 0.151 0.321 0.117
EffD 1.0000 1.0000 1.0000 0.9999 0.9999 0.9870

4. Bayesian D−optimal designs

In this section we extend the formulations in §3 for Bayesian optimal designs
that maximize the log − det criterion. In subsection 4.1 we introduce the for-
mulations for approximate and exact Bayesian designs, and in subsection 4.2 we
present the results for a 24 factorial plan.

4.1. SOCP and MISOCP formulations for Bayesian D−optimal designs for 2k

factorial experiments
Here, we extend the SOCP and MISOCP formulations derived for locally op-

timal designs to Bayesian setups where the FIM depends on the parameters, and
the plausibility region as well the respective priors are known.
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Contrarily to local D−optimal setups where the optimal designs obtained max-
imizing the det-root-np and log-det criteria are equal, here solving

max
ξa∈Ξa

∫
Θ

log {det[M(ξa, θ)]} π(θ) dθ

may produce different designs from those obtained for

max
ξa∈Ξa

∫
Θ

{det[M(ξa, θ)]}1/np π(θ) dθ,

and the former criterion is more natural when the focus is on the inference of
nonlinear models, cf. section 1. Sagnol and Harman (2015, Appendix) introduced
SOCP and MISOCP formulations for the det-root-np criterion. Here, we consider
the log-det criterion and present new formulations.

Let us recall to the log-det Bayesian D−optimal design problem (8). The
numerical approach used to compute the expectation uses the quasi-random Monte
Carlo sampling scheme presented in §2.4, and is equivalent to

ξa
BayesD ∈ arg max

ξa∈Ξa

Ns∑
m=1

log {det[M(ξa, θm)]} π(θm), (14)

where Ns is the number of samples initially set by the user.
To demonstrate how the expectation is computed let us consider the simplest

case where the prior is the uniform distribution over Θ. Then, each vector θm

sampled from Θ has equal probability, and π(θm) = 1
Ns
, ∀m ∈ [Ns]. The random

number generator follows the Hammersley number sequence scaled to Θ. All
examples in sections 4.2 and 5 consider this setup, but other priors as such the
normal distribution N(θ̂,Σ) (truncated over Θ) can be used. In the latest case, the
Monte Carlo sampling scheme is used to pick samples θm, and their weights are
then computed as π(θm) = φ(θm|θ̂,Σ) where φ(a|b,Γ) is the np−dimensional nor-
mal probability distribution function at a when the average is b and the covariance
matrix is Σ with b = θ̂ and Σ set by the user. Next, the values of π(θm) are scaled
so that they sum to 1.

The reformulation of the log − det Bayesian criterion (14) uses the theoretical
result from Sagnol and Harman (2015), which shows that ξ 7→ det(M(ξ, θ))1/np is
SOC-representable for all θ. After exponentiation, the function to be maximized
in (14) can be rewritten as

ξa
BayesD ∈ arg max

ξa∈Ξa

Ns∏
m=1

{
[det[M(ξa, θm)]]1/np

}npπ(θm)
. (15)
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After raising to the power 1/np, the problem is equivalent to

ξa
BayesD ∈ arg max

ξa∈Ξa

Ns∏
m=1

ςπ(θm)
m , (16a)

s.t. [det(M(ξa, θm))]1/np ≥ ςm, m ∈ [Ns] (16b)

where the concave monomial
∏Ns

m=1 ς
π(θm)
m , ςm ≥ 0, ∀m ∈ [Ns] is SOC-representable

provided the π(θm)’s are rational, cf. §2.2.
Finally, the formulation for approximate log-det Bayesian D−optimal designs

is obtained by replacing the constraints (16b) by their equivalent SOC-representation:

max
zm,i∈Rnp ,T∈RNs×2k×np

+ ,

J∈RNs×np×np ,w∈R2k
+ ,ς∈RNs

+

Ns∏
m=1

ςπ(θm)
m (17a)

s.t.
2k∑

i=1

hi,m zᵀm,i = Jm, m ∈ [Ns] (17b)

Jm, j, j′ = 0,m ∈ [Ns], j′ ∈ [np], j′ ≥ j + 1 (17c)

‖zᵀm,i e j‖
2 ≤ Tm,i, j wi, m ∈ [Ns], i ∈ [2k], j ∈ [np] (17d)

2k∑
i=1

Tm,i, j ≤ Jm, j, j, m ∈ [Ns], j ∈ [np] (17e)

ςm ≤

np∏
j=1

J1/np

m, j, j, m ∈ [Ns] (17f)

wᵀ 12k = 1 (17g)

where (17f) represents the hypograph inequality for each ςm, m ∈ [Ns], hi,m :=
h(xi, θm) is the vector of derivatives of the likelihood wrt. the parameters at θm,
and the SOC-representation of the product of eigenvalues in (17f) is constructed
applying the equation (7).

The construction of the MISOCP formulation for exact log-det Bayesian D−optimal
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designs from (17) is straightforward

max
zm,i∈Rnp ,T∈RNs×2k×np

+ ,

J∈RNs×np×np ,n∈N2k
0 ,ς∈RNs

+

Ns∏
m=1

ςπ(θm)
m (18a)

s.t.
2k∑

i=1

hi,m zᵀm,i = Jm, m ∈ [Ns] (18b)

Jm, j, j′ = 0,m ∈ [Ns], j′ ∈ [np], j′ ≥ j + 1 (18c)

‖zᵀm,i e j‖
2 ≤ Tm,i, j

ni

N
, m ∈ [Ns], i ∈ [2k], j ∈ [np] (18d)

2k∑
i=1

Tm,i, j ≤ Jm, j, j, m ∈ [Ns], j ∈ [np] (18e)

ςm ≤

np∏
j=1

J1/np

m, j, j, m ∈ [Ns] (18f)

nᵀ 12k = N (18g)

4.2. Numerical experiments
To demonstrate the application of the formulations in §4.1 for finding 2k fac-

torial experiments the same setup used in subsection 3.2 is considered, i.e k = 4.
Here, θ ∈ Θ ≡ [0.0, 0.3]× [0.0, 0.4]× [0.0, 0.5]× [0.0, 0.4], and the parameters are
uniformly distributed in Θ, i.e π(θ) ≈ U(Θ), which yields π(θm) = 1

Ns
, ∀θm ∈ Θ.

In the numerical experiments we use Ns = 256.
The results in Table 3 agree with those obtained for local designs. The approx-

imate optimal designs for all three models are equal and differences occur in the
exact optimal designs. The exact optimal design for probit model with N = 20
has only 15 treatments, while that obtained for the CLL model includes 7 different
treatments. The results may be different for other values of N. To corroborate,
this idea we tested the algorithm with N = 16 and obtained designs where, for
logit and probit models, all treatments are replicated once, and for the CLL model
the treatments with wi = 0.1250 in the approximate design are replicated twice.
The efficiency of the obtained designs is computed with the Equation (10), and
is in the last line of Table 3. Similarly to local optimal setups, the exact log-det
Bayesian D−optimal designs found have an efficiency close to 1.0 with a smaller
performance observed for the CLL model. As for the local designs, the MISOCP
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problem requires about 10 times more CPU time than that required by the SOCP
formulation for finding approximate designs.

Table 3: Approximate and exact Bayesian D−optimal designs for 24 factorial experiments on
GLMs in Table 1, Θ ≡ [0.0, 0.3] × [0.0, 0.4] × [0.0, 0.5] × [0.0, 0.4], π(θ) ≈ U(Θ), Ns = 256 and
N = 20.

Factor levels Approximate designs Exact designs

x1 x2 x3 x4 logit probit CLL logit probit CLL

-1 -1 -1 -1 0.0625 0.0625 0.1250 1 1 3
-1 -1 -1 1 0.0625 0.0625 0.0000 1 1 0
-1 -1 1 -1 0.0625 0.0625 0.0000 1 0 0
-1 -1 1 1 0.0625 0.0625 0.1250 1 1 5
-1 1 -1 -1 0.0625 0.0625 0.0000 1 2 0
-1 1 -1 1 0.0625 0.0625 0.1250 1 1 3
-1 1 1 -1 0.0625 0.0625 0.1250 1 1 4
-1 1 1 1 0.0625 0.0625 0.0000 2 1 0
1 -1 -1 -1 0.0625 0.0625 0.0000 1 2 0
1 -1 -1 1 0.0625 0.0625 0.1250 1 1 1
1 -1 1 -1 0.0625 0.0625 0.1250 1 1 2
1 -1 1 1 0.0625 0.0625 0.0000 2 1 0
1 1 -1 -1 0.0625 0.0625 0.1250 1 1 0
1 1 -1 1 0.0625 0.0625 0.0000 2 3 0
1 1 1 -1 0.0625 0.0625 0.0000 2 2 0
1 1 1 1 0.0625 0.0625 0.1250 1 1 2

CPU (s) 7.915 8.935 8.925 73.510 62.932 199.324
EffD 1.0000 1.0000 1.0000 0.9999 0.9999 0.9587

5. Optimal designs for more complex models

Now we use the formulations presented in subsections 3.1 and 4.1 for obtain-
ing locally and Bayesian optimal designs for the case where np > k.

Let us consider a simple example where k = 4, np = 6 and a GLM in which
the link function is applied to the predictor θ0 +

∑k
i=1 θi xi + θ5 x1 × x3, i.e., κ(x) =

(1.0, x1, x2, x3, x4, x1 × x3)ᵀ and θ = (θ0, θ1, θ2, θ3, θ4, θ5)ᵀ.
First we consider the locally optimal designs forΘ ≡ {0.10}×{0.15}×{0.20}×

{0.25} × {0.2} × {−0.05} and N = 20, shown in Table 4. We notice the approxi-
mate designs for this setup are uniform for all GLMs. The exact designs obtained
for N = 20 only require 12 different treatments on all GLMs. The efficiency of
the exact designs is above 0.98 for all GLMs. This value is below those obtained
earlier for four-parameter models, and a plausible reason is that we used the same
number of sampling points to compute the expectation in a parameter region with
two additional dimensions. Because the performance of the quasi-random Monte
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Carlo sampling depends on the number of samples used, which is required to in-
crease as the dimension of the integration domain increases, setting Ns = 256
may degrade the numerical accuracy of the integral in this experiment. However,
increasing the number of samples used to estimate the integral would lead to un-
tractable problems.

A noticeable aspect is that the CPU time of the exact designs is more than
1000 times larger than that of the approximate designs which is due to the higher
complexity of the the MISOCP problem. This difference in CPU time may be
attenuated for other values of N, and the numerical test for N equal to a multiple
of 2k that produces uniform designs only requires a few seconds to solve.

Table 4: Approximate and exact locally D−optimal designs for 24 factorial experiments on GLMs
in Table 1, κ(x) = (1, x1, x2, x3, x4, x1 × x3)ᵀ, Θ ≡ {0.10} × {0.15} × {0.20} × {0.25} × {0.2} × {−0.05}
and N = 20.

Factor levels Approximate designs Exact designs

1 x1 x2 x3 x4 x1 × x3 logit probit CLL logit probit CLL

1 -1 -1 -1 -1 1 0.0625 0.0625 0.0625 1 0 3
1 -1 -1 -1 1 1 0.0625 0.0625 0.0625 1 3 0
1 -1 -1 1 -1 -1 0.0625 0.0625 0.0625 2 0 1
1 -1 -1 1 1 -1 0.0625 0.0625 0.0625 0 2 1
1 -1 1 -1 -1 1 0.0625 0.0625 0.0625 1 2 0
1 -1 1 -1 1 1 0.0625 0.0625 0.0625 1 0 3
1 -1 1 1 -1 -1 0.0625 0.0625 0.0625 0 3 1
1 -1 1 1 1 -1 0.0625 0.0625 0.0625 2 0 1
1 1 -1 -1 -1 -1 0.0625 0.0625 0.0625 2 3 0
1 1 -1 -1 1 -1 0.0625 0.0625 0.0625 1 0 2
1 1 -1 1 -1 1 0.0625 0.0625 0.0625 0 2 1
1 1 -1 1 1 1 0.0625 0.0625 0.0625 3 0 2
1 1 1 -1 -1 -1 0.0625 0.0625 0.0625 1 0 2
1 1 1 -1 1 -1 0.0625 0.0625 0.0625 2 2 0
1 1 1 1 -1 1 0.0625 0.0625 0.0625 3 0 2
1 1 1 1 1 1 0.0625 0.0625 0.0625 0 3 1

CPU (s) 0.017 0.021 0.016 676.384 654.672 652.110
EffD 1.0000 1.0000 1.0000 0.9848 0.9835 0.9880

Now, we focus on log-det Bayesian D−optimal designs. Let us assume that
the plausibility region for parameters is Θ ≡ [0.05, 0.15]× [0.0, 0.3]× [0.0, 0.4]×
[0.0, 0.5] × [0.0, 0.4] × [−0.075,−0.025] that encloses the singleton set used for
the locally optimal design. Similarly to previous numerical experiments we use
Ns = 256 and N = 20. The prior is also the uniform distribution, π(θ) ≈ U(Θ)
with Θ ⊂ R6. Table 5 displays the results for this setup. The approximate designs
obtained are also equal for all GLMs and they are also equal to locally optimal de-
signs. Naturally, the CPU time increases relatively to that required by the locally
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optimal designs. Finally, the MISOCP formulation for Bayesian optimal designs
is computationally very challenging, and one observe that after 1000 s of CPU
time the tolerance imposed has not been achieved. The solution displayed in the
latest three columns is the one found at 1000 s of CPU time. The penultimate line
of Table 5 presents the gap of the integer solution obtained after 1000 s of CPU
time to that of the relaxed solution (expressed in percentage), and is an indication
of the Bayesian D−efficiency of the exact design found (see the last line of the
Table). Apart the CLL model, the efficiency of the designs found is close to 1.0.

Because the performance of the quasi-random Monte Carlo sampling scheme
depends on the number of samples used, which is required to increase as the di-
mension of the integration domain increases, setting Ns = 256 may degrade the
numerical accuracy of the integral in this experiment compared to that of exam-
ples presented in §4.2 where np = 4. On turn, the inaccuracy of the integral may
decrease the efficiency of the designs. However, higher values of Ns increase the
CPU time and the difficulty in converging the optimization problems, especially
the MISOCP that computes the exact Bayesian optimal designs.

Table 5: Approximate and exact Bayesian D−optimal designs for 24 factorial experiments on
GLMs in Table 1, κ(x) = (1, x1, x2, x3, x4, x1 × x3)ᵀ, Θ ≡ [0.05, 0.15] × [0.0, 0.3] × [0.0, 0.4] ×
[0.0, 0.5] × [0.0, 0.4] × [−0.075,−0.025], π(θ) ≈ U(Θ), Ns = 256 and N = 20.

Factor levels Approximate designs Exact designs

1 x1 x2 x3 x4 x1 × x3 logit probit CLL logit probit CLL

1 -1 -1 -1 -1 1 0.0625 0.0625 0.0625 0 2 0
1 -1 -1 -1 1 1 0.0625 0.0625 0.0625 2 0 3
1 -1 -1 1 -1 -1 0.0625 0.0625 0.0625 2 1 3
1 -1 -1 1 1 -1 0.0625 0.0625 0.0625 1 2 0
1 -1 1 -1 -1 1 0.0625 0.0625 0.0625 2 0 2
1 -1 1 -1 1 1 0.0625 0.0625 0.0625 0 3 0
1 -1 1 1 -1 -1 0.0625 0.0625 0.0625 1 1 0
1 -1 1 1 1 -1 0.0625 0.0625 0.0625 2 1 2
1 1 -1 -1 -1 -1 0.0625 0.0625 0.0625 1 1 3
1 1 -1 -1 1 -1 0.0625 0.0625 0.0625 2 1 0
1 1 -1 1 -1 1 0.0625 0.0625 0.0625 2 1 0
1 1 -1 1 1 1 0.0625 0.0625 0.0625 0 2 3
1 1 1 -1 -1 -1 0.0625 0.0625 0.0625 2 2 0
1 1 1 -1 1 -1 0.0625 0.0625 0.0625 1 1 3
1 1 1 1 -1 1 0.0625 0.0625 0.0625 0 2 2
1 1 1 1 1 1 0.0625 0.0625 0.0625 2 0 0

CPU (s) 16.562 19.181 20.635 >1000.0† >1000.0† >1000.0†

Gap (%) 1.272 0.717 10.792
EffD 1.0000 1.0000 1.0000 0.9872 0.9928 0.8858
†After 1000 s of CPU the convergence condition is not satisfied.
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Our results for both local and Bayesian D−optimal designs in sections 4.2 and
5 show that the exact designs can not be obtained by straightforward rounding of
the approximate designs, and this finding is especially observed for CLL model.
Consequently, the development of accurate algorithms to specifically compute ex-
act designs is required to optimally allocate the experiments.

6. Conclusions

We use SOCP and MISOCP formulations similar to those proposed by Sag-
nol and Harman (2015) for finding, respectively, approximate and exact locally
D−optimal designs for 2k factorial experiments on Generalized Linear Models
(logistic, probit and complementary log-log models) with binary response. We
extend the approximate and exact formulations to log-det Bayesian D−optimal
setups employing an integration procedure based on a quasi-random Monte Carlo
sampling scheme using the Hammersley sequence. We test the formulations for
obtaining locally and Bayesian optimal designs for 24 factorial experiments. Fi-
nally, we also consider the case where the number of factors is different of the
number of the parameters. From all numerical computations we observed that the
in most cases the optimal designs for logit and probit are uniform over the 2k ver-
tices the hypercube, with exceptions observed for CLL model. The computational
time required by the approximate designs is one order of magnitude lower than
that used by the MISOCP formulation for finding N−exact designs. However, our
study reveals that in many cases, the N−exact optimal design cannot be trivially
obtained by rounding the approximate optimal design. An advantage of SOCP
and MISOCP formulations for D−optimal designs for 2k factorial experiments is
that they can incorporate explicitly additional constraints, e.g. the requirement
that some of the treatments must have a low replication.
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