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Approximation Hierarchies for the cone of flow

matrices

Guillaume Sagnol12, Marco Blanco2, Thibaut Sauvage3

Abstract

Let G be a directed acyclic graph with n arcs, a source s and a sink
t. We introduce the cone K of flow matrices, which is a polyhedral cone
generated by the matrices 1P1

T
P ∈ Rn×n, where 1P ∈ Rn is the incidence

vector of the (s, t)−path P . Several combinatorial problems reduce to
a linear optimization problem over K. This cone is intractable, but we
provide two convergent approximation hierarchies, one of them based on
a completely positive representation of K. We illustrate this approach
by computing bounds for a maximum flow problem with pairwise arc-
capacities.

Keywords. Flows in graphs, Approximation hierarchies, Copositive program-
ming

Throughout this paper we denote by Sn the set of n×n−symmetric matrices,
and by S+n the set of n× n−symmetric positive semidefinite matrices, that is,

S+n = conv({xxT : x ∈ Rn}) = cone({xxT : x ∈ Rn, ‖x‖ = 1}),

where conv(S) and cone(S) stand for the convex hull and the conic hull of a set S,
respectively. We also introduce the notation C∗n for the set of completely positive
matrices of size n× n: C∗n := conv({xxT : x ∈ Rn+}). The space Sn is equipped
with the inner product 〈A,B〉 := traceAB, and the associated Frobenius norm

‖X‖F =
√
〈X,X〉 =

(∑
i,j X

2
i,j

)1/2
. The ith vector of the canonical basis of Rn

is denoted by ei. The cardinality of S is denoted by |S|.

LetG = (V,E) be a directed acyclic graph (DAG) with n arcs andm vertices.
Let s ∈ V and t ∈ V denote two designated vertices of G, respectively called
source and sink. For simplicity we assume that s has no incoming arcs, and t
has no outgoing arcs. We denote the set of (s, t)−paths in G by P. We say that

f ∈ R|P|+ is a P−flow (for path-based flow) of value u ≥ 0 if
∑
P∈P fP = u.

A vector x ∈ Rn+ is called an A−flow (for arc-based flow) of value u ≥ 0, or
simply a flow of value u when there is no ambiguity, if it satisfies the following
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flow conservation equation:

∀v ∈ V,
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe =

 −u if v = s
u if v = t
0 otherwise.

The set of all A-flows of value u is denoted by A(u), and we use the notation
A := ∪u≥0A(u) for the set of all A−flows (of any nonnegative value). Since G is
a DAG, it is well known that A(1) = conv({1P : P ∈ P}) and A = cone({1P :
P ∈ P}), where 1P is the incidence vector of the path P , that is, the elements of
1P ∈ {0, 1}|E| satisfy (1P )e = 1 if e ∈ P and (1P )e = 0 otherwise. This comes
from the fact that every A−flow x ∈ A can be decomposed as x =

∑
P∈P fP1P

for some f ∈ R|P|+ ; see, e.g. [1]. Note that xe =
∑
P3e fP represents the amount

of flow that goes through arc e (the summation indexed by “P 3 e” goes over
all paths P ∈ P that include arc e).

Many optimization problems over graphs can be solved using the arc-representation
of a flow, which has the great advantage to be compact, while the number of
paths might grow exponentially with the size of the graph. However, for some
problems there is a kind of coupling between the arcs visited by the same “par-
ticle of flow”. Such problems cannot be solved by the arc-representation, which
just counts the amount of flow on each arc without tracking the path followed
by each particle.

In this paper, we propose to study the following polyhedral cone:

K := cone({1P1TP : P ∈ P}).

If X ∈ K, it can be decomposed as X =
∑
P∈P fP1P1

T
P for some flow f ∈

(R+)|P|. The motivation for studying the cone K is that it introduces a certain
amount of coupling between the arcs of a path. Indeed, Xij =

∑
P⊇{i,j} fP , is

the amount of flow going through both arcs i and j. In particular, the vector
of diagonal elements of X is diagX =

∑
P∈P fP1P , and corresponds to the

standard arc-representation of the flow. As before, we denote by K(u) the set
of flow matrices of value u ≥ 0, that is,

K(u) := {X ∈ K :
∑

i∈δ+(s)

Xii = u}.

It is easy to see that X =
∑
P∈P fP1P1

T
P ∈ K(u) if and only if

∑
P fP = u. In

particular, K(1) = conv({1P1TP : P ∈ P}).
Related work: We are not aware of any article that studied the cone K

before. However, this paper is related to a series of results that reformulate hard
combinatorial problems over graphs as completely positive programs, see [5]. In
particular, we could have used a general result of Burer [3] to obtain a completely
positive representation of K. The representation we obtain in Theorem 3.2 is
different, though, and our proof is purely combinatorial.
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Organization and contribution: We will see in this article that several
hard combinatorial problems can be formulated as linear optimization prob-
lems over K. A important example is the quadratic shortest path problem (cf.
Section 1), which appears naturally in the definition of the dual cone K∗, see Sec-
tion 2. Tractable approximations of K might yield approximation algorithms for
these combinatorial optimization problems. We propose two convergent approx-
imation hierarchies in Section 3, and we discuss an application for the maximum
flow problem with pairwise arc-capacities in Section 4.

1 The quadratic shortest path problem

Given a cost vector c ∈ Rn, where ca is the cost of arc a, the shortest path
problem is to find the path p ∈ P minimizing

∑
a∈P ca = cT1P . Since the

graph G is a DAG, it is well known that this problem can be solved efficiently
by dynamic programming, even if c has some negative components.

Analogously, assume there is a cost Qi,j if one chooses a path going through
both i and j. This is the quadratic shortest path problem (QSPP):

qspl(Q) = min
p∈P

1TPQ1P .

The QSPP was recently shown to be NP-hard to approximate, and APX-hard
in the special case where the cost matrix Q is positive semidefinite [9]. The
QSPP can be formulated as a linear optimization problem over K(1):

qspl(Q) = min
X∈K(1)

〈X,Q〉.

Indeed, for a feasible X =
∑
P∈P fP1P1

T
P , with

∑
P fP = 1, it is straightfor-

ward that 〈X,Q〉 =
∑
P∈P fP1

T
PQ1P , and so the optimal solution only gives a

positive weight fP > 0 to paths solving the QSPP.
The above example already shows that, unless P=NP, we have no hope to

find a compact representation of the cone K (i.e., a description of K relying
on a polynomial number of linear inequalities). Otherwise, the QSPP could be
solved in polynomial time by linear programming (LP). In the next section, we
show an even stronger negative result: it is NP-hard to check whether a given
symmetric matrix X belongs to K.

2 The membership problem

We study the following question:

MEM(K) : Given X ∈ Sn, does X belong to K?

A certificate for the membership X ∈ K can be given as a decomposition of the
form X =

∑
P fp1P1

T
P . Note that from Carathéodory theorem, there always
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exists such a decomposition involving no more than n(n+1)
2 + 1 paths. This

already shows that the membership problem for K is in NP.
Below, we will show that the problem MEM(K) is NP-complete, by reasoning

on the dual cone K∗ of K. In fact, we also have a direct proof of this result not
relying on K∗, but the proof we present here is shorter, and we think it sheds
more light on the problem. We first show that K∗ is the set of cost matrices for
which the quadratic shortest path length is nonnegative. By definition,

K∗ = {Y ∈ Sn | ∀X ∈ K, 〈X,Y 〉 ≥ 0} ={Y ∈ Sn | ∀p ∈ P, 1TPY 1P ≥ 0}
={Y ∈ Sn | qspl(Y ) ≥ 0}.

We will now show that the weak membership problem for K∗ is NP-hard.
The weak membership problem WMEM(S), where S ⊂ Rn has nonempty inte-
rior, is defined as follows:

WMEM(S) : Given x ∈ Rn and ε > 0, assert either (i) B(x, ε) ∩ S 6= ∅;
or (ii) B(x, ε) * S,

where B(x, ε) := {z ∈ Rn : ‖z−x‖ ≤ ε}. Note that both conditions (i) and (ii)
may be valid for points x that are close to the boundary of S. It follows that
any algorithm that solves MEM(S) also solves WMEM(S); cf. [4]. Therefore,
the NP-hardness of WMEM(S) implies that of MEM(S).

Proposition 2.1. The weak membership problem WMEM(K∗) is NP-hard.

Proof. The convex cone K is clearly closed, and pointed (it contains no line, i.e.,
X ∈ K,−X ∈ K =⇒ X = 0) because elements of K only have nonnegative
components. Therefore, K∗ has a nonempty interior (see e.g. [2]).

Now, consider the problem WMEM(K∗). Asserting that (X, ε) ∈ Sn × R++

satisfies condition (i) means that there exists a matrix Y ∈ Sn such that
‖Y −X‖F ≤ ε and ∀P ∈ P, 1TPY 1P ≥ 0. Hence,

∀P ∈ P, 1TPX1P ≥ 1TP (X − Y )1P ≥ −
∑
i,j

|Xij − Yij | ≥ −n‖X − Y ‖F ,

where the last inequality follows from Cauchy-Schwarz. So if (X, ε) satisfies
condition (i), we must have qspl(X) ≥ −nε. Using an analogous reasoning, we
can show that if (X, ε) satisfies condition (ii), we must have qspl(X) < nε.

Now, we use a result from [9]. The authors give a polynomial reduction
from the path with forbidden pairs problem (PFPP), which is known to be NP-
complete [7], to the QSPP: given an instance I of the PFPP, a matrix QI is
constructed (in polynomial time) in such a manner that I is a yes-instance if
and only if qspl(QI) = 0, and I is a no-instance if and only if qspl(QI) ≥ 2.
By adding an arc of cost −1 after t, we obtain an instance Q′I of the QSPP
such that I is a yes-instance (no-instance) if and only if qspl(Q′I) = −1 (≥ 1).
According to the discussion above, (X, ε) = (Q′I ,

1
2n ) satisfies condition (i) for

WMEM(K∗) if and only if I is a no-instance, and it satisfies condition (ii) if
and only if I is a yes-instance. This shows that WMEM(K∗) is NP-hard.
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It is shown in [6, Theorem 5.3] that if K is a proper cone (i.e., closed,
convex, pointed, and with nonempty interior), then the WMEM problem for
K∗ is polynomial-time reducible to the WMEM problem for K. In our case,
K is not proper, because it has an empty interior. However, we can prove the
NP-hardness of MEM(K) by reasoning relatively to the linear envelope of K. To
do so, we first need to show that this linear envelope, that is,

spanK = {
∑
P∈P

fp1P1
T
P : ∀P ∈ P, fP ∈ R},

can be computed in polynomial time.

Theorem 2.2. The membership problem MEM(K) is NP-complete.

3 Approximation Hierarchies

3.1 Tensor-based hierarchy

Let X ∈ K. We already observed that diagX is a flow, i.e., diagX ∈ A. It
is easy to see that columns of X are flows, too: if X =

∑
P∈P fP1P1

T
P , then

Xei = [X1i, X2i, . . . , Xni]
T =

∑
P3i fP1P is the subflow of all particles that go

through arc i, which is a flow of value
∑
P3i fP = Xii. Hence,

K ⊆ K2 := {X ∈ Sn : diagX ∈ A, Xei ∈ A(Xii), ∀i ∈ {1, . . . , n}} .

In words, K2 is the polyhedron containing all symmetric matrices such that the
diagonal is a flow, and the ith column is a flow of value Xii.

More generally, we can extend this approach by considering the equali-
ties that must be satisfied by the tensor T f = {T f

i1,...,ik
}1≤i1,...,ik≤n, where

T f
i1,...,ik

=
∑
P⊇{i1,...,ik} fP is the amount of flow using all arcs from the set

{i1, i2, . . . , ik}. By definition, T f belongs to the set Tnk ⊂ Rn×···×n of setwise
symmetric tensors, that satisfy the property that Ti1,...,ik only depends on its
set of indices {i1, . . . , ik} (e.g., for k = 3 we have Tijj = Tiij). For ease of
notation, we can hence index the elements of T ∈ Tnk as TJ , where J belongs
to the set Ik of all nonempty subsets of {1, . . . , n} with at most k elements:

Ik := {J ⊆ {1, . . . , n} : 1 ≤ |J | ≤ k}.

For T ∈ Tnk and J ∈ Ik−1, we further introduce the notation

diag T = [T{1}, . . . , T{n}]
T ∈ Rn

mat T = {T{ij}}1≤i,j≤n ∈ Sn
beamJ(T ) = [TJ∪{1}, . . . , TJ∪{n}]

T ∈ Rn.

Now, for k = 1, 2, . . . , we construct the following sets:

Tk = {T ∈ Tnk : diag T ∈ A, ∀J ∈ Ik−1, beamJ(T ) ∈ A(TJ)}.
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Note that T1 is isomorphic to A and T2 is isomorphic to K2. By construction,
if X =

∑
P∈P fP1P1

T
P ∈ K, then the tensor

T f =
∑
P∈P

fP 1P ⊗ · · · ⊗ 1P︸ ︷︷ ︸
k times

is such that T f ∈ Tk, and matT f = X. Hence, for all k ≥ 2 we have

K ⊆ Kk := {matT : T ∈ Tk}.

For some k ≥ 2, let T ∈ Tk+1 and define T ′ = {TJ}J∈Ik ∈ Tnk . We clearly have
T ′ ∈ Tk and matT ′ = matT , which shows Kk+1 ⊆ Kk. Hence, we have shown
the following:

Proposition 3.1. We have the following approximation hierarchy for K:

K ⊆ · · · ⊆ K3 ⊆ K2.

In fact, we can even show that K = KN , where N = max{|P | : P ∈ P}
denote the length of the longest (s, t)−path in G. The proof is lengthy, and we
reserve it for a journal version of this article. We point out that Kk is defined
by a set of |Ik| + 1 flows on a graph with m vertices; its description involves
O(mnk−1) linear equations on O(nk) variables.

3.2 A completely positive representation

Observe that all flow matrices X ∈ K are positive semidefinite by construction,
and even completely positive because 1P1

T
P ∈ C∗n ⊂ S∗n. It follows that

K ⊆ K∗2 ⊆ K+
2 ⊆ K2

where we defined K∗2 := K2 ∩ C∗n and K+
2 := K2 ∩ S+n . In fact, we next show

that the first inclusion holds with equality.
Optimization problems over C∗n are in general intractable, but the set of com-

pletely positive matrices can be approximated by simpler cones. In particular,
there exists several inner and outer nested approximation hierarchies converging
to C∗n, see e.g. [5, 8].

Theorem 3.2. A symmetric matrix X ∈ Sn is a flow matrix if and only if it
belongs to K2 and is completely positive, i.e., K = K∗2.

Proof. Let X ∈ K2, and assume that X ∈ C∗n, that is, X =
∑q
k=1(xk)(xk)T for

some vectors x1, . . . ,xq ∈ Rn+. We are going to prove that X ∈ K, which shows
K∗2 = K2 ∩ C∗n ⊆ K.

For all (i, k) ∈ {1, . . . , n} × {1, . . . , q}, denote by xki the ith element of xk,
and denote by xi the vector of dimension q with elements (x1i , . . . , x

q
i ). Observe

that Xij = xTi xj =
∑
k x

k
i x

k
j .

Consider a vertex v ∈ V \ {s}, and let i be an arc incident to v. We have
X ∈ K2, so the ith column of X is a flow of value Xii, and the amount of this
flow passing through vertex v cannot exceed Xii:∑

e∈δ−(v)

Xei ≤ Xii.6



Since i ∈ δ−(v) and the Xei’s are nonnegative, the inequality above must be an
equality. Hence,

∑
e∈δ−(v)\i

∑
k x

k
ex

k
i = 0. All terms of this sum are nonnega-

tive, which implies that xki x
k
j = 0 whenever two distinct arcs i and j are incident

to the same vertex v. To summarize, for all k and for all v ∈ V \ {s}, there
exists at most one arc e ∈ δ−(v) such that xke > 0. Similarly, for all v ∈ V \ {t}
there is at most one arc e ∈ δ+(v) satisfying xke > 0.

Now, consider a vertex v ∈ V \ {s, t}. We define K− =
{
k ∈ {1, . . . , q} :

∃e ∈ δ−(v) : xke > 0
}

and K+ =
{
k ∈ {1, . . . , q} : ∃e ∈ δ+(v) : xke > 0

}
. For

k ∈ K− (k ∈ K+) we denote by i−k (i+k ) the unique arc e ∈ δ−(v) (e ∈ δ+(v))
such that xke > 0. Let us write the flow conservation equation at v, for the flow
corresponding to the ith column of X:

∀i ∈ [N ],
∑

e∈δ−(v)

∑
k

xkex
k
i =

∑
e∈δ+(v)

∑
k

xkex
k
i .

For each k, each sum over e ∈ δ−(v) and e ∈ δ+(v) has at most one nonzero
term, so the equation simplifies to:

∀i ∈ [N ],
∑
k∈K−

xk
i−k
xki =

∑
k∈K+

xk
i+k
xki . (1)

Summing Eq. (1) over all i ∈ δ−(v) (respectively over i ∈ δ+(v)), we obtain:∑
k∈K−

(xk
i−k

)2 =
∑

k∈K−∩K+

xk
i+k
xk
i−k

=
∑
k∈K+

(xk
i+k

)2.

From the Cauchy-Schwarz inequality applied to the vectors u,v ∈ Rq, where
uk = xk

i−k
if k ∈ K− and uk = 0 otherwise, and vk = xk

i+k
if k ∈ K+ and

vk = 0 otherwise, we see that u = ±v. Since the xki ’s are nonnegative, we
have xk

i−k
= xk

i+k
for all k ∈ K+ = K−. From this, we deduce that for all k

the vector xk is a flow that is supported by a single (s, t)−path Pk (because
for each non-terminal vertex v,

∑
e∈δ− x

k
e = uk = vk =

∑
e∈δ+ x

k
e). Finally, we

have xk = fk1Pk
for some fk ≥ 0, and X =

∑
k f

2
k 1Pk

1TPk
∈ K.

4 Maximum flow problem with pairwise arc-
capacities

In this section, we present numerical results for a variant of the maximum flow
problem, in which, for all pairs (i, j) ∈ E × E, there is a paired capacity Cij
that limits the amount of flow sent across both arcs i and j. Such a problem
could arise in a telecommunication network with interference between the arcs
i and j. The Maximum Flow problem with Paired Arc-Capacities (MFPAC)
is to send the maximum amount of flow

∑
P∈P fP from s to t, subject to the

pairwise capacity constraints∑
{P∈P:i∈P,j∈P}

fP ≤ Cij(∀i, j ∈ E × E).
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When all paths can be enumerated, MFPAC can be formulated as the following
linear program (LP):

max
f∈R|P|+

∑
P∈P

fP (2)

s. t. X =
∑
P∈P

fP1P1
T
P ≤ C,

where the inequality X ≤ C is componentwise, i.e., Xij ≤ Cij . We can design a
column generation procedure to avoid the enumeration of all paths, but it can
be seen that the pricing problem reduces to solving a quadratic shortest path
problem. It is straightforward that MFPAC can be reformulated as a linear
optimization problem over K:

max
X∈Sn

∑
e∈δ+(s)

Xee

s. t. X ≤ C

X ∈ K.

We will use MFPAC as an example to test the quality of our approximation
hierarchies. In what follows, we solve the LP relaxations obtained by replac-
ing the constraint X ∈ K by X ∈ K2 or X ∈ K3, and the semidefinite pro-
gramming (SDP) relaxation obtained by using the constraint X ∈ K+

2 , that is,
X ∈ K2, X � 0. This gives upper bounds for Problem (2) that can be computed
in polynomial time. We solved instances on square (d = 2) and cubic(d = 3)
grids of size `, that is, a graph Gd,` = (V,E), where V = {1, . . . , `}d, and
E = {(u,v) ∈ V 2 : ‖u − v‖ = 1,v ≥ u}, as well as on the series-parallel
graphs H3,`, which are graphs with ` vertices and 3 parallel arcs from i to i+ 1
(i = 1, . . . , ` − 1). For Gd,` we set s = [1, . . . , 1] ∈ Rd and t = [`, . . . , `] ∈ Rd,
and for H3,`, the source is s = 1 and the sink t = `.

For each graph, we generated 20 random instances, corresponding to a ca-
pacity matrix C ∈ Sn whose diagonal elements are drawn from the uniform dis-
tribution U([0, 4]), and off-diagonal elements are drawn from U([0, 1]). Table 1
shows, for each graph and each relaxation, the number of instances for which the
relaxation yields the optimal solution. In the table, P/N means that we were
able to solve N relaxations out of the 20 instances (within a time-limit of 15
minutes, all failures were due to memory overflow), and P of them have no gap.
The other columns give the mean gap and the worse gap across the N solved re-
laxations, where the gap is defined as δ = val(relaxation)/ val(Problem (2))− 1,
where val(P ) denotes the optimal value of Problem P .

From the table, we see that K2 already yields pretty good upper bounds,
although the quality of the relaxation decreases as the graph grows. The approx-
imation based on K3 gives excellent results, especially for grid graphs, where it
almost always found the optimal solution. The non-polyhedral approximation
K+

2 is better than K2, but it is also much harder to solve, and it seems that
the approximation based on K3 is both superior and easier to solve. In future
work, we want to investigate decomposition methods to solve problems over K3

without the need of considering O(n3) variables.8



Instances without gap mean gap worse gap
Graph K2 K3 K+

2 K2 K3 K+
2 K2 K3 K+

2
G2,2 20/20 20/20 20/20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
G2,3 20/20 20/20 20/20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
G2,4 17/20 20/20 17/20 0.77% 0.00% 0.77% 7.75% 0.00% 7.75%
G2,5 10/20 13/14 7/13 2.98% 0.00% 1.81% 15.67% 0.05% 7.16%
G2,6 12/20 19/20 12/20 3.26% 0.01% 2.79% 11.94% 0.15% 10.88%
G2,7 7/20 20/20 7/20 5.29% 0.00% 4.75% 16.27% 0.00% 16.19%
G2,8 7/20 18/20 0/0 5.22% 0.08% – 27.15% 0.88% –
G2,9 9/20 0/0 0/0 3.44% – – 15.08% – –
G2,10 10/20 0/0 0/0 3.75% – – 17.39% – –

G3,2 20/20 20/20 20/20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
G3,3 15/20 16/16 13/16 0.46% 0.00% 0.49% 3.79% 0.00% 3.79%
G3,4 9/20 18/18 0/0 1.29% 0.00% – 8.96% 0.00% –
G3,5 19/20 0/0 0/0 0.07% – – 1.48% – –

H3,5 14/20 20/20 14/20 4.04% 0.00% 2.59% 27.26% 0.00% 14.19%
H3,6 8/20 19/20 8/20 5.29% 0.14% 4.72% 18.45% 2.75% 14.01%
H3,7 7/20 17/20 7/20 6.49% 0.39% 5.96% 28.87% 5.82% 25.85%
H3,8 7/20 18/20 7/20 6.10% 0.11% 4.50% 28.70% 1.93% 14.01%
H3,9 6/20 16/19 6/19 11.33% 0.31% 8.39% 37.79% 2.93% 23.21%
H3,10 2/20 17/20 2/20 13.69% 0.15% 9.95% 40.69% 2.09% 24.28%
H3,11 3/20 17/20 3/20 13.37% 0.36% 10.37% 41.17% 5.92% 28.41%
H3,12 5/20 18/20 5/20 11.18% 0.22% 7.61% 48.37% 2.92% 26.23%
H3,13 4/20 18/20 4/20 11.03% 0.19% 9.04% 40.88% 3.76% 28.20%

Table 1: Results for 20 instances of each considered graph. Each row gives the results for
three relaxations of the MFPAC problem (2), with K ∈ K replaced by K ∈ K2, K3, or K+

2 .
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