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Abstract

We consider the stochastic extensible bin packing problem (SEBP) in which n items of
stochastic size are packed into m bins of unit capacity. In contrast to the classical bin
packing problem, bins can be extended at extra cost. This problem plays an important
role in stochastic environments such as in surgery scheduling: Patients must be assigned to
operating rooms beforehand, such that the regular capacity is fully utilized while the amount
of overtime is as small as possible.

This paper focuses on essential ratios between different classes of policies: First, we
consider the price of non-splittability, in which we compare the optimal non-anticipatory
policy against the optimal fractional assignment policy. We show that this ratio has a tight
upper bound of 2. Moreover, we develop an analysis of a fixed assignment variant of the
LEPT rule yielding a tight approximation ratio of (1 4+ e™!) ~ 1.368 under a reasonable
assumption on the distributions of job durations. Furthermore, we prove that the price of
fixed assignments, which describes the loss when restricting to fixed assignment policies, is
within the same factor. This shows that in some sense, LEPT is the best fixed assignment
policy we can hope for.

1 Stochastic Extensible Bin Packing

In the extensible bin packing problem (EBP), we must put n items of size (p1,...,pn) in m bins,
where the bins can be extended to hold more than the regular unit capacity. The cost of a bin is
its final size: Specifically, a bin holding the items I C {1,...,n} has a cost of max(zielpi, 1).
The goal is to minimize the total cost of the m bins.

The model of extensible bin packing naturally arises in scheduling problems with machines
available for some amount of time at a fixed cost, and an additional cost for extra-time. So we
stick to the scheduling terminology in this article (bins are machines, items are jobs, and item
sizes are processing times). Recently, the model of EBP was adopted to handle surgery scheduling
problems [8, 17, 2]: here, the machines are operating rooms, and the jobs are operations to be
performed on patients. The extension of the regular working time of a machine corresponds to
overtime for the medical staff. This application to surgery scheduling motivates the present paper:
in practice, the duration of a surgical operation on a given patient is not known with certainty.
Therefore, we want to study the stochastic counterpart of the extensible bin packing problem, in
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which the processing durations p;’s are only known probabilistically, and the expected cost of the
machines is to be minimized.

Related work. EBP is closely related to another scheduling problem, where each job has a
deadline d; and the goal is to minimize the total tardiness. This problem can not be approximated
within any constant factor in polynomial time, unless P = NP [12]. Therefore, several articles
studied approximation algorithms for a modified tardiness criterion, > T + d;; see [11, 13]. The
situation is very similar for extensible bin packing: the problem of minimizing the amount by
which bins have to be extended is not approximable, and the criterion of EBP is obtained by
adding the constant m to the objective.

The (deterministic version of) EBP was introduced by [6], who showed that the problem is
strongly NP-hard, by reducing from 3-PARTITION; cf. [10]. Moreover, they prove that the longest
processing time first (LPT) algorithm —which considers the jobs sorted in nonincreasing order of
their processing time and assigns them sequentially to the machine with the largest remaining
capacity— is a %fapproximation algorithm. For equal bins, LPT can also be interpreted as
iteratively assigning the jobs to the machine with the currently smallest load. In [7] the LPT
algorithm was shown to be a 2(2 —+/2) ~ 1.1716—approximation algorithm for the case of unequal
bin sizes. In a more general framework, Alon et. al. present a polynomial time approximation
scheme [1].

The online version of the problem also attracted attention. Here, the jobs arrive one at a
time and they must be assigned to a machine irrevocably. The list scheduling algorithm LS that
assigns an incoming job to the machine with the largest remaining capacity was shown to have
a competitive ratio of 2 for equal bin sizes in [7] and was generalized in [21] for the case with
unequal bin sizes. Furthermore, it was proven that no algorithm can achieve a performance of %
or smaller compared to the offline optimum. An improved online algorithm with a competitive
ratio of 1.228 was also presented in [21].

In the context of surgery scheduling, a slightly more general framework has been introduced
in [8]: the decision maker also chooses the number of bins of size S to open, at a fixed cost
¢/, and there is a variable cost ¢V for each minute of overtime. It is observed in [2] that every
(1 + p)—approximation algorithm for EBP yields a (1 + pSC ¢ )-approximation algorithm in this
more general setting. They also consider a two-stage stochastic variant of the problem, in which
emergency patients should be allocated to operating rooms with pre-allocated elective patients.
For this problem (in the case S = ¢¥ = ¢/ = 1), a particular fixed assignment policy was

50

shown to be a “F-approximation algorithm, when each job has a duration with bounded support

Pj € [0,p;**] such that p*** < 0E[P;]. To the best of our knowledge, this has been the only

attempt to consider stochastic jobs in the literature on EBP.

In the remaining of this section, we introduce the stochastic extensible bin packing problem
(SEBP). Throughout, we consider the problem of scheduling n stochastic jobs on m parallel
identical machines non-preemptively. The set of machines and jobs are denoted by M = {1,...,m}
and J = {1,...,n}, respectively.

Stochastic Scheduling. Now, we want to give the intuition and main ideas of the required
background in the field of stochastic scheduling. Precise definitions are given in [16]. The
processing times are represented by a vector P = (P,..., P,) of random variables. We denote
by p = (p1,...,pn) € RY, a particular realization of P. We assume that the P;’s are mutually
independent, and that each processing time has a finite expected value. Unlike the deterministic
case, a scheduling strategy can take more general forms than just an allocation of jobs to machines,
as information is gained during the execution of the schedule. Indeed, job durations become

known upon completion, and adaptive policies can react to the processing times observed so far.



We define a schedule as a pair S = (s,a) € R, x M", where s; > 0 is the starting time of
job j and a; € M is the machine to which job j is assigned. A schedule S is said to be feasible
for the realization p if each machine processes at most one job at a time:

ViGM,VtZO, {jej:aj:i,sj§t<sj+pj}§1.

We denote by S(p) the set of all feasible schedules for the realization p. A planning rule is a
function IT that maps a vector p € RZ, of processing times to a schedule S € S(p). A planning
rule is called a scheduling policy if it is non-anticipatory, which intuitively means that decisions
taken at time ¢ (if any) may only depend on the observed durations of jobs completed before ¢,
and the probability distribution of the other processing times (conditioned by the knowledge that

ongoing jobs have not completed before t).

Stochastic Extensible Bin Packing (SEBP). For a scheduling policy II, we denote by S]H
and AJII the random variables for the starting time of job j, and the machine to which j is assigned,
respectively. The completion time of job j is CJH = S;»T + P;. We further introduce the random
variable W for the completion time of machine i, which is defined as the latest completion time
of a job on machine i:

Wit .= max{C]H| jed, A? =i}

It is easy to see that when II is non-idling, i.e., if the starting time of any job is either 0 or equal
to the completion time of the previous job assigned to the same machine, then

Win = Z Pj :

{jeTg: All=i}

The realizations of the random vectors S, A™, C™T and W for a vector of processing times p are
denoted by appending p as an argument. For example, the workload of machine i for a non-idling
policy II in the scenario p € R% is

wip)= Y »pj

I(
j P) i

i
where j —(B)% ¢ means that II(p) assigns job j to machine i, i.e., we sum over indices {j € J :

Ajl(p) = i}.

Remark 1.1. We want to point out that other authors (e.g., in [1]) use the notation C; for the
machine completion times. We prefer to use the symbol W; (which stands for workload in the
non-idling case) to avoid the risk of confusion with the job completion times C;.

We assume that jobs are scheduled on machines with an extendable working time, each machine
having a unit regular working time. The cost incurred on machine i is equal to max(W} 1),
which accounts for the fixed costs, plus the amount by which the regular working time has to be
extended. We are interested in strategies that minimize the expected value of the sum of costs

over all machines:
O(1I) = E{ Z max (W} 1) }
ieM
The criterion can also be defined realization-wise: we define ¢(IL, p) := 3, \, max(W/(p), 1),
so that ®(I) := Ep[¢(I1, P)].

Classes of scheduling policies. We define the following classes of scheduling policies:



e P denotes the class of all scheduling policies (non-anticipatory planning rules).

e F denotes the set of all non-idling fixed-assignment policies. Such policies are characterized
by a vector of job-to-machine assignments a € M™, so that A™(p) = a does not depend on
the realization of processing times. For such a policy II, it holds

() = 3 B[max( Y p1)],

ieEM

where the sum indexed by “ j RN goes over all jobs j such that Ajr»I =1.

In addition, we define the following class of fractional policies (which cannot be considered as
non-anticipatory planning rules, but will be useful to derive bounds):

e R denotes the class of fractional assignment policies, in which a fraction a;; € [0,1] of job j
is to be executed on machine i, with ), a;; = 1, for all j € J. For a “policy” II € R,
the different fractions of a job can be executed simultaneously on different machines, so

O(1I) := Z E{max(z ag- Pj,l)]

iEM jeET

LEPT policies. There is no unique way to generalize the LPT algorithm used in the deterministic
case. We distinguish two variants of the “longest expected processing time first” (LEPT) policy.
The policy LEPT £ is the fixed assignment policy that results in the same assignments as the
LPT algorithm for the deterministic processing times p; = E[P;]. In other words, job to machine
assignments are precomputed offline, as follows: jobs are considered in decreasing order of E[P;],
and sequentially assigned to the least loaded machine (in expectation). An example of LEPT £ is
depicted in Figure 1. The second policy, which we denote by LEPTp, is the priority list policy
which considers jobs in the order of decreasing E[P;]’s, and start them (in this order) as early
as possible. Unlike LEPT £, the job to machine assignments of the list policy LEPT» depend
on the realization p of the processing times. By [21] it immediately follows that LEPTp is a
g—approximation with respect to OPTp, since in every realization the schedule produced by
LEPTp is obtained by list scheduling.

In the remaining of this article, we focus on the policy LEPT z, which is more relevant in the
context of surgery scheduling [8, 17, 2]. Indeed, fixed assignments yield more stable schedules
and are better suited to handle the human resources of an operating theatre [9].

Performance ratios. For a given instance I = (P,m) of the SEBP, we denote the optimum
value in the class C of scheduling policies by

OPT:(I) = rl[%fé O (10).

Whenever the instance is clear from the context, or when I = (P,m) is an arbitrary instance,
we will drop I from the argument, so we simply write OPT¢. We also denote by OPT(p) the
optimal value of the criterion for the deterministic problem with processing times p. In this case,
it is clear that we can restrict our attention to fixed assignment policies I € F:

OPT(p) = inf ¢(ILp).

We now define various performance ratios. We say that II € C is an a-approximation in the class
C if the inequality ®(II) < o OPT¢ holds for all instances of SEBP. The price of fived assignments
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Figure 1: Example of a fixed assignment policy: assume machines M = {1,2} and jobs J =
{1,2,3} with processing time distributions p; € {0.4,1.2}, p2 € {0.5,0.7}, p3 € {0.4,0.6} where
each duration is attained with probability 3. Since E[P] = 0.8 > E[P,] = 0.6 > E[Ps] = 0.5,
LEPT £ assigns the jobs in order 1 — 2 — 3 to the machines before their realization is known.
The figure on the top depicts the resulting job to machine assignments with the average durations.
For the realization p = (1.2,0.5,0.4) (lower left), LEPT# is optimal with cost 2.2. For the
realization p = (0.4,0.7,0.4) (lower right), LEPT £ yields cost 2.1. In contrast, note that LEPTp
would have started job 3 on the first machine after completion of job 1, giving a cost of 2.

and the price of non-splittability are respectively defined by

OPT#(I) OPTp(I)
PoFA = - PoNS = il el
© " OPTH(I) and oNS = sup OPTx(I)’

where the suprema go over all instances I = (P,m) of SEBP. PoFA describes the loss if we
restrict our attention to fixed assignment policies. In other words, it is a measure of what can be
gained by allowing the use of more flexible, adaptive policies. This ratio has already gained some
attention, e.g., in [15] and [19], whereby the latter shows that it can be arbitrarily large for the
objective of minimizing the expected sum of completion times on parallel identical machines as the
coeflicient of variation grows. The second ratio (PoNS) is related to the power of preemption, see
e.g. [4, 18, 5, 20], but should not be mixed up with it, because the class R allows different parts
of a job to be processed simultaneously on several machines for fractional assignment policies.

Organization and Main results. Our paper is organized as follows. Section 2 deals with
the price of non-splittability. We show that the expected cost of an optimal non-anticipatory
policy is at most twice the expected cost of an optimal fractional assignment policy. Moreover,
we present instances that achieve a lower bound arbitrarily close to 2, showing that PoNS = 2.
In Section 3, we consider the case of short jobs (P; € [0,1] almost surely) and we obtain a
performance guarantee of 1 +e~! for LEPT » compared to the stochastic optimum. This result is
used in Section 4 to show that the price of fixed assignments is at most 1 +e~!, even without the
restriction to instances with short jobs. We also give a family of instances where this bound is
attained at the limit, which proves that PoOFA = 1+e~!. In Section 5, we give preliminary results
and conjecture that LEPT 7 is a 1 + e~ '-approximation algorithm, even when job durations may
exceed 1. Finally, we show in Section 6 that the performance of LEPT z can not be better than
% in the class F.

2 The price of non-splittability

Proposition 2.1. Let (P,m) be an instance of SEBP and let p := = >
workload averaged over all machines. Then the following holds:

jeg E[Pj] be the expected

OPTF > OPTp > Ep|OPT(P)] > OPTx = E[max(z Pj,m)] > mmax(p, 1).
jeJ



Proof. The first inequality follows immediately since F C P.

Next, for all policies IT € P and all realizations p it holds ¢(II, p) > OPT(p), by definition of
an optimal policy for the deterministic processing times p. Taking the expectation on both sides
yields the second inequality.

Before we go on to the next inequality, we first show that OPTr = E {max(zjej Pj,m)|.

To do so we show that for any realization p an optimal fractional assignment policy assigns all
jobs uniformly to all machines. More precisely, we show that a;; = % forallie Mand j e J
solves the following problem of finding the optimal fractional assignment:

rr%)iélc;lirjngilze Z max(z a;jpj, 1), such that Z a; =1, VjeJ. (1)
ieM jeT ieM

A trivial lower bound on the optimal value of Problem (1) is max(3_;c,pj,m). This is
true since for any feasible fractional assignment (aij)iem,jes, D icm max(zjej a;jpj,1) >
D ieM Zjej ai;p; = Zjejpj, and similarly, > .\, max(zjej aijpj, 1) > > ;e 1 = m. Choos-
ing all fractions to be L we obtain Y, ,, max(d ;e 7 Lpi1) =m- max(d_,c 7 Lpi1) =
max(d_,c 7 pj,m) which exactly matches the lower bound and hence, it must be optimal. Since
this holds for any realization we can take the expected value resulting into the desired identity.
In order to show Ep[OPT(P)] > OPTx, we observe that for any realization p, Problem (1) is
the continuous relaxation of the problem with binary variables for finding the optimal assignments
for the deterministic problem with processing times p. Hence, by again taking expectations this
yields the inequality.
Finally, the last inequality is Jensen’s inequality applied to the convex function z — max(x,m).
O

In the next proposition, which we prove in the appendix, we show the intuitive fact that
among non-idling policies, the worst case is to assign all jobs to the same machine.

Proposition 2.2. LetII € P be non-idling and let 111 be the fized assignment policy that schedules
all jobs on machine 1. Then, ®(II) < &(I1;).

We show that any non-idling policy is a 2-approximation in the class of non-anticipatory
policies (and hence in the class of fixed-assignment policies).

Proposition 2.3. Let II be any non-idling policy. Then,
O(I) < 20PTx.

Proof. Let 1I be a non-idling policy and II; be the naive fixed assignment policy in which all jobs
are scheduled on one machine without idle time. Proposition 2.2 yields that ®(II) < ®(II;), and
we have
O(IL,) = E[max(z P, )]+ (m—-1) < E[max(z P;j,m)] +m — 1.
JjET JET
We know that m < E[max(}_,c s Pj,m)| = OPTg from Proposition 2.1, so we have
O(IT) < ®(I1;) < 20PTx — 1 < 20PTx.
O

Consequently, we are only interested in finding a—approximation algorithms for o < 2, since
a 2—approximation algorithm performs no better (in the worst case) than the naive policy that
puts all jobs on a single machine.

The last proposition also shows that the price of non-splittability is upper bounded by 2. In
fact, this bound is tight:



Theorem 2.4. The price of non-splittability of SEBP is PoNS = 2.
The proof relies on a technical lemma which is proved in the appendix:

Lemma 2.5. Let Y ~ Poisson(\) for some A\ € N. Then,

e M\
Al

Proof of Theorem 2.4. It follows from Propositions 2.1 and 2.3 that OPTp < OPTr < 20PTpg.
Let A € N and consider the instance I with n = m > X independent and identically distributed

jobs in which the processing time of each job j takes the value % with probability % and 0

otherwise. In other words, for all j € J we have P; ~ 5 Bernoulli(%). As n =m, an optimal
non-idling policy clearly assigns each job to a different machine. This yields

A A m
OPTp(I) = m - Ejmax(Py,1)] = m - ((1 - D)1+ 2 X) = 2m — A

%E[maX(Y, )\)] =1+

For the objective value of an optimal fractional assignment policy we can use Proposition 2.1.
We will also use the fact that the sum of i.i.d. Bernoulli random variables is binomially distributed,
ie., X = % 3.+ P; ~ Binomial(m, 2 ). Moreover, it is folklore that X converges in distribution

7 JjeET 7 I m
to Y ~ Poisson(\) as m — oo.

Therefore, we have %OPTR(I) = %]E[max(zjej Pj,m)} = E[max(X,\)], which con-

verges in distribution to 1 + 67;1’9 as m — oo by Lemma 2.5. Putting all together, the ratio

OPTp(I)/OPTR(I) converges to 2(1 + %)_1 as m — 00, and this quantity can be made
arbitrarily close to 2 by choosing A large enough. O

3 Approximation ratio of LEPT: The case of short jobs

In this section, we show that LEPTx is an (1 + e~ !)-approximation algorithm when the instance
only contains short jobs.

Definition 3.1. We say job j is short if its processing time P; is less than or equal to 1 almost
surely, i.e.,
PO<P; <1]=1.

It is reasonable to assume that jobs are short: In real world applications, such as in surgery
scheduling, the duration of a single operation rarely exceeds the regular capacity of an operating
room. Moreover, this assumption is not uncommon; cf. [7, 21]. The proof of the performance
guarantee of LEPTr relies on three lemmas which we prove in the appendix. The first lemma
gives a tight bound on the expected cost incurred on one machine.

Lemma 3.2. Let k be some positive integer and let all jobs j € [k] be short. Then,

E{max(if},l)] < zk:E[Pj] + ﬁ(l—IE[Pj]).

Moreover, this bound is tight, and attained for the two point distributions P} ~ Bernoulli(E[P;]).

The second lemma gives bounds on the expected workload of any machine in an LEPT
schedule. Interestingly, the gap between the lower and upper bounds becomes smaller when the
number of jobs scheduled on a machine grows.



Lemma 3.3. Let z; denote the expected load of machine i € M produced by LEPTx, i.e.,

x; = E[WHEPTr] = Z E[P;]. Then, there exists £ > 0 such that for all i € M,
LEPTx
T
(<a <y,
n; — 1

where n; : ’{j e J ] LEPT7, 2}| denotes the number of jobs assigned to machine i, and we use

= 6 = 400 whenever n; = 1.

We need a thlrd lemma with a technical result:
Lemma 3.4. Let{ >0 and p > £. We define the function h: [0,1] = R, y — (1— y)Hf, which
is defined by continuity at y = 0 with h(0) = e~¢. Let y € [0,1]™ be any vector satisfying the
inequality Y ;c v yi = m(p —£). Then,
Z h(y;) < me™".
iEM
We are now ready to prove the main result of this section:

Theorem 3.5. Consider an instance (P,m) with only short jobs. Let p := L o 2 jes E[P)] denote
the expected workload averaged over all machines. Then it holds

S(LEPTF) _ p+e”

<l+4el.
mmax(p,1) — max(p,1) te

Proof. Let J; denote the subset of jobs that LEPT # assigns to machine i € M and let n; := |J;|.
As in Lemma 3.3, let LEPT 7 produce an expected workload of z; = >, ;. E[F;] on machine 1.
Then, by Lemma 3.2 we can bound the expected cost incurred on machine ¢ as

Emax(W "7 1] < STEF] + [[ (1 -E[P]) <@+ (1 _ Zz)n (2)
Jj€J; JE€J; l

where the last inequality follows from the Schur-concavity of p — [];c ;. (1 — ;) over [0, 1]™;
cf. [14, Proposition 3.E.1]. Next, we apply Lemma 3.3, so there exists an ¢ > 0 such that
¢ <z; < gl Let y; :=x; — £ > 0. The second inequality can be rewritten as

T; /
=1 -
- + e (3)

mn; <

which remains valid for y; = 0 if we define £/0 := +00. We know that P; € [0,1] almost surely,
in particular E[P;] < 1, and hence, z; < n;. For this reason, the above inequality implies
x; < ; < 1. By combining (2) and (3), and using the fact that (1 — 7+)" is
a nondecreasing function of n;, we obtain '

Efmax(WET7 1)) <+ (1= (= )77 = £+ y; + Ay, (4)

where h is the function defined in Lemma 3.4, and the y;’s satisfy y; € [0, 1]. Moreover, we have

YiemYi=mlp =€) = >l +Yi) =D crTi = pm. Summing up the inequalities (4)
over all i € M and using Lemma 3.4 yields

(LEPTF) = »  Emax(W™ 7 1)] < pm+ > h(y:) <m(p+e?).
1EM ieM



As a consequence, we obtain
®(LEPT£) o pre?
mmax(p,1) ~ max(p,1)

Finally, the second inequality of the theorem follows from the fact that the above ratio is

maximized for p = 1. This is true because nf;j;i) = p+ e ” on [0,1], hence increasing, and
- - .
%‘),1) =1+ <~ on [1, +oc], hence decreasing. O

Combining this result with the inequality OPTp > mmax(1, p) from Proposition 2.1 yields
the following

Corollary 3.6. The LEPTF policy is an (1 + e~ 1)-approzimation algorithm in the class P, over
the set of instances with short jobs only.

As we will see in the next section, our analysis of LEPT z is tight. In section 5 we discuss
how this result might be extended considering additionally long jobs.

4 The Price of Fixed Assignments

In this section, we are going to show that the price of fixed assignments is equal to 1 +e~!. To
do this, we require a lemma that will allow us to focus on instances with short jobs. Our analysis
relies on a parameter o > 0 which quantifies the length excess of jobs (for an instance with only
short jobs, it holds oo = 0).

Lemma 4.1. Let I = (P, m) be an instance of SEBP, and let I' = (P',m) denote the instance in
which the processing time P; of all jobs is replaced by P; = min(P;,1). Let v =3, 7 a;, where
we define a; := E[max(P; — 1,0)] > 0. The new Pjs are short jobs, and we have

OPTx(I') = OPT+(I)—a and Ep[OPT(P')]=Ep[OPT(P)] - .

Proof. Let J; and J! denote the subsets of jobs assigned to machine ¢ in an optimal fixed
assignment policy II for instance I, and in an optimal fixed assignment policy II’ for instance I’,
respectively. Let p be a realization of the processing times for instance I, and let p’ denote the
vector with elements p); = min(p;, 1). We compute the difference between the costs incurred by
II(p) and TI(p’) on machine i:

max (W (p), 1) — max(W (p'), 1) = max ( Z Djs 1) — max ( Z min(p;, 1), 1). (5)

jE€J; jeJ;

It is easy to see that ZjeJi pj <1 = ZjeJi min(p;,1) < 1. Hence, we distinguish two
cases. If 37, ; p; < 1, then the right hand side of (5) vanishes. Otherwise, the right hand
side of (5) becomes . ; p; — min(p;,1) = > ,c; max(p; —1,0). In both cases, it holds
max(W/(p),1) — max(W}(p'),1) = > jes, max(p; — 1,0). Taking the expectation and summing
up over all machines yields

o) —@p(M) =Y Y o;=) aj=a,
iEMjET; JjeTJ

where the symbol ®;(II) emphasizes that the expected value in the criterion is taken with respect
to the processing time distributions of instance I.



Since II is optimal in the class F for instance I, we have ®;(I1) = OPTx(I) and & (IT) >
OPTx(I'). Hence,

(I)[/ (H) = OPT]:(I) — Z OPT]:(I/). (6)

Similarly, the comparison of the costs incurred by IT'(p) and II'(p’) on machine i yields

max(WT (p),1) — max(W (p'),1) = > jes max(p; — 1,0). Again, by taking the expectation

and summing over all machines we obtain ®;(II') — @, (Il') = >, 7 aj = a. Now, we observe
that @/ (II') = OPT#(I") and ®;(II') > OPTx(I), so we have

‘I)](H/) = OPT]:(II) +a> OPT]:(I) (7)

Finally, by combining (6) and (7) we obtain OPTx(I) — a > OPTx(I') > OPTx(I) — a, which
shows the desired equality:
OPT#(I) — a = OPT#(I").

The proof of the equality Ep/ [OPT(P’)] = Ep[OPT(P)] — o works in a similar manner, but
we must take sums over a different subset of jobs J;(p) for each scenario p, corresponding to the
jobs that an optimal policy assigns to machine i for the deterministic problem with processing
times p. L]

We can now prove the main result of this section:

Theorem 4.2. The price of fived assignments for SEBP is equal to (14 e™1):
PoFA =1+4¢ %

Proof. Let I = (P, m) denote an instance of SEBP and I’ = (P’,m) the reduced instance as in
Lemma 4.1. We have:
OPTx(I) < OPTx(I) OPTr(I') + « OPTx(I')

OPTp(I) — Ep[OPT(P)] - Ep [OPT(P)] + a < Ep [OPT(P)] <l+el,

where the first inequality follows from Proposition 2.1, the equality is a consequence of Lemma 4.1,
the second inequality follows from « > 0, and the last inequality results from Proposition 2.1 and
Theorem 3.5. Therefore, it remains to show that for all € > 0 there exists an instance I in which

we have
OPTx(I)

T >14el—e
OPTR() = T¢ ~F€

For this purpose, we consider an instance I = (P, m) in which we have n = km jobs for some
k € N, where P; ~ Bernoulli(%) for all j € J. An optimal fixed assignment policy assigns each

machine the same number of jobs, in this case k. The cost on one machine is hence the expected
value of max (Z,1), where Z := 2?21 P; ~ Binomial(k, 7). So,

OPT#(I) = m - E[max(Z,1)] = m - (IE (212 >1] P[Z > 1]+ E[1|Z < 1] P[Z < 1])
—m- (E[Z] +P[Z=0]) =m- <1+ (1-2) )

which converges to m(1 +e~1) as k — oo. On the other hand, an optimal policy in P lets a job
run whenever a machine becomes idle. The cost of an optimal policy is hence m whenever less
than m jobs have duration 1, and is equal to ng p; otherwise. This shows that OPTp(I) =

10



E[max(U, m)], where U := Efg P; ~ Binomial (km, +). Now, we can argue as in Theorem 3.5
that U converges in distribution to Y ~ Poisson(m) as k — co. So, by Lemma 2.5, we have

OPTp(I) = m - (1—!—%) as k — oo.
m!

Finally, we have shown that the ratio of OPTx(I) to OPTp(I) can be made arbitrarily

close to (1+e71)- (1 4 e _m )71 by choosing k large enough. We conclude by observing that

m!

m”e’™ _ (), so this ratio can be arbitrarily close to 14 e~ 1. [

hmm—>oo m!

This proves that our analysis of LEPTx is tight. It even shows that LEPTx is the best
fixed assignment policy in the following sense: Since there exists instances for which the ratio of
an optimal fixed assignment policy to an optimal non-anticipatory policy is arbitrarily close to
1+ e~ ! and the fact that LEPTr is a 1 + e~ -approximation (for short jobs), we cannot hope to
find a policy Il € F with a better approximation guarantee in the class P.

5 Extending the approximation guarantee of LEPT for In-
stances with long jobs

In this section, we discuss the possibility to extend the (1 + e~!)-approximation guarantee of
LEPT # for instances containing long jobs, that is, jobs whose duration may exceed 1. It can be
shown —using a similar approach as in Theorem 3.5 that %&TJ) <1+ ¢ Tmax for instances
where each job satisfies P; € [0, dmax] almost surely for some dpax > 1, and that this bound
is tight. Letting dmax — 00 just gives the trivial approximation guarantee of 2, so we have to
use a better lower bound on OPTp in order to prove that LEPTx is a (1 + e~ !)-approximation
algorithm.

Our next candidate is the bound OPTp > Ep[OPT(P)], cf. Proposition 2.1. We think that
an analysis relying on the parameters s = >, E[P;] and a = }_; E[max(0, P; — 1)] introduced in
Lemma 4.1 could lead to the desired result. We did not manage to get a complete proof so far,
but we present some preliminary results and we make a conjecture.

Throughout this section we use the following notation: P’ represents the vector of processing
times truncated above one, i.e. P; = min(P;,1). We denote by J; the set of jobs assigned to
machine i by LEPTz, and we let n; := |J;|. Without loss of generality we assume n; > 1
(Vi € M), as otherwise it is clear that n < m, and LEPT  is an optimal policy.

Lemma 5.1. Ep[OPT(P)] > max(s,m + «).

Proof. We already know from Lemma 4.1 that Ep[OPT(P)] = Ep/|[OPT(P')] + . Then,
the result follows from Ep/[OPT(P')] > max(}_;. s E[Pj],m), cf. Proposition 2.1, and the
identity >, , E[P}] = >_,c 7 E[P;] — a, implying that Ep[OPT(P)] > max(s — a,m) + a =
max(s, m + «). O

Lemma 5.2. ®(LEPTF) =}, Elmax(}_;.; Pj,1)] +a.

JEJ;
Proof. The cost on machine i for realization p is
maX(Z pj, 1) = max ( Z v}, 1) + Z max(0,p; — 1),
J€Ji J€J; jedi

where p/; := min(p;, 1), which can be seen by distinguishing between the cases where Vj € J;, p; <
1ordj € J;:p; > 1. The result follows from summing this equality over all machines and taking
the expectation. O

11



Lemma 5.3. Let v*(s, ) denote the optimal value of the following optimization problem:

- 1T
maximize Z < o > (8a)

B, L>

ieM

s.t. Z Ti=8—« (8b)
ieEM
Y Bi=a (8¢)
ieM
ﬁgxﬂrﬂigén‘n_il, Vie M. (8d)

Then, ®(LEPTr) < s+ v*(s, ).

Proof. Since the reduced jobs P]{ are short, we can insert the inequality of Lemma 3.2 into the
result of Lemma 5.2, and we obtain:

O(LEPTF) < > E[P]+ > [[(1-E +a<S+Z(J€J]E[P/])m,

JjeET iEMGES; ieEM

where the second inequality follows from the identity 3. 7 E[P;j] = s — and the Schur-concavity
of p— [[;c;, (1 —p;) (we already used this argument in the proof of Theorem 3.5). Then,
we obtain the result by observing that z; = >, ; E[P]], 8; = >, ; Elmax(P; — 1,0)], and
¢ = min;e pm(x; + Bi) is a feasible solution for the optimization problem in the lemma. Indeed,
we have >,z = D7 B[Pl = s —a, X2, 8i = > jc 7 Emax(P; — 1,0)] = a, and by
Lemma (3.3), the last constraint holds, because x; + 3; is the expected load of the ith machine in
an LEPT = schedule. L]

As a consequence of the above lemmas, we observe that if the ratio #&iiﬁ)

from above by 1+ e~ ! for all values of a > 0 and s > «, then this would show that LEPT 7 is

n (1 + e !)—approximation algorithm (even for instances containing long jobs). We conjecture
that this is true, which can hopefully be proved by analyzing the optimal value of Problem (8).
Note that the objective function of this problem is convex, so v*(s, ) must be reached at an
extreme point of the polytope (8b)-(8d). We ran extensive numerical simulations that support
our conjecture, but we did not obtain an analytical proof so far.

is bounded

6 Performance of LEPT in the class of fixed assignment poli-
cies

It would also be interesting to characterize the approximation guarantee of LEPT ~ in the class
of fixed assignment policies. The next proposition gives a lower bound:

P(LEPTF) _ 4—c

OPT=1) _ 3 °

Proposition 6.1. For all € > 0, there exists an instance I of SEBP such that

Proof. We construct an instance with m = 2 machines and n = 3 jobs. The first two jobs are
deterministic and have duration P, = P, = 1. The distribution of the third job is P; = %X ,
where X ~ Bernoulli(e), so E[P3] = 1. We assume that the LEPTz policy assigns both
deterministic jobs to the first machine and the stochastic job to the other machine, which gives
O(LEPTx) =2+ (1 —¢€) + £ = 4 — . In contrast, for any policy II* which assigns the two
deterministic jobs on different machines, we have ®(II*) = 1+ (1 — €) + (1 + 1)e = 3. The policy
IT* reaches the lower bound m max(p, 1) of Proposition 2.1, hence it is optimal. O
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If the conjecture in Section 5 is correct, this shows that the best approximation factor for
LEPT # in the class of fixed assignment policies lies between % and 1+ e~ ! ~ 1.368.

7 Conclusion and Future work

We showed that LEPT £ is, in some sense, the best algorithm among the class of fixed assignment
policies we can hope for. This result might inspire future work to consider the same or similar
ratios for other scheduling problems, in which we compare within or against several subclasses of
policies, in order to obtain more interesting and precise results on the performance of algorithms.

An interesting direction for future work on SEBP is the study of the case of unequal bins, which
is relevant for the application to surgery scheduling, where operating rooms may have different
opening hours. Since the class of fixed assignment policies is relevant for surgery scheduling,
another interesting open question is whether there exists a policy II € F with an performance
guarantee < % in the class F. A good candidate could be the variant of LEPT that considers more
than just first moment information on the P;’s, and inserts sequentially the job j on the machine
minimizing E[max(X; + P;, 1)], where X; is the random variable for the load already assigned to
machine i. We also observe that the coeflicient of variation of the jobs tend to infinity in all our
tight examples, so it is natural to ask if we can obtain better bounds when these coefficients are
upper bounded by a constant A. Last but not least, a two-stage stochastic online extension of
the EBP could yield a better understanding of policies for the surgery scheduling problem with
add-on cases (emergencies).

13



A Proofs of intermediate results

Proof of Proposition 2.2. To prove this result, we examine the change in the objective value of I1
when we move one job to the machine with highest load in II, for a realization p of the processing
times. W.l.o.g. let machine 1 be the one with highest workload in II(p). Consider another
machine ¢ € M \ {1} on which at least one job is scheduled. Let k be the last job on machine

i, i.e., Cil(p) = WH(p). For the sake of simplicity, we define 4 := {j € J|j — RLE2N i} \ {k} and

B:={jeJlj—> @), 1}. We consider another schedule II'(p) which coincides with II(p) except
that job k is scheduled on machine 1 right after all jobs in B. We obtain

¢(H$P)—’¢0Yap)

:max(ij + pg, 1) + maX(Z D, 1) — (maX(ij, 1) + max(z p; + Pr, 1))
j j JEA jEB
1+max(2pj, ) <1+max(2p]+pk,l)> if ij+pk <1

JjEA
ij +pk + Z Dj — (max(z Dj 1) + Z pj + pk) otherwise
JEA jEB
<0.

Hence, iteratively moving some job k to the fullest machine yields ¢(II, p) < ¢(I1y, p). Finally,
the result follows by taking the expectation. O

Proof of Lemma 2.5. The proof simply works by exploiting the analytical form of Poisson proba-
bilities:

11{3[ (v, /\)} - li (k, \) N
3 max(Y, =3 max(k, x
k=0
1 & —A,\k 1 e Mk
=7 Z k- Z max (0, A — k) X
k=0
A
Ey e \F
=1+ Z(l - X) L
k=0
A A
Ak Ak 1
_ .Y
e (o - o)
k=0 :1
—AAA
=l
where the last step follows from the property of a telescoping sum. O]

Proof of Lemma 3.2. Let X and Y be random variables with P[0 < X < 1] = 1. Observe that
0 < E[X] < 1. We are going to show that E[max(X + Y, 1)] can be bounded from above by
choosing the two point distribution X* ~ Bernoulli(E[X]), such that P[X* = 0] = (1 — E[X]) and
P[X* = 1] = E[X]. To do so, we define the function ¢ : [0,1] = R, z — Ey[max(z + Y, 1)]. This
function is convex, since it is the expectation of a pointwise maximum of two affine functions [3].
Therefore, for all 2 € [0,1] we have g(z) < g(0) + z(g(1) — g(0)). Then, by definition of g,

Emax(X +Y,1)] = Ex[g(X)] < g(0) + Ex[X] - (9(1) — 9(0))
=Ex«[¢(X™)] = Elmax(X* +Y,1)].
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Using this bound for all j € [k], we obtain E [max (25:1 P;, 1)} < E[max (Z?:l Py, 1)}7 where
P} ~ Bernoulli(E[F;]). Then, by the law of total expectation, we have:

k k k
1S P> 1]@[2 Py > 1] +E[1] B> Py <1].

Since the random variable Z§:1 P} is a nonnegative integer, it cannot lie in the interval (0, 1),

so the first term in the above sum is equal to E[Z?Zl P;] = Zle E {Pj], and the second term

is equal to P[Py = ... = Py = 0] = [[_, (1 — E[P}]). O

Proof of Lemma 3.3. We set £ := min{x; : i € M}. Then, the first inequality follows immediately.
Next, we will show that in each step that LEPT ~ assigns a job to a machine the second inequality
is fulfilled. Let j denote the job which is put on machine 4 in the current step. Furthermore, let
¢" and ¢ denote the minimum expected load among all machines before and after the allocation,
respectively. Trivially, ¢/ < ¢ is true. Moreover, let z; and z; denote the expected workload of
before and after assigning j to it, respectively. Clearly, we have

z; = x; + E[Pj].

Observe, that ¢ = x}, because LEPT r assigns j to the machine with the smallest expected load.
In addition, let n; denote the number of jobs running on machine ¢ after the insertion of j. Since
LEPT x sorts jobs in decreasing order of their expected processing times, it holds

/ /
x; l

E[P;] < = .
[ J] - n; — 1 n; — 1

Counsider a machine other than i. If the inequality of the statement was fulfilled in an earlier
step, then by setting the new /£ it still is true. In the beginning, when we have no job at all, the
inequality is true, so we only have to take care of machine 3.

Finally, we obtain on machine ¢

) / . ! . . ! .
&ZIZ+E[P]}SIZ+]E[PJ]S1+E[PJ]S1+ ¢ _ ™
Y4 i v ' ﬁ’(nl — 1) (ni — 1)

[

Proof of Lemma 8.4. First, we argue that h:y +— (1 — y)H% is convex over [0,1]. To see this,

we compute its second derivative:

Mhz(y),

h'(y) = ;

where ho(y) == y2(£ —y +2) + £(y — 1)*log*(1 — y) — 2(£ + 1)(y — 1)ylog(1 — y). Now, we use
the fact that log(1 —y) = —> 7, % for all y € [0,1). Hence, log*(1 —y) = S 5, vxy", where
Vi 1= Zf;l l(k%l) After some calculus, the terms of order 2 and 3 vanish and we obtain the
following series representation of hy over [0, 1):

M) = (5 + Dt + gm o+ e — 2m )
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We are going to show that v + yx—2 — 2v,k—1 > 0 for k > 5 implying that h'(y) > 0 for
all y € [0,1). To do so, we rewrite the sums using the partial fraction decomposition. As a
consequence, we obtain

k—1 — k—2
251, 1 4 1
— —2 _ = — - —_ _
Y + Ve—2 V-1 ki:1’ ;z - 1;i
_2( 1 1y 4 (2, 2 4\ 1
CkE\k—-2 k-1 (k—1)(k—2) k' k—2 k-1 prdl
6 g
= — + —
k(k—1)(k—2) " k(k—1)(k—2) & i
>0

The last inequality results from the fact that for all £ > 5 we have 4 Zk 3 1 > 6. Hence, h is
convex on [0, 1), and even on [0, 1] by continuity. Now, let v*(p, ) denote the optimal value of
the problem

max1m1ze Z h(y;) (9a)
R ieM

s.t. Z y; =m(p—1L) (9b)
ieM

0<y; <1, (VieM). (9¢)

As h is convex, a maximizer of the optimization problem above is an extreme point of the polytope
induced by the constraints (9b) and (9c). Let k := [m(p — £)] and u := m(p — ¢) — k, where
|.|] denotes the floor function, that is, |z] is the largest integer less than or equal to z. By
construction, it holds 0 < u < 1, and u + k = m(p — £). At an extreme point, at least m — 1
inequalities of (9¢) must be tight. Hence, one coordinate of y must be u, k coordinates must be 1
and the remaining (m — k — 1) coordinates must be 0.

It follows that v*(p,£) = (m — k — 1)h(0) + h(u) = (m — k — 1)e~* + (1 — u)'T¥/*. Now, we
observe that (1 —u)/" < e~ so

(1—w) v < (1 —u)e™*
— (1—u)F" <A+ k—m(p—1))e*
= m-k-1et+ 1 -u)F" <m( - p+0)e?,

v*(p,£)

where the first equivalence is due to the decomposition m(p — ¢) = k + u.
Finally, the inequality of the proposition follows from the fact that (1 + ¢ — ple * is a
nondecreasing function of ¢ over [0, p]. O
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