(XX
X AN

X
Y

<]

<>

=
H
o,

V4
VAN
@

Y

<

o983
LPLPE
77

X X
(X
X7
(X

Y

X)
\V4

@
Seceity

LD
\A
A7

A

TakustraRe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

C. HELMBERG!

Numerical Evaluation of SBmethod

1 Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Takustrafie 7, D-14195 Berlin, Germany,
helmberg@zib.de, http://www.zib.de/helmberg

Z1B-Report 01-37 (December 2001)

Numerical Evaluation of SBmethod

Christoph Helmberg*
February 2001, revised December 2001

Abstract

‘We report numerical results for SBmethod — a publically available implementation of the
spectral bundle method — applied to the 7** DIMACS challenge test sets that are semidef-
inite relaxations of combinatorial optimization problems. The performance of the code is
heavily influenced by parameters that control bundle update and eigenvalue computation.
Unfortunately, no mathematically sound guidelines for setting them are known. Based on our
experience with SBmethod, we propose heuristics for dynamically updating the parameters
as well as a heuristc for improving the starting point. These are now the default settings
of SBmethod Version 1.1. We compare their performance on the DIMACS instances to our
previous best choices for Version 1.0. SBmethod Version 1.1 is also part of the independent
DIMACS benchmark by H. Mittelmann. Based on these results we try to analyze strengths
and weaknesses of our approach in comparison to other codes for large scale semidefinite
programming.

MSC 2000: 90C22; 90C06, 90-08
Keywords: semidefinite programming, large scale methods, computational, semidefi-
nite relaxations

1 Introduction

The C++ program SBmethod is an implementation of the spectral bundle method of Helmberg and
Rend! [2000]; Helmberg and Kiwiel [1999] (see Helmberg [2000a] for a self contained introduction)
for large scale eigenvalue optimization problems of the form

min @ Amax(C — ATy) +b7y. (1)
yey

The function Apax(-) denotes the maximum eigenvalue. With S,, denoting the set of symmetric
matrices of order n, the given datais C € S,,, AT: R™ = S, b€ R™, and a € R with a > 0. The
matrix C is called the cost matriz and the linear operator A7 is defined by

m
Aty =Y "y,
i=1

where the A; € S, for i = 1,...,m are given symmetric matrices of order n. The matrices C' and
A; should be well structured. Sparsity and various low rank structures are supported by the code;
the code is publically available, see Helmberg [2000b].

The set Y C R™, over which is optimized, is a Cartesian product of real numbers R, nonnegative
real numbers Ry = {z € R : z > 0}, and nonpositive real numbers R_ = {z € R: z < 0}, i.e.,
there is a partition (J=, J>, J<) of the index set {1,...,m} with

Y={yeR": y;>0forieJ>, y; <0forie J<}. (2)

*Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Takustrafle 7, D-14158 Berlin, helmberg@zib.de,
http://www.zib.de/helmberg

The somewhat peculiar choice of Y was motivated by the following connection to semidefinite
programs with constant trace a > 0. The eigenvalue optimization problem (1) is equivalent to the
dual of the semidefinite program

max {(C,X)
st. (I,X)=a
(A, X)y=0b;, i€J= 3)
(A;, X) <b; i€ J>
(Ai,X)Zbi iGJS
X >0,

where (A, B) = >, ; ai;b;; denotes the canonical inner product for matrices 4, B € R™*", and
X > 0 is short for X being positive semidefinite. Alternatively, we write X € S;} with S the set
of symmetric positive semidefinite matrices of order n. If the equality constraints for ¢ € J— imply
(I, X) = a then the equivalence of (1) to the dual of (3) is true without the constraint (I, X) = a.
Note, that in this setting the dual of (3) always has strictly feasible solutions and, thus, strong
duality holds.

Semidefinite programs of type (3) arise frequently in semidefinite relaxations of combinatorial
optimization problems (see, e.g., the survey of Goemans [1997]). In this context, any feasible
solution of (1) yields an upper bound on the combinatorial optimization problem. The desire to
compute such bounds quickly via approximate solutions to (1) for well structured matrices 4; was
the main motivation for writing this software.

We briefly review other algorithms designed for large scale semidefinite programming. Benson,
Ye, and Zhang [2000] propose a dual potential reduction algorithm (DSDP in Mittelmann [2001])
that is able to exploit the sparsity of the slack matrix by means of a sparse factorization. Its
advantages are polynomial convergence and a reliable stopping criterion. The system matrix for
computing the Newton step, however, is in general a dense positive definite matrix order m.
This restricts applicability to problems with rather small m that have dual slack matrices with
sparse factors. Burer, Monteiro, and Zhang [2001]; Burer, Monteiro, and Zhang [1999] (BMZ
in Mittelmann [2001]) reformulate the dual as a nonconvex quadratic program with m variables.
The computation of the search direction requires a factorization of the dual slack matrix. It is
applicable to large m and proves to be very efficient for small to medium sized matrix variables. For
large matrices, fill-in in the factorization may cause high memory consumption and computation
times. Burer and Monteiro [2001] (BMPR in Mittelmann [2001]) propose a primal heuristic for
semidefinite relaxations of binary quadratic programs with equality constraints. It is based on a
nonconvex quadratic program that corresponds to optimizing over matrix variables of bounded
rank. So far, their results are stunning. In our context it is important that their objective value
is — if the iterate is feasible — a primal bound on the primal optimal solution of the relaxation
but not necessarily a bound for the underlying combinatorial optimization problem.

In comparison to these methods the characteristics of the spectral bundle method are: Its
memory consumption is of the same order as the input data; there is no need for factorization; it
is a dual subgradient type method that shows good initial progress but also a significant tailing off
effect as the optimal value is approached. We believe that it is well suited for large scale problems
where both, the order of the matrix variable and the number m of design variables may be large
and where accuracy requirements are moderate.

The performance of SBmethod heavily depends on the choice of several parameters. At this
point of development no mathematically sound guidelines are known for choosing these parameters
automatically. In this text we report, for the 7t» DIMACS challenge instances that are positive
semidefinite relaxations of combinatorial optimization problems, the best parameter settings that
we found in several test runs. We do this for two reasons. First, we want to show the potential
and explore the limits of our implementation, and second, we hope that these examples help to
establish guidelines for choosing these parameter for other problem classes, as well. Therefore, we
try to provide intuitive explanations on why these parameters might be reasonable. We have tried
to implement heuristics that follow these guidelines in Version 1.1 of SBmethod and compare the

results to our best settings. It is not surprising that for several instances the default choices need
about twice the computation time of their tuned counterparts, but for a few instances the new
default choices turn out to be better.

The paper consists of two main parts. In the first part we give a concise introduction to the
basic steps of the algorithm and its parameters and describe the new heuristics. The second part
reports computational results. In particular we will explain the exact formulation and parameter
settings we used. In addition, the DIMACS benchmark of Mittelmann [2001] provides numerical
results in a comparable setting for the codes BMPR, BMZ, DSDP, and BUNDLE (BUNDLE is
SBmethod Version 1.1 with the same default settings). Based on this benchmark and our own
experiments we try analyze the strengths and weaknesses of SBmethod. In Section 4 we offer some
conclusions. For the convenience of the reader we have collected our notation in the appendix.

2 The Algorithm

We extend the objective function of (1) to R™,
f(y) = a)‘max(c - ATy) + bTy + lY(y)7

where 1y denotes the indicator function whose value is 0 for y € Y and oo otherwise. Instead
of minimizing f directly we construct sequences of simpler cutting surface models of f that are
easier to minimize. These model functions are formed by minorizing aAmax(C — AT-) and 1y as
explained in the following two steps.

In the first step, we form a minorant for a Apax(C — AT"). Tt is well known (see, e.g., Lewis
and Overton [1996]) that, for a > 0,

aAmax(C — ATy) = max{(C — ATy, W) : tr W = a, W = 0}.

Therefore, any W € W := {W = 0: tr W = a} gives rise to a linear function (C' — A", W) that

minorizes the function aAmax(C —.AT-). Maximizing over a subset W C W yields, as the pointwise
maximum of the linear functions, a convex function minorizing aAmax(C — A”-). SBmethod uses a
subset of the form?!

W= {PVP" +aW :trV +a =a,V = 0,a > 0}, (4)

where P is an orthonormal matrix of size n x r and W € S;' is a positive semidefinite matrix of
trace 1. We refer to P as the bundle, to the number of columns r of P as the size of the bundle,
and to W as the aggregate; within a single iteration of the algorithm, P and W may be regarded
as constant but both will be updated at the end of each iteration.

In the second step, we minorize 7y by a linear function —Ty, where 7 is any element of the
dual cone Y* to Y, i.e.,

neY* = {neR™: nTy>0 WyeY}
= neR":p=0VieJ, ;>0 VieJs, 7, <0 Vie J<}.

Combining both steps, we obtain for any fixed W € W and n € Y* a linear minorant of f,
fwa(y) = (C = ATy, W)+ (0—n)Ty <fly) VyeR™ (5)
A subset W C W together with a fixed € Y* yields a convex minorant of f,

fp o) = max (C— ATy, W)+ (b-n)'y <fly) VyeR™.
wew

! For promising numerical experiments with more general models, see, e.g., Nayakkankuppam [1999].

Since we will form W from accumulated local information, the model fj;; =~ can be expected to be
only locally of reasonable quality. Therefore we determine the next candigate as the minimizer of

. u NTD)
= —|ly — 6
Jnin max f, () + 5 lly —91I%, (6)
where § is the current center of stability (in the algorithm it is the starting point or the last
successful iterate) and the weight u is a parameter that allows some indirect influence on the

distance of the minimizer of (6) to §.
Instead of solving (6) directly, we solve its dual,

max _ min (C — ATy, W) + (b —n)"y + 2y — il (7)
WeW, ey yER™ 2

The inner minimization over y is an unconstrained convex quadratic problem and can be solved
explicitly for any choice of W and 7,

.1
ymin(Wa 7)) =y+ E(AW -b+ 77) (8)
Substituting this for y into (7) we obtain
1
max (O —ATg, W)+ (b—n)"9— —||AW —b+1]*. 9)
WeW,ney = 2u

In order to further reduce the complexity of solving this subproblem, we solve it by a sequence of
coordinatewise optimization steps. In particular, we first fix 7j and solve (9) over W € W yielding
an optimal W, then we fix W+ and solve (9) over € Y* and iterate this if necessary. Optimizing
over W € W for fixed 7 results in a small dimensional (“small” depending on the bundle size r)

convex quadratic semidefinite programming problem in V and « (see the definition of w (4)) that
can be solved efficiently by interior point methods. This yields

1
W+ € Argmax (C — ATy, W) + (b — 7)) 7§ — —||AW — b+ 4| (10)
wew 2u

See Helmberg and Rendl [2000]; Helmberg and Kiwiel [1999] for a description of the interior point
code. Optimizing (9) over 7 for some fixed W is separable convex; the optimal argument 7max (W)
is determined by

max {0, —u [;Q—}—%(AW—I))L,} ieJ>
[max(W))i = ¢ min {0, —u [§ + (AW = D)],} i€ J< (11)
0 1€ J=.
Therfore, for W7 of (10), we set
17 1= fhmax(W). (12)

Observe that i also ensures feasibility and complementarity of ymin(W™T,n"), see (8),
vV = ynnWHpt)eY and (pH)Tyt =0. (13)

The pair (W+,n%) is, in general, not an optimal solution of (9); it is only an approximation. We
regard this approximation as not sufficiently accurate if

T W) = vt) > RatlF @) = oo (7)) (14)

for a model-precision parameter kp € (0,00), i.e., if the gap at y™ between the model value
I - (y*) and its linear minorant fy+ ,+(y*) is too big in comparison to the gap between the

old function value f(§*) and the linear minorant. In this case, the two coordinatewise steps are
repeated, now fixing 7 to the new nt.

If the solution of the model is considered sufficiently accurate, then yT is the new candidate
at which the function is evaluated. We do this by a Lanczos method (see also Section 2.1) which
generates a sequence of normalized vectors v whose Ritz-values vT (C — ATy™)v yield successively
better estimates of Amax(C — ATy™*) until either the function value turns out to be too high for
sufficient decrease in objective value or the vectors have converged to an eigenvector of Ay ax. More
formally, the Lanczos process continues to generate better and better Wg := avv” € W until

(CL) f(?j) - st,n+ (y+) <K [f(g) - fW+,7;+ (y+)]7 or
() fwen+(yt) = f(y") and f(§) = fy) > & [f(@) = fw++ ()]

In this test, the descent parameter k € (0,1) controls the necessary progress relative to the gap
(@)= fw+ o+ (y™T) for accepting descent steps to y™, and the null step parameter E € [k, 1) controls
the level for accepting a null step. At a descent step the algorithm moves the center of stability
to y*. At a null step, § remains unchanged. In both cases the model W is updated so that W
and W are both contained in W+ and the algorithm iterates.

The algorithm stops as soon as

F@) = fw+ e h) <e(lf @) +1) (15)

for a termination precision parameter € > 0, i.e., when the maximal progress of the next step
(fw+ n+(yT) may be regarded as a lower bound for this) is small in comparison to the absolute
value of the function.

We now give the algorithm in detail, superscripts k are used to indicate iteration indices.
Algorithm 2.1 (Spectral Bundle Method with Bounds)

Input: y° € R*, £ >0, s € (0,1), & € [k, 1), £ € (0,00], K, € [0,1], a weight u® > 0.

1. Setk=0,4° =1°, n° =0, compute f(y°) and W°, choose W° € WO.

IS

. (Trial point finding). Compute fij = (1 — ky)n* + kpnk o (WF), see (11).
(a) Find W+, nT, yT by (10), (12), and (13) in this sequence.
(b) (Stopping criterion). If f(§*) — fw+,+ (") <e(|f(§*)] + 1) then stop.
(¢) If fpn e W) = fw ot) > 60a[F(G*) = fw+ g (yT)] then set ij =+ and goto (a).
(d) Set y*+t =y, WhH = Wt gl =

o

. (Descent test). Find Wt € W such that either

(a) F(G*) = Fyrrr s @) S B [FGY) — fwrrr s (y*H)], or
(0) fyrer o W) = F(U*Y) and f(5*) = ") 2 6 [(GF) = fwrrr e ()]

nk+1

In case (a), set g+t = g% (null step), otherwise set §*+1 = y*+1 (descent step).

4. (Weight updating). Choose a new weight u**' (see Kiwiel [1990]; Helmberg and Kiwiel
[1999)).

D

. (Model updating). Choose a WH+t > {WkHL WEHY of the form (4).
6. Increase k by one and goto 2.

The following theorem holds for £ = 0.

Theorem 2.2 Helmberg and Kiwiel [1999]
Either §* — § € Argmin f, or Argmin f =0 and ||§*|| = oo. In both cases f(§*) | inf f.

For € > 0 the stopping criterion (15) does not guarantee that at termination the desired relative
precision is achieved, because fy+ ,+(y1) is not necessarily a lower bound on inf f (in contrast,
interior point approaches like Benson, Ye, and Zhang [2000] provide a primal feasible objective
value). However, the linear function fy+ ,+(-) = (C,W+) + (b—nt — AWT,.) (see (5)) is a
global minorant of f. Thus, a small norm ||b — nt — AW || (i.e., W+ is almost primal feasible)
ensures that there is no significantly better solution within an appropriate ball around y*. In the
tables of §3 we list this norm in column ||V || (in Mittelmann [2001] these numbers are given
under the unfortunate caption “Error Measures (Bundle)”).

The efficiency of the algorithm is governed by the parameters controlling the eigenvalue com-
putation in the Lanczos method and the parameters determining the size and composition of the
bundle in W. Therefore we will describe these two aspects briefly in the following and propose
first heuristics for determining them dynamically. Next, a heuristic is proposed for improving the
starting point by a few steepest descent steps. The section is concluded by a summary of the
computational cost and memory requirements of the steps of Algorithm 2.1.

2.1 Eigenvalue Computation

We implement step 3 of Algorithm 2.1 by computing, by means of the Lanczos method, an eigen-
vector v to the maximum eigenvalue of the matrix C — ATy* and by setting W% = avv™. The
performance of the method is heavily influenced by parameters n;, and n¢o, whose meaning we
explain in the following.

The Lanczos process is an iterative method that generates, from a series of matrix vector
multiplications, a partial tridiagonalization of the matrix. Each iteration, called a Lanczos step,
increases the order of the tridiagonal matrix by one. The eigenvectors and eigenvalues of the
tridiagonal matrix are used to generate approximations to the eigenvectors and eigenvalues of
the original matrix; slightly deviating from the usual terminology, we call these approximations
Lanczos vectors and their Ritz values. See Golub and van Loan [1989] for an introduction and
Parlett [1998]; Saad [1992] for a detailed description of the Lanczos method.

Our algorithm restarts the Lanczos process after ny Lanczos steps using the Lanczos vector
corresponding to the maximum eigenvalue of the tridiagonal matrix as new starting vector. Before
each restart we check the null step criterion of step 3(a) of Algorithm 2.1. Within each restart-
phase we use complete orthogonalization, i.e., the new vector is orthogonalized with respect to all
vectors generated since the last restart.

A large parameter ny enhances the convergence of the Lanczos process but also increases
computation time significantly (as well as memory consumption) because of the complete orthog-
onalization of the vectors. If the matrix vector multiplication is computationally expensive, then
we prefer to choose a large parameter nr,, say 150.

The speed of convergence of the Lanczos process is also governed by the spectral separation,
i.e., the size of the gap between largest and second largest eigenvalue (multiplicities may be greater
than one) relative to the spread of the entire spectrum. If the matrix vector multiplication is very
cheap (extremely sparse matrices), then it may be worth to apply at each Lanczos step a spectral
transformation to the matrix in order to increase the spectral separation. The code offers the
possibility to transform the spectrum by applying a Chebychev polynomial to the matrix via a
series of matrix vector multiplications. The parameter ngo allows to specify the degree of the
Chebychev polynomial (one uses only odd degrees so as to preserve the ordering of the eigenvalues
outside the Chebychev interval). In our experience this parameter should by either 0 (to be read as
no spectral transformation) or at least 21. If nc > 0, each restart of the Lanczos process requires
roughly nr, - n¢ matrix vector multiplications. Therefore, we recommend to choose np, relatively
small in this case, e.g., between 20 and 50.

To the best of our knowledge, no satisfactory heuristics are known for choosing the parameters
nr, and n¢ in an automatic way.

In SBmethod, Version 1.0, the default heuristic assumes matrices to be very sparse and starts
with computing a guess of the interval [Amax, Amin] by ten Lanczos steps for block size two (the
interval is needed to set up the Chebychev polynomial; starting vectors are generated randomly or

from previous vectors). It then uses block size one and begins with ny, = 15 and nc = 20 so as to
quickly eliminate poor candidates y**! at the end of this restart cycle by criterion 3(a) of Algorithm
2.1. After this second restart it continues with ny, = 20 and n¢ = min{30+20- | #restarts/5], 200}.
The heuristic has the advantage that memory consumption is relatively small but it is a disaster
if the matrix vector multiplication is expensive.

Therefore, in SBmethod, Version 1.1, we try to discern between expensive and cheap matrix
vector operations. The matrix classes of SBmethod allow to determine a rough estimate of the
flops of one matrix vector multiplication. With complete orthogonalization, Lanczos step h requires
roughly O(hn) flops. Without much conviction we fix the following rule: Assuming nc = 0 we
would expect h = 50 Lanczos steps to be reasonable for n < 300, h = 100 for n < 1000, and
h = 200 for n > 1000. If the estimated number of flops of a matrix vector multiplication exceeds
h - n then we consider the matrix vector multiplication sufficiently expensive, set nc = 0 and
ny = min{50- | #restarts/2+1],200}. The motivation for increasing ny, by 50 every second restart
is again the hope to quickly eliminate poor candidates at the end of the first restarts by criterion
3(a) of Algorithm 2.1 while enhancing convergence for promising candidates. Otherwise, we decide
in favor of n¢ > 0 and compute a guess of the interval [Amax, Amin] by ten Lanczos steps for block
size two. Afterwards we use block size one and begin with ny = 15 and n¢g = 20, as in Version 1.0.
After this second restart we continue with ny, = 25 and n¢ = min{20 + 10 - | #restarts/2], 200}.

2.2 Model Updating

The model W of (4) is completely determlned by the choice of the bundle P and the aggregate

W. In updating P and W to Pt and W' we have to ensure that the new model W+ contains
{W+,Ws = avv’'} (v denotes the new Lanczos vector), see step 5 of Algorithm 2.1. In SBmethod,
the construction of the new bundle PT from P and the new information obtained from Lanczos
vectors is controlled by four parameters ng,nmin € No, Nk > fpin (maximum and minimum
subspace dimension to keep), n4 € N (maximum number of Lanczos vectors to add), and ¢, € (0,1)
(aggregation tolerance). These are used as follows.

Let W+ = PV+PT 4 ot W denote the computed solution of (10) and let V* = QAQT be an
eigenvalue decomposition of V+ with QTQ = I, and A = Diag(\y, ..., \,) a diagonal matrix with
)\1 2/\2 22)‘7‘ For

N ifnk =0
V7l max{i€{1,...,nk}: N > t,A} U {Nmin} otherwise,

let ()1 contain the r;y first columns of @) and @2 the last r — r; columns and let A; and A,
denote the corresponding diagonal matrices. Furthermore, let ny denote the number of Lanczos
vectors returned by the eigenvalue computation routine and let L be the matrix formed by the
min{ng,n4} Lanczos vectors with largest Ritz-values. Then the new model Wt is determined by

Pt = orth([PQ1,L)]) (16)
— PQsoAs(PQs)" + oW
W =)

trAy + at

where orth() constructs a matrix whose columns form an orthonormal basis of the space spanned

by the columns of the argument. This construction ensures W+ > {W+, Ws} (see Helmberg and
Rendl [2000]).

Remark 2.3 As shown in Helmberg and Rendl [2000] it is not necessary to store and update W
itself, but only AW and (C,W). Note, however, that the matric W+ may be interpreted as an
approzximate primal solution X (and the n variables as primal slack variables). If full knowledge
about W is desired, then W should be stored explicitly and SBmethod offers this possibility.
In Helmberg [2001] we give an explicit proof for the convergence of W to a primal optimal
solution (under a standard regularity assumption) and exploit this property to set up a cutting
plane approach for constrained quadratic 0-1 programming.

Again, no reasonable guidelines are known for choosing these parameters.

In SBmethod, Version 1.0, the parameters ng, n4, nmin, and t, have to be specified by the
user and are employed as described above.

In our experiments, an expensive model lead to fewer iterations and faster progress only if «
— the contribution of the aggregate matrix W to W+ — remained small. In particular, if o did
not increase and the time for solving the model was small in comparison to the time spent in the
Lanczos code, then increasing nmin to reduce the number of iterations and function evaluations
seemed a good choice. If, however, the cost of solving the model exceeded the Lanczos computation
significantly, then setting nx = 0 usually lead to faster computation times. We have no idea how
to explain these observations mathematically (an intuitive attempt might read, that a model that
is of high quality along a narrow but promising subspace may produce candidates that avoid
this promising subspace). In order to meet repeated requests for automatic parameter choices we
have, with some reluctance, implemented a heuristic in SBmethod, Version 1.1, that mimics this
behavior.

The heuristic of SBmethod, Version 1.1, adapts the parameters ng, n4, and ng;, dynamically
(in this case the corresponding input parameters are understood as upper bounds on the possible
values). It starts with nmin = 0. In each iteration it adds up to n4 new vectors by the following
criterion. Let Ay > ... > A, denote the Ritz values of the new Lanczos vectors. The vectors
with largest Ritz values are added if i < ny4 and, for ¢ > 5, if A\; > A for a lower bound A. This A
is determined as follows. Let p = max{vT(C — ATy*)v : v = j-th column of PQ,j € {1,...,7}}
denote the maximum Ritz value of the columns of PQ (if these have not been computed explicitly
we use the value p = (C — ATy*, W) /a). Then A = A\; — max{107*X(,5- (A\; — p)}. P is then
updated as explained above. As long as the accumulated time required for solving the quadratic
semidefinite model is less than half the time spent in the eigenvalue routine, n,;, is increased
in each iteration by one; the latter rule is intended for situations where ¢, is too restrictive. If,
however, an iteration is encountered where a > %a and solving the augmented model takes ten
times as long as computing the eigenvalues, then evidence is high that a sufficiently large bundle
would be inefficient. In this case, nx is set to zero and n4 to seven for all further iterations.

As many decisions in this heuristic lack mathematical justification, we do not expect it to
deliver excellent choices for the bundle parameters; furthermore, its dependence on time accounting
information has the undesirable effect that running the same algorithm with the same input
twice may result in different output (even though convergence to an [existing] optimal solution
is guaranteed). Yet, we hope that it performs reasonably well if no better setting from related
problems is at hand.

2.3 Starting Point

For the feasible set Y (see (2)) it is easy to choose a feasible starting point y° (SBmethod uses
y°® = 0 by default), but this point may well be far away from the optimal solution to the effect,
that the maximum eigenvalue is simple and well separated from the remaining eigenvalues. The
corresponding unique eigenvector may then turn out to be the only relevant information for the
model for several consecutive iterations. In this case, the method takes a sequence of steepest
descent steps. Besides the fact, that the steepest descent direction is easily computed without
solving the quadratic model, this behavior may also cause serious difficulties with the dynamic
update rule for the weight u (see Step 4 of Algorithm 2.1). Indeed, in several applications the
gradient changed only slightly along steepest descent directions. In consequence, the weight u
was successively decreased to allow for larger and larger steps. When finally the eigenvector to
the second eigenvalue became important, u was far too small and the update heuristics did not
succeed well in increasing it again. The following starting point heuristic, now implemented in
Version 1.1, tries to skip this initial phase by explicitly performing up to five steepest descent
steps.

The heuristic starts by checking the gap A = Amax(C — A%Y0) — X2 (C — A"y®) between the
maximum eigenvalue Amax(C — A%y°) and the second eigenvalue X2(C — A%y°) (here, A\» may
be equal t0 Amax if the eigenspace of the maximum eigenvalue is larger than one). If aA >

0.01-(|f(y°)|+1) (the difference in objective values for the two choices of X is large relative to the
objective value), then a steepest descent step is made. In particular, let v denote the eigenvector to
the maximum eigenvalue A\pax(C — ATy?), then the steepest descent direction is dy = A(avv™) —b.
We set all coordinates of dy to zero that do not point into directions of recession of Y; this yields
a direction dy. In order to obtain a safe guess for the step length ¢ > 0 in direction dy, we
underestimate the decrease of Apax and overestimate the increase in A along this direction by
linear approximations and determine ¢ as the point of intersection of both as follows.

For Amax it is computationally more convenient to express this in terms of the objective value.
The objective value decreases at most by ¢ (b — AT(avvt), dy), because b—AT(avv?) is a subgradient
of f at 4°,

F@° +tdy) > admax(C — ATY%) + (b,3°) + t (b — AT(avv’), dy) for t > 0. (17)
Since
X (C — AT + tdy)) < M(C — ATY°) + tAmax(—ATdy) fori=1,...,nand t >0, (18)
the increase of Ao (C' — AL(y° + tdy)) for t > 0 can be bounded using A = Amax (—ATdy),
ar2(C — ATy +tdy)) + (b, y° + tdy) < aXa(C = ATy°) + (b, y°) + tlaX + (b, dy)] for ¢ > 0. (19)

By (18), eq. (19) is valid for \» exchanged with Amax, as well. Thus, if aX + (b,dy) < 0 then the
objective value decreases in this direction infinitely; the problem is unbounded from below and
the algorithm terminates. Otherwise, the first step length ¢ is computed by equating the right
hand sides of (17) and (19), t = aA/[(b— AT(avvt),dy) + aX + (b,dy)]. If, for the new point
yt = y° + tdy, the decrease in objective value is less than 1% of the decrease predicted by the
linear model then we stop the process and start with y°. Otherwise we set y° = yt, recompute
A, check the size of the gap, and continue as before except that, instead of A, we use linear
interpolation of the last two A2 values to model the increase in A2 (or zero if linear interpolation
predicts a decrease). We repeat this process at most five times.

2.4 Computational Cost and Memory Requirements

We proceed along the steps of Algorithm 2.1.

Step 1. Evaluating f(y°) (or running the starting point heuristic) is dominated by the com-
putation of Apnax(C — A%y). Each restart of the Lanczos method requires ny, - n¢ matrix vector
multiplications. Independent of the number of restarts, the Lanczos method needs O(n2 +nr, - n)
memory. Unfortunately, there is no a priori bound on the number of restarts. In multiplying the
Lanczos vector v with the matrix C' —.ATy, SBmethod tries to exploit the structure of the coefficient
matrices C and the A;. In particular, before calling the eigenvalue routine, the linear combination
of all sparse coefficient matrices is collected in a new sparse matrix; for all structured coefficient
matrices of the form AAT or ABT + BAT the matrix vector product is computed via A(ATv)
or A(BTv) + B(ATv) using the original description. The memory requirement for C' — A%y is
therefore of the same order as the input.

Step 2. Substep (a) involves determining the cost coefficients for the quadratic semidefinite
subproblem (10) in variables V' and « (see (4)) and solving it by an interior point method. The
procedure is described in detail in Helmberg and Rendl [2000]; Helmberg [2000a]; we cite the
result. The cost coefficients require the computation of PTCP and PTA;P, i = 1,...,m —
one at a time — and the accumulation of the quadratic cost matrix in O(mr*) time and O(r*)
memory (r < nk + na is the number of columns in P). Each iteration of the interior point
method is dominated by the factorization of the quadratic cost matrix in O(r%) time; in SBmethod
the number of interior point iterations is upper bounded by 50 and is about 15 on average. Memory
requirements are O(r*). Note that the interior point method does no longer depend on the A;,
in particular not on m. Substep (b) is neglectable. In Substep (c) the evaluation of St (yh)

requires computing Amax (PT (C — ATy) P) (see Helmberg and Kiwiel [1999]) and is thus dominated

by Substep (a). It is shown in Helmberg and Kiwiel [1999] that in the case of an inner iteration the
quadratic cost matrix of the quadratic semidefinite subproblem need not be recomputed. Substep
(d) is executed in O(m) time and memory since W*+! is not computed explicitly.

Step 3. The only expensive operation is finding W§+1 by the Lanczos method; the same
considerations as in Step 1 apply.

Step 4. Roughly, the update is based on information about the subgradient b — AW**! which
is available by Step 2. It requires O(m) time and memory.

Step 5. Computing PT by (16) using Householder QR needs O((nk +n4)*n) time and O((nx +
n4)n) memory (see Golub and van Loan [1989]). SBmethod stores and updates AW and (C, W)
in O(m) time and space; the values are available from Step 2.

Step 6 is irrelevant.

Summary. In the default settings of SBmethod the parameters ny, ng, ng, n4 are bounded
above by some reasonably small constants. Therefore each restart of the Lanczos method, each
substep of Step 2, and steps 4 and 5 all require linear time and space (linear with respect to the
encoding length of the input). The number of restarts of the Lanczos method and the number
of inner and overall iterations of the spectral bundle method, however, are hard to quantify and
highly problem dependent.

3 Numerical Examples

In the following we discuss our experience with SBmethod on the combinatorial optimization based
instances of the DIMACS challenge set from

http://dimacs.rutgers.edu/Challenges/Seventh/Instances/

Unless stated otherwise, we employ for Version 1.0 the rule of Helmberg and Kiwiel [1999] to
update the weight u, the heuristic of Version 1.0 of §2.1 for setting the Lanczos parameters nr,
and n¢, and use the following default parameter values: € = 1072, ng = 20, Nmin = 5, N4 = 5,
to = 001, K = k = 0.1, kmy = 0.6, k, = 1, y° = 0. In our experiments with Version 1.0, we
typically tuned the parameters nr, ng, Nk, Wmin, and n4.

In contrast, the results for Version 1.1 will all be given for the same hardwired default param-
eters: € = 107°, ng = 45, nmin = 30, na = 10, t, = 0.01, K = k = 0.1, ky = 0.6, &, = 1,
y° = 0, weight updating by the Helmberg and Kiwiel [1999]-rule, and all three heuristics switched
on (the heuristic for Version 1.1 of §2.1 for choosing Lanczos pramaters ny and nc; the bundle
update heuristic of §2.2 with upper bounds ng, nmin, n4; the starting point heuristic of §2.3 for
improving y°). This setting is the code named BUNDLE in Mittelmann [2001].

The numerical results were computed on a Linux-PC with an Intel Pentium IIT 800 MHz
processor (256 KB Cache) and 960 MB.

Tables will be given in the following format (see, e.g., Table 1). The first four columns give
the name of the problem, the order of the matrix variable n, the number of constraints m, and
the value of the optimal solution f* as listed on

http://dimacs.rutgers.edu/Challenges/Seventh/Instances/tablestat.html

Column fierm displays the function value f(§*) at termination and rel_acc measures the relative
precision of this value with respect to the optimal solution,

*

rel_acc = M
|f*[+1

Columns time and A_% show the total CPU-time in hours:minutes:seconds and its percentage
spent in the Lanczos code for computing maximum eigenvalues and Lanczos vectors. Column &
lists the final iteration numbers. The last but one column (desc.) displays the number of descent
steps. The final column (||Vf4||) gives the norm of the gradient of the linear minorizing model
fw+ n+(yT) at termination.

10

We also provide plots to illustrate the progress of the algorithm over time (see, e.g., Figure 1).
Note that time is given in logarithmic scale. For each descent step the objective value f(y**!) is
shown as circle and the model value fyyrt1 yrta (y**1) is shown as dot. The objective value in the
starting point y° is also plotted; in this point, the model is set to the objective value. For Version
1.1 the starting point refers to the point obtained after applying the starting point heuristic of
§2.3.

In order to put our results into perspective with respect to other methods for large scale
semidefinite programming, we make use of the data provided in Mittelmann [2001]. In particu-
lar, we will end each section with a paragraph labeled DIMACS benchmark where we compare
SBmethod (BUNDLE of the benchmark is SBmethod Version 1.1 with the same default setting)
to BMZ (Burer, Monteiro, and Zhang [2001]) and DSDP (Benson, Ye, and Zhang [2000]). BMZ,
DSDP, and SBmethod all compute dual feasible solutions and thus valid bounds for the underlying
combinatorial optimization problem. BMPR (Burer and Monteiro [2001]) is uniformly faster than
SBmethod(except for the atypical Hamming instances; it should be faster for more representative
instances of the Lovasz ¥-function). Since it computes a primal bound for the relaxation (if the
resulting matrix is indeed feasible), its objective value is not guaranteed to yield a bound on the
combinatorial problem. Thus, BMPR does not serve the same purposes as BMZ, DSDP, and
SBmethod; a detailed comparison is therefore of little relevance.

3.1 The Torus Set

We use the graph representation by the sparse weighted adjacency matrix A of order n (with

diag(A) = 0) to generate the problem description in SBmethod format. For C = %(%I —A) (e
denotes the vector of all ones) the primal semidefinite relaxation and its dual eigenvalue formulation
read

max (C,X)
st. diag(X)=e min nAmax(C — Diag(y)) + eTy.
X =0 veR”

In SBmethod we use the sparse matrix format for C' and the class SINGLETON to represent the
matrices A; = E;; for i =1,...,n, where E;; € S, has a one in element 4 and is zero otherwise.

Table 1: Max-cut on toroidal grid graphs (Version 1.0)

Problem n m * fterm relacc time A% k desc. ||V Fill
toruspm3-8-50 512 512 527.8087 527.8123 6.9-10°° 4 36 28 17 0.07
toruspm3-15-50 3375 3375 — 3475.156 — 8:27 30 102 43 0.17
torusg3-8 512 512 457.3582 457.3612 6.6-1076 5 36 42 24 0.05
torusg3-15 3375 3375 — 3134.590 — 6:47 50 143 51 0.14

Table 2: Max-cut on toroidal grid graphs (Version 1.1)

Problem n m f* fterm relacc time A% k desc. ||[Vfill
toruspm-8-50 512 512 527.8087 527.8134 9.0-10°© 5 40 32 21 0.04
toruspm3-15-50 3375 3375 — 3475.162 — 7:10 40 100 39 0.18
torusg3-8 512 512 457.3582 457.3610 6.1-10~° 6 41 50 28 0.04
torusg3-15 3375 3375 — 3134.596 — 8:49 57 198 50 0.10

Computational results for Version 1.0 with ¢ = 107° are listed in Table 1. The model is
updated with parameters ng = 20, Nmin = 5, n4 = 8, and ¢, = 0.01. By Helmberg and Rendl
[2000], Remark 4.5, the maximal bundle size needed to keep the contribution of the aggregate W
small is roughly v2m (= v/2n for max-cut). In practice, none of the four examples used more than
24 columns in P. This and the rather small number of iterations seems to indicate that the bundle

11

Problem

Figure 1: Max-cut on toroidal grid graphs

Version 1.0

Version 1.1

toruspm3-8-50

toruspm3-15-50

torusg3-8

torusg3-15

fy)

3

1ly)

575 T T oy T
5701 @ 4 565 4
565 B seol- |
560 B
555 B
o
5551 . B °
5501 B
o =
5501 B 3
545 o B
545 ° B
540 1
540 B o
© 535 o 1
535 B
o o
530 . © q 530 4
Q0 wamen
5255 = o : 5255 = o
10 10 10 10 10 10 10 10
CPU seconds CPU seconds
T T T T T
3750 e 3750 e
o
37001 © 4 37001 4
o
3650 © 1 3650 1
‘o = o
o o
3600 B 3600 B
o
3550 © 1 3550 1
.o
o o
o %
3500 o e 3500 0o 4
0000 564
+ 2R R0 o . 020
I I I I I
10° 10° 10" 10° 10° 10° 10" 10° 10
CPU seconds CPU seconds
©
620 B
o 600 B
600 B
0 580 B
o 5601 B
550 4 Ss40 4
o
: 520 1
o
5001 © 1
5001 o 4 o]
-0 480 Bl
o
° o
4601 . P oo00 feolcotc:co) 1
Q © 0 eoeeeaEmED
107 107 10° 10* 10" 10° 10
CPU seconds CPU seconds
48001 B
©
5000 B 46001 B
4400 B
45001 Q B 4200 B
°
o =
Sa000- B
40001 B 3800 B
3600 B
3500 B 3400 B
3200 oo
- 02000 oo mo®mas
107 10° ! 10° 10° 10° 10* 10° 10

10
CPU seconds

CPU seconds

12

was large enough to accommodate all relevant information. Since the instances of the DIMACS
challenge are grid graphs (average degree two or three) the cost matrices C are extremely sparse;
therefore, the default heuristic for choosing ny, and ng worked reasonably well.

In the case of Version 1.1, the results of Table 2 indicate roughly the same behavior, even
though the percentage of time spent in the eigenvalue routine and the number of iterations has
increased somewhat. The eigenvalue computation used Chebychev iterations as expected, but the
new updating scheme for nc may be worse. This and the different rule for adding new Lanczos
vectors may both be responsible for the increase in iterations.

The plots of Figure 1 show that the starting point was improved by the heuristic, but the
trade-off between improvement to time is not necessarily favorable.

DIMACS benchmark (Mittelmann [2001]). SBmethod (Version 1.1) is significantly faster on
these instances than BMZ and DSDP. Moreover, the results are more accurate than those of BMZ.
In the case of DSDP only the value for toruspm3-15-50 is smaller; in fact the value of DSDP is
even smaller than the lower bound produced by BMPR (a possible explanation might be, that
the primal objective value is listed for DSDP). The good performance of SBmethod is probably
due to the fact, that a rather small bundle size was sufficient to cover all relevant information
(the contribution at of the aggregate W remained small in the optimal solution of (10)). In
consequence SBmethod converged in relatively few and inexpensive iterations.

3.2 The bisection set

The bisection instances are read and converted in the same way as the torus set (§3.1) except for
one additional constraint (and a change of sign in the cost matrix to obtain a dual minimization
problem),

max (C,X)
4. diag(X) = . .
s 1a%;1() _e min N Amax(C — Diag(y) — ynyree?) +ely.
<€6 ,X> =0 (y v)eRn+1
X t 0 n+1

The additional constraint matrix 4,1 = ee’ is represented in SBmethod in this form by means of

the constraint class GRAM DENSE. As described in §2.4, this allows SBmethodto compute the product
of (C — ATy) with a vector efficiently.

Table 3: Bisection problems (Version 1.0)

Problem n m f* frerm rel_acc time A% k desc. ||Vftll

bm1 882 883 23.44340 23.43849 -2.0-10—% 32 78 38 22 0.06
biomedP 6514 6515 33.60140 33.59600 -1.6-10—% 1:01:42 47 58 34 0.11
industry 12637 12638 65.61310 65.60436 -1.3.10~% 15:01:11 41 418 110 0.04

Table 4: Bisection problems (Version 1.1)

Problem n m * frerm rel_acc time A% k desc. ||V f4ll

bm1 882 883 23.44340 23.43855 -2.0-10~% 43 55 51 26 0.02
biomedP 6514 6515 33.60140 33.59922 -6.3-107% 2:55:35 68 120 51 0.01
industry2 12637 12638 65.61310 65.60603 -1.1-10-% 20:53:51 58 542 141 0.01

Computational results for Version 1.0 with ¢ = 10™* are listed in Table 3. The model is
updated with parameters ng = 45, ngi, = 25, ng4 = 5, and ¢, = 0.01 except for the considerable
smaller problem bm! where we use ny;, = 12. For eigenvalue computation we use ng = 0
and ngy = 200 (nr = 100 for bm!). In order to avoid premature termination for industry2 we

13

Figure 2: Bisection problems

Problem Version 1.0 Version 1.1
300+ © B o
° 200 1
250 B
o
° 150 B
200+ B ‘o
S1so 4 S100- < 1
bm1 °
o
o .
100+ e
50 . B
© o
50 e B
o
° 1
o e o
. 005, Q 000000 0o oo
.. (Poceeccmeme
107 10° 10" 10° 107 10° 10* 10
CPU seconds CPU seconds
1400 1
T T pan T T
L) 1
1200 © © e, 1000 1
°
1000 B ©
800 .. B
800 4 ©
© 600} . g
. 3 600r N 3
biomedP ° °
° 400 1
400 B
200 B
200 . B
o 4 or 1
200 I I I I
3 10° 10° 10* 10" 10° 10° 10 10
CPU seconds CPU seconds
T T T T T T
8000 © e oo 4 8000 e 4
© ©
7000 B 7000 B
o
6000 B 6000 B
o
5000 B 5000 B
3 4000 °© B 4000
industry2 = E
° o
3000 B 3000 B
° o
o o
2000 ° B 2000 B
1000 . B 1000
R 0000 com—— or
10" 10° 0 10* 10° 10 10° 3 10 10

bt 10
CPU seconds CPU seconds

14

had to specify a different updating heuristic for weight u; we used the option -u 1. Otherwise
these choices seemed to work reasonably well. This might be due to the following facts. For
these problems the matrix vector multiplications are expensive (the cost matrix C of biomedP
has approximately 630,000 nonzeros and for industry2 roughly 800,000). This favors large ny,
without Chebychev iterations. For expensive eigenvalue computations we would like to reduce the
number of evaluations and therefore use a large bundle, nx = 45 say. To our surprise, however, we
observed that even for ¢, = 0.0001 the bundle would not increase sufficiently to produce a model
of good quality. Therefore, we forced the bundle size up by setting nmin = 25. The rather small
number of iterations seems to justify this approach.

The direct comparison with the results for Version 1.1 of Table 4 are somewhat misleading
due to the higher precision requirements of Version 1.1. Indeed, a look at the plots of Figure 2
shows that Version 1.1 achieves the same objective values as Version 1.0 in comparable or even
shorter time. It is surprising that for these instances the starting point heuristic of Version 1.1
seems to drastically speed up initial convergence in comparison to Version 1.0. For problems bm1
and biomedP one reason is that the initial choice of the weight u, which is set to the norm of the
subgradient in ¢, is significantly smaller in Version 1.1 due to the better 3°.

Observe, that in comparison to the torus set, the absolute size of the optimal objective value is
small relative to the sum of all edge weights. Since the stopping criterion is formulated relative to
the absolute size of the objective value it is not surprising that convergence is considerably slower
for the bisection instances. Graphically, this is nicely illustrated in the plots of figures 1 and 2.

DIMACS benchmark (Mittelmann [2001]). SBmethod (Version 1.1) is significantly faster and
more accurate than BMZ and DSDP on dm1. BMZ and DSDP (in fact, all other methods except
BMPR) fail for biomedP and industry2 due to lack of memory. The underlying graphs are quite
dense and memory requirements for factorizing matrices with this support structure seem to be
prohibitive. SBmethod and BMPR both do not require factorizations and are therefore able to
work on these instances. Like in the case of the max-cut instances, the small number of iterations
of SBmethod must be due to the small bundle size required to provide a model of high quality.

3.3 The Hamming set

For the Hamming set the task is to compute the Lovasz ¥-function for several instances of Hamming
graphs. Various possibilities exist to formulate the ¥-function as a semidefinite program (several
are given in the seminal paper of Lovéasz [1979], many more have been developed since). In our
experience the best approach for SBmethod is to employ the direct formulation as an eigenvalue
optimization problem. Let E C {ij : i < j,4,j € {1,...,n}} denote the set of edges and let
E;; be the matrix that has a one in entries ij and ji but is zero otherwise. Then the value of
the ¥-function for the graph with edge set E is the optimal value of the solution of the following
programs,

max <eeT,X>

s.t I,X)=1 .
éE--)X) =0 ijeE min Amax (e’ = > Bijyij)- (20)
Y Z;_’O ve ijEE

In SBmethod we describe the cost matrix by the class GRAM_DENSE and the constraints by the class
SINGLETON.

Computational results for Version 1.0 with ¢ = 10~* are listed in Table 5. The model is
updated with parameters nxg = 0 and n4 = 5 (nmin and t, are irrelevant in this case). For
eigenvalue computation we use nc = 0 and n; = 60. Again we try to argue why we believe
these parameters to be reasonable. Since the number of edges in the graph is relatively high,
the matrices are quite dense. This excludes Chebychev and asks for large nr. The order of the
matrices is rather small and so ny = 60 covers already a significant portion of their spectrum.
The instances have an exceedingly large number of constraints for their size. For this kind of
problems it must be expected that the rank of the primal optimal solution is high and thus a large

15

Table 5: Lovész ¥-function for Hamming graphs (Version 1.0)

Problem n m f* fterm rellacc time A% k desc. ||[VF4ll
hamming 9.8 512 2304 224.0000 224.0205 9.1-107° 10 87 86 54 0.00
hamming_10_2 1024 23040 102.4000 102.4093 9.0-10~5 2:35 74 332 87 0.00
hamming_11_2 2048 56320 170.6666 170.6824 9.2:107% 8:09 72 453 205 0.00

hamming._7_5_6 128 1792 42.66666 42.66904 5.5-1075 1 74 42 25 0.00
hamming. 8_3_4 256 16128 25.60000 25.60247 9.3-107° 26 51 159 54 0.00
hamming 9_5_6 512 53760 85.33333 85.33866 6.2:107% 43 61 62 58 0.00

Table 6: Lovasz ¥-function for Hamming graphs (Version 1.1)

Problem n m f* frerm relacc time A% k desc. ||Vfi
hamming_9_8 512 2304 224.0000 224.0000 0. 0 45 2 0 0.01
hamming_10_2 1024 23040 102.4000 102.4000 0. 54 20 19 0 0.02
hamming_11_2 2048 56320 170.6667 170.6667 1.9-10~8 4:28 13 22 0 0.02
hamming. 756 128 1792 42.66667 42.66667 7.6:107° 0 67 1 0 0.00
hamming. 8_3_4 256 16128 25.60000 25.60000 0. 5 14 8 0 0.01
hamming 9_5_6 512 53760 85.33333 85.33333 -3.9-10° 4 44 1 0 0.00

bundle would be needed to cover all relevant information. But large bundle size and large number
of constraints entail high costs in the computation of the cost coefficients and the solution of the
subproblem (10). In this case we experienced repeatedly that taking the smallest possible bundle,
namely ng = 0 and using new vectors only, helped to improve performance.

In solving these instances we encountered one particular obstacle. Looking at (20) it is obvious
that the spectrum of the matrix in the starting point y = 0 is Apax(ee”) = n (with eigenvector
e//n) and \; = 0 otherwise. Thus, during computations the steepest descent direction A(ee /n)
(see (8)) dominated for a long time. In consequence the dynamic updating strategy for the weight
u repeatedly reduced u in order to increase the step size until the gap between largest and second
largest eigenvalue was sufficiently small for a nontrivial model. At this point, however, u was
already far too small to allow reasonable progress. In Version 1.0 the starting point heuristic was
not available and so we decided in favor of an ugly but simple strategy: We increased the lower
bound on u sufficiently. In particular, we used Ui, = 0.005 for the first three and umi, = 0.1 for
the last three instances.

The results of Version 1.1 of Table 6 are at first astonishing: The starting point heuristic
already produces the exact optimal solution; the additional iterations are only needed to increase
the model sufficiently until the stopping criterion holds.

The fact, that the steepest descent direction solves these problems effortlessly is obviously
connected to the very specific choice of the instances, see Schiller [1999] for a detailed account of
their properties. Since the plots are of little value here, we refrain from giving them.

DIMACS benchmark (Mittelmann [2001]). Due to our experience with other instances we do
not consider the DIMACS set representative. In fact, it is to be expected that on less specialized
problems BMZ performs better (if the factorization of the graph still fits into memory). Indeed,
if the number of constraints is large (here, m = |E|), Remark 4.5 in Helmberg and Rend! [2000]
indicates that a large bundle size may be needed to provide a model of high quality. The trade-off
between quality and computation time is then often in favor of a small model at the cost of many
iterations. In contrast, in BMZ the semidefiniteness constraint is transformed into optimizing a
quadratic term over the Cholesky factor (the requirement of a positive diagonal is modeled by n
sign constraints); the approach does not depend on the dimension of the active subspace of the
semidefiniteness constraint. Therefore, BMZ is likely to be more effective if the active subspace
is large. The Hamming instances are atypical in that a low dimensional subsapce is sufficient for
SBmethod in spite of the large number of constraints. DSDP requires the factorization of a positive
definite m x m matrix that is dense in general. Therefore memory requirements will be prohibitive

16

for DSDP even for graphs with few nodes but large m = |E|.

3.4 The FAP set

We refer to Eisenbldtter [2001] for a detailed description of the background of the problem and
properties of the semidefinite relaxation. In the FAP instances we are given a weighted adjacency
matrix A of order n (denoted by W in Pataki and Schmieta [1999]), a number of partitions p,
and aset Eg C € :={ij : i < j,i,5 € {1,...,n}} of edges whose end nodes must lie in distinct
partitions (we may assume A;; = 0 for ij € Ep). In this notation the semidefinite relaxation listed
in Pataki and Schmieta [1999] reads

min <% Diag(Ae) — 1 (Diag(Ae) — A), X>
s.t. diag(X) =¢e

Xij=—323 ij € Eo (21)
X,’j > _Iﬁ i) € &
X>0

Observe, that the dual of this relaxation yields a completely dense slack matrix; SBmethod is not
designed for dense problems. In practice, we observed only little loss in quality of the bound
by switching to a weaker relaxation, that requires X;; > 0 only for 45 in the support of A4, i.e.,
ij € E:= {ij € £,A;; # 0} (restricting the attention to the support of the cost function is a
natural approach in combinatorial optimization). Indeed, the optimal value of

min <% Diag(Ae) — L (Diag(Ae) — A), X>
st. diag(X)=e

Xij=—37 ij € B (22)
X,’j > —ﬁ ijek
X >0.

cannot be larger than that of (21), because a feasible X of (21) is also feasible for (22). Within the
DIMACS test set, instances of (22) are referred to as fap. . -sup problems and we will concentrate
on these.

Since SBmethod requires a primal maximization problem we set C' = pz—;l(Diag(Ae) —A) -
1 Diag(Ae). With 2X;; = (E;;, X) (the matrix E;; has a one in entries ij and ji and is zero
otherwise) the negative of relaxation (22) reads

max (C,X)

st. diag(X)=e
<Eij,X):—% ijGE@
<Eija) > _% ij € E
X>0 (23)

- 2
yeRnIEié})mm NAmax(C' — - Z Eijyij) + Zyu - Z Eyij.
ije{iizi=1,...,n}UEQUE =1 ijEEQUE

yi; <0 VijeE

Again we used constraint class SINGLETON to implement E;; in SBmethod and the sparse format
for C.

17

For each dual feasible y the negative of the objective value of the eigenvalue problem (23) yields
a lower bound on (21) and therefore on the original frequency assignment problem. In comparison
to the sum of all edge weights (2862.862 for fap09-sup, 27213.05 for fap25-sup, and 96383.72 for
fap36-sup) the (absolute) value of the optimal solution is small, so we can expect that it is difficult
to achieve reasonable precision. Also note that the number of constraints is large. These two facts
suggest that the spectral bundle method is not well suited for these instances.

Table 7: Frequency assignment problems (Version 1.1)

Problem n m frerm time A% k inner desc. ||V f4||
fap09-sup 174 15225 10.79693 247:17:21 28 4657007 4657115 83 4.1.1073
fap25-sup 2118 322924 *12.10477 315:36:46 56.13 187907 187907 96 0.15
fap36-sup 4110 1154467 *62.54669 682:14:24 57 112121 112122 95 0.87

A “*” indicates that computation was terminated externally before the stopping criterion was satisfied.

In our experiments with Version 1.0 we used the cost matrix C = %[Diag(Ae) — 4] =

C + 1 Diag(Ae). Later it was agreed that only the cost matrix C should be used for experiments.
A constant offset of the dual objective value may influence decisions based on relative sizes (e.g.,
the stopping criterion) and so the old results are not directly comparable. In view of the high
computation times and limited resources we decided to refrain from recomputing and presenting
results for Version 1.0.

For Version 1.1, the results are displayed in Table 7. For instances fap25-sup and fap36-sup it
was hopeless to wait for termination by the stopping criterion and we had to kill the processes at
some point; the numbers given represent the values at the time when the processes were stopped.
It is surprising that, in spite of the enormous number of sign constrained variables, the number
of additional inner iterations to improve model precision is neglectable (108 for fap09-sup, none
for fap25-sup and just one for fap36-sup). In all three cases the algorithm switched within a few
iterations from a big bundle to a small one with ng = 0 and ng = 7 (see §2.2). In the plots of
Figure 3 the positive effect of this switch is clearly visible. Yet, for fap25-sup and fap36-sup the
final percentage of computation time spent in eigenvalue computation is rather high and it might
be worth to use a slightly larger n4.

Again, the plots of Figure 3 nicely illustrate the unfavorable consequences of relative precision
and the strong tailing off effect. The close-up of the 30 last iterations shows that the descent steps
are evenly spaced on a logarithmic time scale.

DIMACS benchmark(Mittelmann [2001]). According to H. Mittelmann, personal communica-
tion, SBmethod (and probably BMZ as well) has been stopped prematurely for instances fap25-sup
and fap36-sup because of the approaching submission deadline (unfortunately, this is not yet men-
tioned in report Mittelmann [2001]). For the fap-instances the same arguments apply as in the
discussion of the J-function. The large number of constraints entails a large active subspace in the
semidefiniteness constraint. Therefore the heuristic of SBmethod Version 1.1 switches to a small
bundle size and convergence is slow. Clearly, BMZ is faster. Note, however, that the results of
SBmethod are significantly more accurate than those of BMZ (except for fap36-sup, that was given
less computation time than BMZ). If computation times for achieving the same level of accuracy
are compared, then BMZ is still significantly faster but the difference is less dramatic. Again,
DSDP is unable to cope with the huge number of constraints.

4 Conclusion

In contrast to interior point methods, the code SBmethod is capable of dealing with large scale
problems but requires tuning of a number of relevant parameters. The spectral bundle method is a
very recent approach and we still lack good heuristics, not to speak of mathematically sound rules,
for adapting these parameters automatically. A good choice of the parameters, however, yields
very competitive results and there is hope that the connection between problem instance and good

18

Problem

Figure 3: Frequency assignment problems (Version 1.1)

Version 1.1

close-up: the last 30 descent steps

fap09-sup

fap25-sup

fap36-sup

fty)

400

3001

200

100

E ®

o

o o T 2 3 . s

0 10
CPU seconds

sooof ©

70001 ©

6000

5000

30001

2000

1000

TED 00 ©O EEDE O@D ©

omod

35

10
CPU seconds

T 2 3 . 5 :

10°
CPU seconds

-1055

-106F

-10.65

-107F

-1075

-108F

-10.85}

10°

19

parameter choices will get more evident over time. The new starting point heuristic seems to work
reasonably well. We are not fully satisfied with the current dynamic rules for updating parameters
and we do not expect them to produce acceptable results for all new problem classes. Yet, the
proposed heuristics may at least help to alleviate the problem of finding an initial choice for a new
class of instances.

Based on the DIMACS benchmark of Mittelmann [2001] we believe it is fair to conclude that
BMPR, BMZ, and SBmethod are currently the only methods suitable for large scale semidefinite
programming. BMPR is a primal (possibly infeasible) method and is clearly fastest. In connection
with semidefinite relaxations of combinatorial optimization problems it is a good source for primal
heuristics but it cannot safely be used as a bounding procedure. BMZ and SBmethod are both dual
feasible methods and yield valid bounds on the underlying combinatorial optimization problems.
If the Cholesky factor of the dual slack matrix Z = ATy — C does not suffer from excessive fill-in
and the active subspace of the semidefiniteness constraint on Z is large (typically connected to
a large number m of constraints) then BMZ seems to be the method of choice. If factorizing
C — ATy is out of scope or the active subspace is small (as is the case for a small number m
of constraints) then SBmethod is likely to yield better results. It is worth noting, that in spite
of the weak nature of the classical subgradient stopping criterion (15), the solutions produced
by SBmethod are as acurrate as those of competing interior point codes. The dual interior point
code DSDP exhibits the same behavior as primal dual interior point methods: if the number of
constraints m is big then forming and factorizing the dense positive definite system matrix of order
m is computationally prohibitive. Attempts to replace this step by a conjugate gradient approach
have so far not produced convincing results.

A frequently heard concern about the dual approach of the spectral bundle method is that no
primal information is available. In fact, the solution W of the quadratic semidefinite subproblem
(10) may be interpreted as an approximate primal solution as we have pointed out already in
Helmberg and Rendl [2000]. A formal proof that W indeed converges to a primal optimal
solution (assuming a standard regularity condition) is given in Helmberg [2001]. There it is also
shown how this information can be exploited to set up a primal cutting plane algorithm.

Acknowledgment. I thank K. C. Kiwiel who not only contributed many ideas to the code
but also improved its reliability significantly. He pointed out many mistakes in an earlier version
of the code by miraculously spotting tiny inconsistencies in tons of log-files that I sent him by
email. I also thank G. Pataki and an anonymous referee for their valuable criticism that helped
to improve the presentation.

20

A Notation

General.
R real numbers
R” real column vector of dimension n
Sn n X n symmetric real matrices
S, A=0 n X n symmetric positive semidefinite matrices
I, I, identity of appropriate size or of size n
e vector of all ones of appropriate dimension
E;; symmetric matrix with ij-entry equal to one and zero otherwise
Ai(4) i-th eigenvalue of A € S, usually A\ > Ay > ... > A,
Amin(4), Amax(A) minimum and maximum eigenvalue of A
Aa diagonal matrix with (Aa);; = A (A)
AT transpose of A
tr(A) trace of A € R™"™, tr(A) = Y0 aii = iy Ai(A)
(A, B) inner product in R™*", (A4, B) = tr(BT A)
| Allg Frobenius norm of A, ||A||z = /{4, A)
Diag(v) diagonal matrix with v on its main diagonal
diag(A) the diagonal of A € R**™ as a column vector
argmin minimizing argument
Argmin set of minimizing arguments

Spectral bundle method.

Y dual feasible set

Y design variables in R™, feasible for y € YV

n Lagrange multipliers for sign constraints on y

W, Wew positive semidefinite matrices of trace 1, W={W = 0:trW =1}
Wc W, semidefinite model, W= {PVPT +aW :trV +a=a,V = 0,a >0}
A, AT constraint matrix and adjoint, [AX]; = (4;, X), ATy = 30", yiA;
C - A%y affine matrix function, C is a given “cost matrix”

b given “right hand side” vector

f objective function, f(y) = aAmax(C — ATy) + b7y + 1y (y)

fwy affine minorant of f, fw, = (C,W) + (b—n— AW,y)

s model of f for WC W, Y CY, f55(y) = SUD (py,.) T x ¥ fwan(y)
u weight of quadratic term

Parameters of SBmethod [default values are given for Version 1.1].

€ termination precision (15) [¢ = 1075]

Kn initial convex combination of old and new 7 (Step 2) [k, = 1]

KM relative model precision (Step 2¢) [k = 0.6]

K relative descent step precision (Step 3) [k = 0.1]

R relative null step precision (Step 3) [F = 0.1]

nr number of Lanczos iterations per restart [Lanczos heuristic §2.1]

ne degree of Chebychev polynomial for spectral transformation [Lanczos heuristic §2.1]
ng maximum number of columns to keep [ng = 45, bundle update heuristic §2.2]
TNomin minimum number of columns to keep [nmin = 30, bundle update heuristic §2.2]
na maximum number of columns to add [n4 = 10, bundle update heuristic §2.2]
Yo starting point [set yo = 0 and apply starting point heuristic §2.3]

u weight of quadratic term in (6), update rule of Helmberg and Kiwiel [1999]

21

References

Benson, S., Ye, Y., and Zhang, X. (2000). Solving large-scale sparse semidefinite programs for
combinatorial optimization. SIAM J. Optim., 10(2):443-461.

Burer, S. and Monteiro, R. D. (2001). A nonlinear programming algorithm for solving semidefi-
nite programs via low-rank factorization. Technical report, School of Industrial and Systems
Engineering, Georgia Institute of Technology, Atlanta, GA 30332. To appear in Math. Pro-
gramming, Series B.

Burer, S., Monteiro, R. D., and Zhang, Y. (1999). Interior-point algorithms for semidefinite
programming based on a nonlinear programming formulation. Technical report, Department
of Computational and Applied Mathematics, Rice University, Houston, Texas 77005.

Burer, S., Monteiro, R. D. C., and Zhang, Y. (2001). Solving a class of semidefinite programs via
nonlinear programming. Technical report, Dept. of Computational and Applied Mathematics,
Rice University, Houston, Texas 77005, USA. Combined and revised version of technical
reports TR99-17 and TR99-23. Tentatively accepted for Mathematical Programming A.

Eisenbldtter, A. (2001). Frequency Assignment in GSM Networks. PhD-
Thesis, Technische Universitdt Berlin, Berlin. ISBN 3-89873-213-4, URL:
ftp://ftp.zib.de/pub/zib-publications/books/PhD eisenblaetter.ps.Z.

Goemans, M. X. (1997). Semidefinite programming in combinatorial optimization. Math. Pro-
gramming, 79:143-161.

Golub, G. H. and van Loan, C. F. (1989). Matriz Computations. The Johns Hopkins University
Press, 2™? edition.

Helmberg, C. (2000a). Semidefinite programming for combinatorial optimization. Habilitations-
schrift TU Berlin, Jan. 2000; ZIB-Report ZR 00-34, Konrad-Zuse-Zentrum fiir Informations-
technik Berlin, Takustrafle 7, 14195 Berlin, Germany.

Helmberg, C. (2000b). SBmethod — a C++ implementation of the spectral bundle method. Manual
to Version 1.1, ZIB-Report ZR 00-35, Konrad-Zuse-Zentrum fiir Informationstechnik Berlin,
Takustrafle 7, 14195 Berlin, Germany. URL: http://www.zib.de/helmberg/SBmethod.

Helmberg, C. (2001). A cutting plane algorithm for large scale semidefinite relaxations. ZIB-Report
ZR 01-26, Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Takustrale 7, 14195 Berlin,
Germany.

Helmberg, C. and Kiwiel, K. C. (1999). A spectral bundle method with bounds. ZIB Preprint
SC-99-37, Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Takustrafle 7, 14195 Berlin,
Germany. Revised Sep. 2001, to appear in Math. Programming,.

Helmberg, C. and Rendl, F. (2000). A spectral bundle method for semidefinite programming.
SIAM J. Optim., 10(3):673-696.

Kiwiel, K. C. (1990). Proximity control in bundle methods for convex nondifferentiable minimiza-
tion. Math. Programming, 46:105-122.

Lewis, A. S. and Overton, M. L. (1996). Eigenvalue optimization. Acta Numerica, pages 149-190.

Lovéasz, L. (1979). On the Shannon capacity of a graph. IEEE Transactions on Information
Theory, IT-25(1):1-7.

Mittelmann, H. D. (2001). An independent benchmarking of SDP and SOCP solvers. Technical
report, Dept. Mathematics, Arizona State University, Tempe, AZ 85287-1804, USA.

Nayakkankuppam, M. V. (1999). Optimization Over Symmetric Cones. PhD-Thesis, Department
of Computer Science, Graduate School of Arts and Science, New York University.

Parlett, B. N. (1998). The Symmetric Eigenvalue Problem, volume 20 of Classics in Applied
Mathematics. STAM, Philadelphia.

22

Pataki, G. and Schmieta, S. (1999). The DIMACS library of mixed semidefinite-quadratic-linear
programs. Draft manuscript, Computational Optimization Research Center, Columbia Uni-
versity. Available at http://dimacs.rutgers.edu/Challenges/Seventh/Instances/.

Saad, Y. (1992). Numerical Methods for Large Eigenvalue Problems. Halsted Press, New York.

Schiller, F. (1999). Zur Berechnung und Abschitzung von Farbungszahlen und der ¥-Funktion von
Graphen. Diplomarbeit, Technische Universitdt Berlin, Fachbereich Mathematik, Sekretariat
MA 4-1, Strafle des 17. Juni 136, 10623 Berlin, Germany.

23

