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ABSTRACT 

The description of chain-length distributions in macromolecular reac­
tion kinetics leads to so-called countable systems of differential equations. 
In particular, when the appearing reaction rate coefficients depend on the 
chain-length of the reacting macromolecules itself, an efficient numerical 
treatment of these systems is very difficult. Then even the evaluation 
of the right-hand side of the system can become prohibitively expensive 
with respect to computing time. In this paper we show, how the discrete 
Galerkin method can be applied to such problems. The existing algorithm 
CODEX is improved by use of a multiplicative error correction scheme for 
time discretization and a new type of numerical preprocessing by means 
of a Gauss summation. Both ideas are exemplary for a wide class of 
approximation types and are described very briefly here. The new nu­
merical techniques are tested on an example from soot formation, where 
the coagulation of molecules is modeled in terms of reaction coefficients 
depending on the radii of the particles and their collision frequency. 
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1 INTRODUCTION 

The mathematical description of a chain-length distribution (CLD) in a macro-
molecular reaction leads to a countable system of ordinary differential equations 
(CODE), which consists of single differential equations of the form 

(1.1) u's(t) = fs(Ul(t), u2(t), . . . ) , a = l , 2 , . . . , w . 

In the present context, the variables ua(t) may denote the concentrations of 
macromolecules with chain-length s at time t. The whole vector (sequence) of 
the us(t) is called u(t). The right-hand side functions fa(u) — /«(«i, 1*2? • • •) 
(time dependency omitted) arise from the modeling of a macromolecular pro­
cess, e.g. 

/ x ( u ) = -Ui , fs(u) = U4_i - Ua , S = 2 , 3 , . . . jSmax , 

in a chain addition polymerization. In contrary to an ordinary differential equa­
tion, the upper index Smax is usually very large (104 —106 in practical examples) 
or even infinite. If an infinite system has to be truncated at chain-length 5 , ^ 
for computational reasons, this value is rarely known a priori and may vary with 
time t. Thus a system (1.1) cannot be treated by standard numerical methods 
for ordinary differential equations and ideas for the following two tasks have to 
be developed: 

Approximation of 
distributions 

I 
Approximation of 

processes 

An approximation of distributions is necessary, when a chain-length distribu­
tion has to be represented in a computer (data compression). Examples are the 
use of statistical moments, selection of fractions (lumping) or approximations 
by special functions. The approximation of processes implies the discretization 
of (1.1) with respect to time as well as the numerical evaluation of the right-
hand side, which can take a lot of time (Section 4). The two tasks in the above 
diagram are connected by the requirement, that it must be possible to perform 
both with one approximation scheme. For example, if we characterize a CLD 
by its statistical moments, the representation of fs(u) in terms of the moments 
of us is necessary to derive differential equations for the moments. Similarly, 
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if we select certain fractions uSi, only these fractions may be used for an ap­
proximation of fs{u). For both methods this is not always possible. Moreover, 
the whole algorithm must be efficient, implying that the number of degrees of 
freedom of an approximation has to be as small as possible. This restricts the 
generality of an approach on the one or on the other side (i.e. treatment only 
of certain types of CLD's and/or certain processes) and has to be kept in mind, 
when a numerical method is discussed. 

In the discrete Galerkin method, presented in several versions in [5], [1] and 
[12], a chain-length distribution is expanded into a series of certain special 
functions. This expansion is truncated after n •+ 1 coefficients leading to a 
Galerkin approximation u" 

! oo , w n 

us = ¥(a) £ ak Ifa) —> < = *(«) £ ak Ifa) , . 
k=o fc=o 

with a weight function $ and polynomials lj(s). The polynomials lj(s) are 
connected with the weight function by the orthogonality relation 

(for details see [5] or [12]). The above approach is very efficient, whenever there 
are certain similarities between the OLD u„ and the weight function \P. On the 
other hand, the choice of a weight function restricts the class of distributions to 
be approximated (for a discussion see [1]). Based on the above idea, with the 
program package MACRON [1] the treatment of those processes from polymer 
chemistry is possible, which allow a so-called analytical preprocessing. Differen­
tial equations for the expansion coefficients ak can be explicitly derived in this 
case. This restricts the class of valid processes, but for the remaining set of 
problems (which is not empty!) MACRON is a quite efficient tool. 

In this paper, we go a step further and present the crucial points of an approx­
imation scheme for very general processes. This is documented on an example 
from soot formation, where the coagulation of molecules is modeled in terms of 
complicated chain-length-dependent reaction rate coefficients (Section 2). Up 
to now, this example could only be treated by a direct integration of a large 
scale ODE system - leading to tremendous computing times on a supercomputer. 
Recently developed numerical techniques, which will be sketched below, reduce 
such computational effort to CPU times of about one minute on a workstation 
to obtain results within a relative accuracy of 5 - 10 %. At the moment, there 
are some restrictions concerning the approximation of general distributions, but 
the new techniques can easily be applied to extended schemes. 
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The present version of the research code CODEX [12] uses a multiplicative error 
correction scheme for time discretization(Section 3) and a new type of numerical 
preprocessing by means of a Gauss summation (Section 4). The weight function 
is specified to be 

' ¥,,B(ä) = (1 - ,)»+" r ' (-£*) , 0 < p < 1 , a > - 1 , 

which has various approximation^properties and leads to the modified discrete 
Laguerre polynomials. We explain the difficulties and motivations briefly, details 
of the used concepts can be found in [12]. For a discussion of the different time 
discretizations used in MACRON and CODEX see [11]. 

2 A MODEL FROM SOOT FORMATION 

Coagulation (combination) processes can be described in the chemical notation 

by . k I .",, 

where Ps may denote a. polymer molecule or a soot (smog) particle of size 
s. This reaction module appears frequently in applications - distinguished by 
different modelings of the reaction rate coefficients ksr. In polymer chemistry 
often moment dependent rate coefficients are in use (e.g. to model the gel effect), 
whereas the modeling of surface effects for the combination of soot particlesle&ds 
to, coefficients dependent on the size of the reacting molecules. The countable 
system of a coagulation process reads in general (us(t): number chain-length 
distribution) v ; , 

1 S—1 OO 

(2.1) v!s(t) = f(u(t)){s) := - £ kTtS.T ur{t) u3-r{t) - us{t) £ ksr ur{t) , 
^ r=l r= l 

for s = 1, 2 , . . . . In our example, the following reaction coefficients are sug­
gested: 

(2.2) ks<r:=kp ( - + - } ' (r1 / ? + s1 / 3)2 , kp constant. 

Such reaction constants are typical; for the modeling of coagulation processes of 
(spherical) particles in the gas phase. ,We can write kStT in terms of the relative 
velocity uSjr of particles of size s and r (in a gas at constant, temperature) and 
their reaction cross section crSyT 
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The velocity us,r is proportional to y,'^2 ~ (s + r)1/2/(sr)1 / '2 , ^ the reduced 
mass, whereas <7Sir (in the noninteracting particle approximation) is proportional 
to the square of the sum of their radii. Assuming further spherical particles we 
get 

3'T (rs)i/2 { + } ' 

which is just the above form. For more details concerning the constant kp, which 
clearly depends on the gas temperature and the particle mass density, we refer 
to [7] and references quoted there. Because the constant hv only determines the 
time scale of the process, for simplicity we set in our model problem kp = 1 and 
the reaction time large enough to reach the physically relevant regime. 

Note, that the applicability of the algorithm CODEX does not depend on this 
special choice of the coefficients ksr. 

The general problem (2.1) has been attacked by different authors. In [7] an 
attempt is made to get a special approximation of the moments just for the 
coefficients (2.2). In [9] a discrete Fourier transform is applied, but this requires 
a certain separation of r and 5 in the expression for the kTS. A continuous 
modeling as in [8] leads to theoretical difficulties. 

In order to obtain a reference solution of (2.1), we performed direct time 
integration of a truncated system as an ODE (replace oo by Smax in (2.1), Sn^ 
large enough). Such an integration up to an interesting ten(i took more than 3.5h 
(CPU) on a Cray-YMP. This time would be even larger, if the truncation index 
•Sinax was not known from the simulations with CODEX a priori ! A realistic 
number of size-classes is given in [7] to be about Sm^ = 10000. By the way we 
note, that the whole simulation with CODEX is independent of the parameter 

3 TIME DISCRETIZATION 

We write the system (1.1) in a closed form 

u'(t) = /(u(t)) , u(0) = v? , 

where u(t) = (ua(t))s may be a chain-length distribution at time t and f{u(t)) 
a process as in (2.1). The idea of the Rothe method [2] is to discretize this 
equation as if it was an ODE. The arising stationary subproblem is then solved 
by the discrete Galerkin method within a certain accuracy supplied by a time-
step control. In order to obtain an approximation u1 = ut+T of u(t + r ) in a 
time step of size r , we apply the semi-implicit Euler scheme [4]: 
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(3 .1) • 
{I-TÄ)AU = T/(«(<)), 

= u(t) + Au , 
with A the (Frechet) derivative fu(u(t)) of the right-hand side f(u). 

The task is then to get an estimation rj1 of the time error ||ux — u(t + r ) | | 
(|| • || an appropriate norm) for predicting a new reasonable step-size f. This 
is usually be done by computing a 'better' approximation u2 and then taking 
the difference ||u2 — u1]] as an estimate of the time error. However, in the case 
of countable systems, u1 and u2 can only be approximated and it turned out 
[2], that the respective approximation error has to be comparatively small for 
not perturbing the time error estimation. In order to avoid this disadvantage, 
BORNE.MANN developed a so-called multiplicative error correction scheme [3], 
which allows the direct computation of the time error estimate. The accuracy 
requirements for the u1 and u2 are then less restrictive than in the case described 
above. Actually, if a tolerance tol is prescribed for the the solution u(t), the 
approximation u1 has to be computed within an accuracy 

""' < 1 , 
eps = - tol 

to obtain a reliable estimate r/1, which can also be used to improve the approx­
imation. In the present case, 771 and the resulting second order approximation 
u2 can be computed ,by . 

(32) \(i-TA)f = - ITM/MO) , 
• U2 .— Ul + 7?1 . 

Another important feature of such a discretization (3.1) and correction (3.2) 
scheme is, that only one type of stationary subproblem has to be solved in 
each global time step, since the equations in (3.1) and (3.2) have the same left-
hand side (I — TA). If (3.1) is the discretization of a standard ODE system, 
this implies, that only one matrix decomposition has to be done. Finally we 
mention, that when a time step with size r has been performed, a new step size 
f can be computed by  

~toT 
T = T\ WW 

4 NUMERICAL PREPROCESSING 

The treatment of countable systems arising from macromolecular reaction ki­
netics always leads to the computation of infinite sums as a subproblem. For 
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example, if we want to analyze the m-th statistical moment of the right-hand 
side in (2.1) (i.e. the time derivative of the m-th moment of the CLD), the 
evaluation of the following double sum is required (see also [7]): 

oo /-i s—1 oo \ 

( 4 . 1 ) J ] 5 " 1 I 9 S *r,*-r «r « . - r ~ « , £ kST Ur I 
s=\ V^ r=l r=l / 

This term can not be expressed analytically in terms of the moments p^ for 
arbitrary coefficients kT3, which prevents the application of a method of mo­
ments (for an attempt see [7]). Similar problems seem to appear also in the 
context of the discrete Galerkin method. However, if a time discretization as 
described in Section 3 is applied there, the arising sums must not be computed 
exactly, but may be perturbed in some way fitting to the chosen approximation 
scheme. This is just fulfilled by a summation of Gaussian type [10]. The idea 
is to replace a sum 

oo 

by an approximation 
k 

i=i 
with weights u>j and nodes Sj chosen, such that S can be computed exactly, 
whenever g(s) is the product of a polynomial of degree 2k — 1 and the weight 
function \?(s) of the used discrete Galerkin method. It is well known from the 
theory of quadrature, that then the nodes are just the zeros of the associated 
orthogonal polynomials (which are the modified discrete Laguerre polynomials 
here). The nodes and weights can be computed easily for a given k by applying 
the QR-algorithm to a triangular eigenvalue problem, which contains terms from 
the three-term-recurrence formula of the modified discrete Laguerre polynomials 
(see [6], Chapter 9.3.). This makes a Gauss summation very efficient, even when 
the nodes have to be updated very often. In CODEX, n + 1 nodes are used, when 
the present Galerkin approximation has n expansion coefficients. The Gauss 
summation captures exactly the structure of the approach and does not require 
any truncation of the sums. In the case, where g(s) can be expanded into 
the associated orthogonal polynomials (times weight function), the summation 
leads to the numerical values of the analytical terms. 

Example. We rewrite (4.1) in the form 

oo oo , i x 

(4-2) E«rE*r.". («(* + »-)m-»-m) 
r= l s = l V Z ' 
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and apply ä double Gauss summation assuming that u3 can be approximated 
by a Galerkin method with weight function ^Pta (this does not mean, that us 

must look like ^p,a\). Thus we have to evaluate 

(4-3) g ^ S ' a - d ) ( i | " + , ' r ^ 
where k is the number of nodes Sj and weights UJJ. For a numerical test we set 

us = ps , p= e " 1 / r m " , 
''max 

which is a distribution having a maximum at^s = rmax—100. Then in CODEX the 
parameters p = 2p/(l + p) , a = 0 of the'weight function typ>a are chosen due 
to a fitting condition. We know, that for m = 1 (4.1) is zero and this is exactly 
revealed by the Gauss summation. The following Table 1 shows the convergence 
of the summation for the second statistical moment. A reference result has been 
computed with 200 nodes. A direct summation of a truncated series takes too 
long (e.g. «max = 1500, 1150 sec. (CPU) on a SPARC 1-f, leads to accuracy 
8 • 10"3). For comparison, the Gauss summation with 10 nodes takes about 0.07 

nodes k error 
3 1• lO - 1 

4 3•10" 2 

5 5 • l O " 3 

-> 10 6 • lO" 4 

20, 1•10"4 

50 7• lO" 6 

. • Table 1: 
Convergence of Gauss summation, relative error. 

sec. (CPU). Itii the present context, we do not use the above method to compute 
moments (these can' be directly obtained from the Galerkin approximation), 
but to built up the'so-called Galerkin equations, which determine the expansion 
coefficients of a solution. In the test runs presented in Section 5, a maximum 
number of k — 14 coefficients was necessary. In view of this result, it is easily 
seen, that the above summation combined with the low accuracy requirements 
of the multiplicative error correction are the crucial steps to a fast simulation 
of models as treated here. 

7 



5 NUMERICAL RESULTS 

The application of the semi-implicit Euler scheme (3.1) in CODEX requires the 
Frechet derivative Df(ip)(u) of f(u) with respect to u at <p, which can be com­
puted pointwise (the time dependency is omitted) by 

s - l 

(5.1) Df(ip)(u)(s) = J2 krtS_r (fs_r ur-tp3J2 K ur - uaY, k„ VT • 

In order to perform the Galerkin method, (double) sums of the form 
oo 

£/,•(« W(yO(Zfc)(*) ,j,k = 0, 1, . . . , n , 

have to be evaluated by the summation algorithm as described in Section 4 
(with g(s) = lj(s)Df(ip)(lk)(s)). Further details of the implementation are 
omitted here, we will only discuss some results. It turns out, that the solution 
ua(t) (number distribution) at t = 100 sec. has a narrow peak for small chain-
lengths (s < 100, if Smax « 104). This peak is obviously hard to approximate 
(i.e. time consuming) by a polynomial expansion as used here (see Figure 
1). Nevertheless, a relative accuracy of 8-10% can be obtained in moderate 
computing times (about 50 sec. CPU on a SPARC 1+), which increase strongly 
for higher accuracies. This is an effect of properties of the basis functions, 
not a consequence of the used time and operator discretizations. For a better 
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0.2 , 0.3 
s ( * E+04) 

Figure 1: Comparison between direct solution (• • •) and Galerkin approximations with n = 4 
(-) and n = 20 (—) of a heterogeneous coagulation process at t=100. 

study of the algorithm for higher accuracies, we compute directly the weight 



distribution us(t) • s from a transformed equation (2.1). Table 2 shows the 
performance of CODEX for a simulation up to t = 100 sec. in this case. For 
tol=10 - 2 the computing time can be explained by the fact that more than 10 
expansion coefficients are necessary.and the respective Gauss summation takes 
more than 90 % of the total time. If the direct solution at t = 100 sec. is directly 

tol time-
steps 

n m a x true error 
in HPia 

CPU 

lo-1 

5•lo"2 

IQ"2 

50 
67 
135 

5 
7 

14 

1.4-10-1 

8.5-10-2 
3.1 • IQ"2 

16 
49 

1386 

Table 2:' "-
CODEX: performance for several tolerances. 

represented by a basis expansion with the parameters obtained by CODEX (i.e. 
/?, a and #) , the behavior of the time error estimation can be.studied. In 
Table 3 it can be seen, that this device works very accurately. Figure 2 

tol time-error 
(true) 

time-error 
(estimation) 

10-1 

5•lo"2 

IQ"2 

4•10-2 
2.5 • l o - 2 

9•10-3 

5•10-2 
2.5 • l o - 2 

5•10-3 

Table 3: 
CODEX: Comparison of the time error and its estimation. 

shows the time evolution (in logarithmic scale) of the weight distribution up 
to t = 100 sec, showing how fast the interesting range of the chain-length s 
increases with time. Table 4 compares the computing times of CODEX and a 
direct integration with the non-stiff ODE-solver DIFEXl [4] on SPARC 1+ and 
CRAY-YMP, respectively. As can be seen, the time for the direct integration 
increases quadratically with the value of Smax- Therefore the treatment of such 
a CODE as a large ODE must be done on a supercomputer in general - with 
tremendous effort. The computing time of CODEX increases for tolerances up 
to 5 • 10 - 2 in principle with the number of time steps - independent of Sn,^. 
Figure 3 illustrates the adaptivity of the discrete Galerkin method with respect 
to the truncation index n for the tolerances' 10 - 1 , 5 • 10 - 2 , 10 - 2 . Because the 
coagulation process roughens the distribution with time, an increasing number 
of expansion coefficients is necessary, in particular at the beginning. 
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Figure 2: Time evolution of the weight distribution in a soot formation 

t Smax CPU (SPARC 1 + ) CPU (CRAY-YMP) 

CODEX DIFEXl 

1.0 50 13 5 
2.0 90 19 10 
5.0 250 27 25 

10.0 600 34 92 
50.0 1200 51 441 

100.0 8500 59 > 14000 

Table 4: 
Computing times (sec.) for direct (non-stiff) integration (DIFEXl) on SPARC 1+ and 

CRAY-YMP and CODEX (tol = 5 • 10 - 2). 
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o 
+ 
W0.75-

J 

0.i>5 ,0)5 ~ O.V5 
time ( * E+02) 

Figure 3: Time evolution of number of expansion coefficients for different tolerances. 

We conclude with the remark, that the techniques implemented in CODEX 
can be extended obviously to problems with combinations of operators as well 
as to systems of CODE'S. 
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