X XY\

v

X XX Y\

XXX
Y X X X3

>

4
>4
q

Takustr. 7
14195 Berlin
Germany

Zuse Institute Berlin

RICHARD HASENFELDER!, LUTZ LEHMANN, MANUEL RADONS2, TOM
STREUBEL?, CHRISTIAN STROHM?*, ANDREAS GRIEWANK?

Computational aspects of the Generalized
Trapezoidal Rule

0000-0001-9699-5054
0000-0003-4272-2493
0000-0003-4917-7977
0000-0002-8876-7120
0000-0001-9839-1473

(S I S R

ZIB Report 18-23 (May 2018)

https://orcid.org/0000-0001-9699-5054
https://orcid.org/0000-0003-4272-2493
https://orcid.org/0000-0003-4917-7977
https://orcid.org/0000-0002-8876-7120
https://orcid.org/0000-0001-9839-1473

Zuse Institute Berlin
Takustr. 7

14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Computational aspects of the Generalized Trapezoidal Rule

Richard Hasenfelder!, Lutz Lehmann®, Manuel Radons?, Tom Streubel® !, Christian
Strohm', and Andreas Griewank*

"Humboldt University of Berlin, Germany
2Technical University of Berlin, Germany
3Zuse Institute Berlin, Germany
4School of Information Sciences Yachaytech, Ecuador

May 9, 2018

Abstract

In this article we analyze a generalized trapezoidal rule for initial value problems
with piecewise smooth right hand side F' : R® — R™. When applied to such a problem,
the classical trapezoidal rule suffers from a loss of accuracy if the solution trajectory
intersects a non-differentiability of F'. In such a situation the investigated generalized
trapezoidal rule achieves a higher convergence order than the classical method. While
the asymptotic behavior of the generalized method was investigated in a previous work,
in the present article we develop the algorithmic structure for efficient implementation
strategies and estimate the actual computational cost of the latter. Moreover, energy
preservation of the generalized trapezoidal rule is proved for Hamiltonian systems with
piecewise linear right hand side.

Keywords Algorithmic Differentiation, Automatic Differentiation, Lipschitz Continuity,
Piecewise Linearization, Nonsmooth, Trapezoidal Rule, Implementation, Computational
Cost

MSC 2010 65L05, 65L06, 65L70, 65L99, 65P10

1 Introduction

Many realistic computer models are nondifferentiable in that the functional relation between
input and output variables is not smooth. It was shown in [5, 8] that algorithmic piecewise
linearization, which is a generalized form of algorithmic differentiation (AD), can be used to
obtain piecewise linear models that approximate an underlying piecewise smooth function
locally with second order error. In a number of recently developed algorithms that deal with

nonsmooth problems — e.g. Newton methods for piecewise smooth nonlinear systems [8] or
solvers for ordinary differential equations (ODEs) with piecewise smooth right hand side [7]
— these piecewise linear approximations take over the roles that local linear approximations
have in the methods for the globally differentiable case.

In this article we focus on the analysis of implementational aspects of the generalized
trapezoidal rule for initial value problems with piecewise smooth right hand side F' : R™ —
R™ that was developed in [5] and analyzed in [7]. In [5] and [7] the following problem is
considered: Let

i(t) = Fxt)), 2(0) = o, (1)
be an initial value problem for an autonomous ODE, where F' : R™ — R" is assumed to be
locally Lipschitz continuous. It is well known that this system has a unique local solution
up to some time ¢ > 0. For a time-step h > 0 the exact solution of (1) satisfies

h
T =2z +/0 F(z(t))dt,

with & = z(h) and & = xg. In general the integral cannot be evaluated exactly.

In the derivation of the classical trapezoidal rule a linear approximation of the right
hand side is utilized. The integration of these approximations yields a third order local
truncation error if F' is smooth. If F' is only Lipschitz continuous, the truncation error will
drop to second order where the solution trajectory intersects a nondifferentiability.

The key idea in [7] to reestablish a third order truncation error everywhere is to approxi-
mate F' by a piecewise linear function that reflects the structure of the nondifferentiabilities
of F'. Employing this approach allowed to construct a generalized trapezoidal rule with the
following major benefits:

e Second order convergence is achieved in general and third order via Richardson ex-
trapolation along solution trajectories with finitely many kink locations.

e A third order interpolating polynomial as continuous approximation of the trajectory
is given.

Moreover, it was suggested that the method is energy preserving for Hamiltonian systems
with piecewise linear right hand side. The latter is now formally proved in Section 3.
However, the main result of this article concerns implementational aspects. To achieve
a predefined approximation error, the generalized trapezoidal rule needs fewer steps than
the classical method. But, if implemented naively, these steps are computationally more
expensive than those of the classical method, which essentially equalizes the advantage
of the generalized method’s higher convergence order. In Section 4 we present efficient
implementation strategies for the generalized trapezoidal rule, through which its overall
computational effort can be pushed below that of the classical method. The theoretical
results will be validated numerically in Section 5. More specifically, in addition to an ODE
example we will consider the application to semi-explicit DAE system and a finite volume
discretized PDE system. A brief introduction to the necessary terminology is given in
Section 2.

2 Algorithmic Piecewise Differentiation

In this section we will present the tangent and secant linearization modes which were de-
veloped and analyzed in [5] and [7], respectively.

(a) Tangent Mode Linearization (b) Secant Mode Linearization

Figure 1: Piecewise linearization modes

2.1 Piecewise Linear Functions

Definition 2.1. A continuous function F' : R™ — R™ is called piecewise linear if there
exists a finite number of affine selection functions F; : R™ — R™ such that at any given
x € R™ there exists at least one index i with F(x) = F;(x).

Let the index set I = {1,...,k} of the selection functions be given. According to [13,
Prop. 2.2.2] we can find subsets Mj, ..., M; C I such that a scalar valued piecewise linear
function f can be represented as

f(x) = max min f;(x).
This concept, which is called max-min representation, naturally carries over to vector
valued functions F', where we can find such a decomposition for every component of the
image. The special type of piecewise linear functions that will be utilized here will naturally
have this representation.
Note that piecewise linear functions are globally Lipschitz continuous. For a further
discussion of their properties we refer to [13].

2.2 Piecewise Linearization of Piecewise Composite Smooth Functions

Next we consider continuous, piecewise differentiable functions F' that can be computed by
a finite program called an evaluation procedure. An evaluation procedure is a composition
of so-called elementary functions which make up the atomic constituents of more complex

functions. Basically, the selection of elementary functions for the library is arbitrary, as
long as they comply with assumption (ED) (elementary differentiability, in [6]), meaning
that they are at least once Lipschitz-continuously differentiable on their valid open domains.
Common examples are:

® = {+,—, %, /,sin,cos, tan, cot, exp,log,...}.

In our case, we will allow the evaluation procedure of F' : D C R™ — R™ to contain,
in addition to the usual smooth elementary functions, the absolute value abs(x) = |z|, i.e.,
our library is of the form

o = & U {abs}.

abs

Consequently, we can also handle the maximum and minimum of two values via the repre-
sentation

max(u,v) = (u+v+|u—0o])/2, min(u,v) = (u+v—|u—1v|)/2.

We call the resulting functions piecewise composite smooth (PCS). These functions are
locally Lipschitz continuous and almost everywhere differentiable in the classical sense.
Furthermore, they are differentiable in the sense of Bouligand and Clarke, cf. [2]. The
evaluation procedure of y = F(x) can be interpreted as a directed, acyclic graph from
x = (V1—n, .-, 00) t0 ¥y = (Vj_m+1,---,v;), Where the intermediate values v;,i = 1,...,1 are
computed by binary operations v; = v; o vy with o € {4+, —,*} and v;,v; < v; or unary
functions v; = ¢;(v;) with v; < v;, where ¢; € ®,p. The relation < represents the data
dependence in the graph of the evaluation procedure, which must be acyclic.

We now want to compute an incremental approximation Ay = AF(%; Ax) to F(z +
Azx) — F(z) = F(z) — F(2) at a given & and for a variable increment Az = z — 2. As-
suming that all functions other than the absolute value are differentiable, we introduce the
propagation rules

Av; = Av; = Avy, for 0; = v; &+ vy,
Avi:ﬁj*Avk—i-AUj*ﬁk fOI"DZ':f}j*’Dk,
AUZ' = éijAUj with 5@' = g@l(ij) for 731 = QDZ(IO)]) 75 abs(~) s
Av; = abs(v; + Avj) — abs(v;) for v; = abs(v;) .

(2)

Whenever F' is globally differentiable or even more when it complies to assumption (ED)
(i.e., there are no abs calls in the evaluating procedure) we get Ay = F'(z)Ax, where
F'(z) = %F(i’) € R™*™ is the Jacobian matrix.

Note that the propagation rules (2) rely on the so-called tangent approximation of F
at a certain point #. However, there are applications of piecewise linearization (especially
concerning ODE integration) where one wants to consider approximations of F' based on
secants. Given two points &, % we compute & = (# + 2)/2 and F = (F(Z) + F(#))/2. Now
we consider the secant approximation of F':

F(z) ~ F + AF(&, 20 —). (3)

In order to utilize AD for the algorithmic computation of the secant approximation in
(3) we observe that in (2) the intermediate values can be regarded as functions evaluated
at the unique reference point z, with v; = v;(z). Now consider as this reference point the
midpoint Z = (& + 2)/2 such that the intermediate values are

Replacing ¢; in (2) with this expression based on # and &, we observe that the first and
second line are the same for the secant linearization. The third line has to be changed
slightly, since the tangent slope ¢;; has to be replaced by the secant slope

PO T
éi]‘ = U — Uj (4)

otherwise

Uj—’l)j

The last rule is left unchanged except that now v; = (0; + 0;)/2 = (|v] + |0])/2. Note
that, if # = 2, we obtain AF(2,x — %) = AF(&,2;2 —). A complete discussion on
this implementation topic can be found in [8, Sec. 7]. Additionally, a division-free and thus
numerically stable implementation is discussed in [8, Section 6]. Both piecewise linearization
methods yield a second order local fit and are Lipschitz continuous with respect to variations
of the development point, cf [8, Prop. 2.1].

And once again if F' complies to assumption (ED) (i.e. it consists of operations from
the library of smooth operations ® only) the piecewise linear secant increment coincides
with a matrix-vector product of a propagated secant matrix VﬁF and a direction, i.e.
AF(2,@;0 — %) = VIF - (v — 2). Propagated secant matrix means that its entries are
calculated with the table of rules (2) and using the secant slope formula (4) for ¢;;.

2.3 The Abs-Normal Form

Let F': R"™ — R™ be an evaluation procedure consisting of operations ®,;.. Then there
are smooth vector valued evaluation procedures G : R" x R®* — R¥ and F': R" x R® — R™
of operations in ® and hence complying (ED), such that F' can be expressed as follows:

z = Gz |z])

- (5)

F(z) = F(x,]z]),
and such that the partial derivative matrix %G(x, |z|) is strictly lower triangular as a
consequence of the acyclic graph representation of . Applying an Taylor Expansion scheme
on (5) up to a first order we obtain

I et et B

The system (6) is a piecewise linear operator mapping x € R" to y € R via intermediate
vector switching variables z € R®. Hence, it can be considered as a piecewise linearization
of Fin that y = F(2) + AF(2; 2 —) holds.

With Z = a%G, L= %G, J = B%F, Y = %F as well as vectors ¢ = G(z,|2|) — L|Z|

and b = F(z,|2]) —Y|z|, the system (6) is brought into the so called abs-normal form (ANF)

as studied e.g. in [9]:
m - [Z] " [? SI;] ' [xlgﬂ : (7)

The ANF is a block matrix and a block vector that allows for a compact and easy-to-evaluate
representation of the polyhedral structure inherent to the piecewise linearization.

Similar to the tangent case an order 1 or linear expansion of the elementary differentiable
functions G and F' can be applied in the sense of secant linearization as defined by the table
of rules (2) and the secant slope formula (4) for ¢;;. Thus again, by introducing vectors
c € R% b e R™ and matrices Z € R¥*™, [€ R%*5 J € R™*" Y € R™*s:

c=G-L-|GleR’, b=F-Y-[FleR™, [Z L=V, G, [JY]=VyF,
where G = (G(&, |3]) + G(#,2]))/2, F = (F(&, |3|) + F(&,|2]))/2 and & = (& + 2)/2 we can
define a secant piecewise linear operator in ANF (7).

3 Generalized Trapezoidal Rule

For the generalization of the trapezoidal rule, the linearization mode of choice is the secant
mode. The construction largely follows the classical case (see, e.g. [1]) where the integrand
y(t) = F(x(t)) is replaced by a linear secant interpolant of y(f) and y(f) = y(f + h).
Instead of choosing a linear approximation of the right-hand-side’s (RHS) function we utilize
a piecewise linear secant interpolation. By doing so, we arrive at the following defining
equation, which was introduced by Griewank in [5]:

1
f—fc:hQF:h/2

_1

[ﬁ +AF(3, 25 4(3 — £))] dt (8)

N

where % is the current and & the next point on the numerical trajectory. The restriction
of AF to the segment [#,%] = {# + 7(Z — &) | 7 € [-1/2,1/2]} defines a subdivision

-1/2 =1 <7n < --- <7, = 1/2 of the parameter interval so that the function ¢t
AF(%,z,t(Z —)) is linear on each of the sub-intervals [r;_1, 7], ¢ = 1,...,u. We call the
p — 1 sub-division points 71,...,7,-1 critical multipliers. Each kink of the piecewise linear

interpolation corresponds to one of the critical multipliers.
The piecewise linear quadrature on the right hand side of equation (8) is then a sum of
areas of trapezoids:
H ALF SR N oA N
F+F AF (&, 7@ —2)+AF (2,271 — %
QF = Z(Ti_'rifl) 5 () Z()) (sy e ())

i=1

This generalization has the property of preserving the third order local truncation error
of the classical trapezoidal rule. By implementing Richardson extrapolation, one can even
achieve a third order global convergence order compared to the second order global error of
the classical method [7].

3.1 Energy Preservation

The following statement was conjectured but not proved in [7].

Proposition 3.1. The generalized trapezoidal rule is energy preserving for Hamiltonian
systems with piecewise linear right hand side. Generally for any vector field F that can
be written as F(x) = AVV(x) with a skew-symmetric matriz A the integral curves will
preserve the value of the function V. If again F is also piecewise linear, V is also preserved
under the generalized trapezoidal rule.

Proof. We know that for a piecewise linear right hand side F' the generalized trapezoidal
rule simplifies as follows

1 R 1
i—F = h/o P@IFE) | AF(#, @ (r — Y[z — &))dr = h/o F((1 = 7)i + 7é)dr,

since a piecewise linear function is its own secant piecewise linearization w.r.t. (3). Now we
can proceed as in [12], set AV (%,2) = fol VV((1 —7)% + 7&)dr and observe that

V(z) V(@) = AV(E,2)" (2 —2) = AV(#,2)" hAAV (&%) = 0. (10)
This completes the proof. O

3.2 Implementation Strategies

To implement the implicit method & — & = hQr (%, Z) there are two main strategies, whose
merits strongly depend on the system type which is to be solved.

Fixed Point Approach

The direct implementation as the fixed-point iteration
iﬂm—‘rl = I+ hQF(f, jm) (11)

has the advantage that it can be realized without explicit computation of the ANF, since
the only requirement for its realization is to calculate the critical multipliers. This is pre-
sented in Section 4.2. The upside of this ansatz is that the cost of up to 3(n + s) function
evaluations for the calculation of the ANF is saved, which is especially advantageous for
high-dimensional problems. The downside is the linear convergence rate of O(h) with a
possibly small convergence radius.

Newton Approach

The Newton-based approach transfers a large part of the right hand side to the left, that
is, it solves a linearization in Zy,41 of

F(#) + Flims) F&) + Flim)

Tmt1 — R 5 = hQp(Z,&m) —h 5 (12)
The piecewise linearization has the form
) hogon o g
Tm+1 — §<>QF(:Em+1) = hQF(:Ea xm) - §<>QF($m) . (13)

The most natural choices for the basis points are (¢,9) = (Z, &) in tangent mode where the
linearization is computed once per integration step, and (7,9) = (&, Z,,) in secant mode
where one would have to renew the piecewise linearization in each iteration. In the tangent
variant, the critical multipliers are computed using the cheaper ANF-free ELEMOP while in
the secant case the ANF can also be used for this purpose, as will be explained in Section 4.1.
Since the basis points are in close proximity and both piecewise linearization modes yield
quadratic approximations, both Newton-type methods produce comparable results in terms
of runtime and accuracy.

Comparison of Fixed Point and Newton Approach on Toy Example

In order to obtain an intuition for merits and limitations of both the fixed point and the
Newton approach we compare them on a toy example, the ODE

&t = F(x) = max(1,x).

As the right side is itself already piecewise linear, all piecewise linearizations are identical
to it. The Lipschitz constant is Sp = 1, so that the first estimate for admissible step sizes
based on the standard trapezoidal rule gives h < ﬂ% = 2. Let a € [0,1]. Setting the initial
point

z(0) = & = 1—ah

to the left of the kink so that the step with size h traverses it, one finds that the initial
error of o =& + h is

%(1 —a)?h? + O(h?).

The contraction constant for the fixed point iteration corrector is about ¢ = %(1 —a?) €
O(h), providing convergence independently of a € [0,1] for h < 2. The Newton corrector
also has linear convergence with a contraction coefficient ¢ = —ﬁaQ which will only
converge independently of a € [0, 1] if A < 1, which is half the step size bound of the fixed
point method.

o . . 3
The combination of one predictor and one corrector step has an error estimate of hz(l —

a)?(1+a) for the direct method and — %cﬁ(l—a)z for the Newton method. The latter error

. .. : . 3 .
term is more balanced for variations of @ with a maximum value of m while the error

term of the fixed point method has a maximum for a = 0 of %3. So, while both approaches,
fixed point and Newton, display the same order of convergence, the Newton-type iteration
has a significantly smaller error term. Throughout the experiments presented in Section 5
this will result in the observation that in those cases where it is computationally feasible
to compute the ANF, the Newton-type iteration outperforms its fixed point counterpart,
while the fixed point approach is superior when there are many switching variables and thus
a large ANF.

Both variants can be extended for the solution of index-1 semi-explicit DAEs by in-
cluding the algebraic part of the system in the piecewise linearization and its subsequent
solution process.

4 Implementation Details

In the following we will describe the structure of the classic and the generalized trapezoidal
rule. Pseudo-code is given for both of them in Algorithm 1 and 2. The generalized solver
is also depicted in Figure 2.

Yy = PROPAGATE_ELEMOP(F, Z, %)
Tnew = & + INTEGRATE(y) - h

err = ||@new — 2|

& = Tnew
k=k+1

inner loop

Figure 3: Inner loop with fixed-point
Figure 2: Structure of the Generalized solver

Solver

Firstly, one has to discretize the time interval. This can be done uniformly or adaptively.
The discretization along with the RHS function F' and the initial value(s) z¢ are the minimal
necessary input for both solvers. It should be noted here that the classical rule can be
applied to any black-box function, whereas the generalized trapezoidal rule can be applied
to evaluation graphs of PCS functions only.

Now both algorithms have to produce a point on the numerical trajectory & correspond-
ing to each time step. We will call the iteration over all time steps the outer loop. To

Algorithm 1 Classical Solver

1: I‘[O] =Xy

2: fort:=0to N —1do

3: T = zli]

4 =2+ hf(z)

5 while err > tolerance AND cnt++ < max_cnt do
6: Fnew = & + HLEEE)
7: err = ||Tnew — |

3 T = -%new

9 end while
10: zi+1] =2
11: end for

Euler step

Trapezoidal Rule

Algorithm 2 ANF-free Solver

1: x[O]:wo
2: fori=0to N —-1do

3: T = .’E[Z]

4: T =%+ hf(2)

5: while err > tolerance AND cnt++ < max_cnt do
6: Yy = PROPAGATE_ELEMOP(F, Z, &)

T Znew = @ + h - INTEGRATE(Yy)

8: err = ||Tpew — |

9: T = Tnew
10: end while
11: zi+1] =2
12: end for

Euler step

Gen. Trapezoidal Rule

10

Algorithm 3 Secant ANF Solver

1: .%'[0]:1'0
2: fori=0to N —1do

3: T = x[i]
4: T =%+ hf(2) Euler step
5: while err > tolerance AND cnt++ < max_cnt do
6: Yy = PROPAGATE_ELEMOP(F, Z, &)
7: integ = INTEGRATE(Y)
8: F= F(%)
9: F = F(&)
10 function RES_FUNC(x)
11: return v — i — &(F(z) — F) — (2 integ — (F + F))
12: end function
13: ANFinstance = CREATEANF (res_func, 7, %)
14: Znew = SOLVE(ANFinstance, 2)
15: err = ||Tpew — |
16: T = Tnew
17 end while
18: zi+1] =2
19: end for

Algorithm 4 Tangent ANF Solver

1: l‘[O]:ZL'O
2: fori=0to N —-1do

3: T = x[i
4: T =I+ hf(.f') Euler step
5: while err > tolerance AND cnt++ < max_cnt do
6: Yy = PROPAGATE_ELEMOP(F, &, &)
7: integ = INTEGRATE(y)
8: F= F(i’)
9: F = F(&)
10: function RES_FUNC(z)
11: return z — & — %(F(z) — F) — (2 - integ — (F + F))
12: end function
13: ANFinstance = CREATEANF (res_func, &)
14: Znew = SOLVE(ANFinstance,)
15: err = ||Znew — Z|
16: T = Tnew
17: end while
18: zi+1] =2
19: end for

11

Y = PROPAGATE_ELEMOP(F, Z, &) | ! Y = PROPAGATE_ELEMOP(F, &, F)
I

integ = &+ INTEGRATE(y) - h ! i integ = &+ INTEGRATE(y) - h
P =F@) ! P =F@)
P =F@) | P =F@)

function RES_FUNC(z) function RES_FUNC(z)
h

I | 3 !
return x — & — %(F(z) —F) | return = — & — 3 (F(z) — F)
— (2 integ — (F + F)) — (2 integ — (F + F))

yes l 3 i yes l

ANFinstance = CREATEANF (RES_FUNC, Z) ' 1 ANFinstance = CREATEANF(RES_FUNC, &, &)
Erew = soLvE(ANFinstance,) ! Fnew = soLvE(ANFinstance, &)

— [[@new — 3l | | S

Figure 4: Inner loop with fixed-point Figure 5: Inner loop with fixed-point
solver solver

calculate &, we have to solve an implicit problem and we do this by utilizing a fixed-point
iteration scheme. An explicit Euler step predicts the next location of Z which is then
corrected with one or several iterations of the generalized trapezoidal rule. We call this
iteration the inner loop.

4.1 Calculation of Critical Multipliers and Integration using the ANF

If we have already created an ANF we can use it for both function evaluations of the
piecewise linear secant model of F', as well as the calculation of critical multipliers.
As the core task for that purpose we determine, for a given line from x in direction dzx,
the largest segment [—1,7] so that ¢ — F + AF(&,&; x — &+t 0x) is linear on that segment.
On the segment [—%, 7] the internal functions z; of the ANF are all linear. Hence, they
can be expressed as
2i(t) = Zi+tdz for0<t<rT.

The term dz is the directional derivative of z(t) at ¢t = —1/2 and can be derived by
dzj = Zjox+ Ljodz for1 <j<s,

where o; = sign(z;) if z; # 0 and else o; = sign(dz;). During computation the second
division-free formula from [8, Section 6] will be used. Linearity remains preserved as long
as none of the functions z; + tdz; change sign. Thus 7 has to be chosen as the smallest

positive element among the fractions —%, i1=1,...,s.

12

To determine the critical multipliers, apply this procedure to x = & and dz = Z — &
to get 11 = 190 + 7 = 7 — 1/2. Next increment x to z + 710z and repeat the procedure to
determine 7 = 7 + 7 by calculating a new J§z and finding the smallest 7 with the same
formula. This is repeated until the upper boundary 7,1 + 7 > 1/2 is reached or surpassed
in step 4. Then set y =4 and 7, = 1/2.

If there are no nested absolute values, i.e. if no absolute value depends on another one,
or L = 0, the list of fractions —% - 5% already contains all possible candidates for critical
multipliers in the first step. It only remains to filter this list for values inside (—1/2,1/2).

In the worst case, where each z; depends on |z;_1|, that is, the absolute values are
maximally nested, this leads to a computational cost that is exponential in the number of
the absolute values occurring in the computational graph. Every z;(t) as evaluated on the
line x+t dz is a piecewise linear function that can consist of up to 2/ ! linear segments. Each
segment can contain a root so that in constructing |z;(¢)| the number of linear segments is
doubled.

However, for practical problems this is almost never the case, since in most practical
examples there are no nested absolute values and even if there are, one very rarely encounters
more than one absolute value per & to Z interval. Thus the worst case computational cost
will rarely occur, the average number of passes through the ANF to determine the critical
multipliers is close to 1. Consequently, the computational cost of one iteration of the inner
loop will be a small multiple of a function evaluation.

We can now calculate critical multipliers and integrate in parallel. We calculate the first
critical multiplier, use it to get the first summand of (9), update the evaluation point and
repeat until 4 = p. This procedure is shown in Algorithm 5.

4.2 ANF-free Calculation of Critical Multipliers and Integration

Consider the evaluation graph of a PCS system function of an ODE: F': R™ — R", as well
as a reference point # € R and let F : R"™$ — R*™" be the smooth vertical concatenation
of G : R"* — R® and F : R"** — R” from the nonlinear ANF representation (5) of
F. From [6] follows that the costs of calculating a single column of the Jacobian-matrix by
techniques of AD of F is bounded by 2 up to 3 times the costs of a single function evaluation
of the concatenation F. Thus the costs of computing the ANF of the piecewise linearization
of F is bounded by and often close to 3(n+ s) times the costs of a single function evaluation
of F. So, using the full ANF to compute a step of the generalized trapezoidal rule is
quite costly, even if no kink occurs within one step from & to Z. Because then p = 1 and
the ordered list of critical multipliers only consists of its bounds: —1/2 = 79 < 71 = 1/2.
Consequently, equation (9) simplifies to the classic trapezoidal rule Qr = (F +F) /2 because
AF(%,&; (& — %)/2) = —AF(&,&; —(& — £)/2) = (F — F)/2. The latter follows from the
secant condition F' = F' + AF (&, &; (& — &)/2), where F = (F + F)/2.

We will now outline an efficient, ANF-free implementation. To that end we define a class
called ELEMOP which represents a piecewise linear function over the segment [—1/2,1/2]
that is propagated through the elementary operations making up the function F' via operator
overloading, similar to other direct-forward methods of AD. It consists of an ordered array

13

Algorithm 5 integration using ANF
function INTEGRATE
dx=2—1

1:

2

3 T =T

4 z = CALC_Z(x)
5: Yold = EVALANF(SU)
6

7

8

9

result =0
T=-1/2
repeat integrate from kink to kink
: Thnew = 1 marks the kink to be found
10: for i =0,s—1do find the next kink
11: if z; # 0 then
12: o; = sign(z;)
13: else
14: o; = sign(dz;)
15: end if ‘
16: 0z; = Z?:l Zij . 5$j + Z;;ll Lij . O'j52j
17: if —5= € [0, Thew then
18: Tnew = — 5o
19: end if
20: end for
21: if 7+ Thew > 0.5 then check if kink is relevant
22: Thew = 0.5 — T
23: 7T=0.5
24: else
25: T =T + Tnew
26: end if
27: T =X+ Thew * 0T
28: z = CALC_Z(x)
29: y = EVALANF(z)
30: result = result + £ (yo1q +)
31 0Yold = 0y
32: until 7 > %
33: return A - result

34: end function

14

of length p+1 containing all critical multipliers —1/2 = 79 <7 < --- < 7, = 1/2 as defined
in section 3 as well as two arrays @ = (o, ...,%u—1) and @ = (o, ..., 0,—1) of length p.
The k™ entries 4y, and iy, represent values at —1/2 and 1/2 of the active linear function on
the k' segment [73, 741 1], that is, the represented function is

u(t) = uk(t) = (%-t)ﬂk—F(%—Ft)’ELk for te[Tk,Tk+1].

Rules for the forward propagation of ELEMOP objects w.r.t. to the secant piecewise lin-
earization can be found in the appendix of this paper. Algorithm 6 is a function that allows
to integrate ELEMOP objects over their compact domain [—1/2,1/2] C R as it is called from
Algorithm 2 or in Fig. 2.

To integrate a function given by this data structure, according to formula (9), we com-
pute its trapezoidal sum as

pl Ty + 1, Tii1+ T
Qu = Z(—— Z+12 l(ﬁz‘—ﬂi)> (Tiv1 — i) (14)

Algorithm 6 integration/quadrature: @, = f_l{% w4 Au(Z, &t - Ax)dt

Require: u,1, 7,
Ensure: @,
1: fy, = LEN(Ty,)
2: Qy, =0
3: for i, =0,1,2,...,u, — 1 do
40w = (Ufiy] + 0fiy))/2
5 Au = Ufiy] — @fiy]
6 Qu += (Tuliu + 1] = Tu[iu]) - (G + Au - (7[iy + 1] + 7[iu]) /2)
7: end for

4.3 Solving a Semi-Explicit Index-1 DAE

In addition to normal ODE systems we can use the generalized trapezoidal rule to solve
DAE systems in semi-explicit form of differentiation index 1. These are systems of the form

.’L’&(t) = F(xlva)v (15)
0 = G(.Tl,xg), (16)

where F': R+l 5 R™ and G: R*™™*! — R™ and the partial derivative d,,G(x1,z2) is
regular. In contrast to an explicit DAE where the differential and algebraic variables 1 and
x9 are separated, this system cannot be integrated directly. Assuming that the state (Z1, Z2)
is consistent (within the error bounds) the next state (Z1,Z2) is computed as solution of

15

the system

1 :.fi'l+hQF((i1,i’2),(§71,iﬁ'2)), (17)
0 = G(21,22), (18)

To solve this with the Newton iteration in secant mode, in step m the piecewise linear secant
approximations ¢ F" and QG are computed for the basis points (1, #2) and (Z1,m, Z2,m). Now
integrate O F' over the segment between the basis points and set b = Qp((%1, Z2) , (£1,22)) —
%OF(.%Lm, Zg,m). Finally the new points 21,41 and 22,41 are computed as the solution
of the piecewise linear system

. h . . y
Tim+1 — §<>F(961,m+1,902,m+1) =I1+hb, (19)

OG(Z1,m+1,Z2,m+1) = 0. (20)

The necessary changes to the solver are illustrated in pseudo-code in Algorithm 7.

Algorithm 7 Generalized Solver for semi-explicit DAE
1: 1‘1[0] = l’é
2: 2%[0] = 3
3: fori=0to N —1do

4: gl = 371[1]
5: 2 = SL‘Q[’L]
6: (#',2%) = cALc_EULER(F, G, &', #?) Euler step in F, solve G for 42
7: while err > tolerance AND cnt++ < max_cnt do
8: y = PROPAGATE_ELEMOP(F, (21, #2), (&', 22))
9: integ = INTEGRATE(y)
10: F= F(il v2) both are
11: F F(1 A2) components of y
12: function RES_ FUNC(a: ,1‘2)
13: return (2! — 3! — 4 (F(= — 2 - integ — F) G(zt,2%))
14: end function
15: ANFinstance = CREATEANF (res_func, (:E1 i?), (21, 2%))
16: (2}, 22.,) = SOLVE(ANFinstance, (7!, 3?))
17: err = ||(#hews 3 2new) — (2, 27)]|
18: (@ ! A2) - (i"%zewuignew)
19: end While
20: i +1] =2t
21: z%[i+ 1] = 42
22: end for

16

5 Numerical Results

In this section we will, for three concrete examples, compare the computational cost of the
generalized methods to that of the classical trapezoidal rule. As a measure of computational
cost we will use the number of function evaluations accumulated by each method. For the
sake of simplicity, we use a constant step size for each of the methods. In order to obtain
comparable results, extrapolation has to be applicable to each method. Thus we match the
generalized methods against a classical trapezoidal rule with event detection. Note however,
that some methods are not fully comparable since the ANF-free fixed point approach and
the Newton-type iterations using the ANF have different fields of application. This can be
seen in the numerical experiments performed below.

The ANF-free method will be compared to a classical trapezoidal rule for all examples.
The first example has the feature that a wide range of step sizes leads to a solution when
applying the Newton-type iterations, which is why the latter’s costs were investigated for
different values of h. In the cardiovascular example the range of feasible step sizes is
much narrower, so that we omitted the test for different step sizes and instead performed
an additional experiment with a classical trapezoidal rule utilizing a classical Newtons
method with a full Jacobian in the inner loop. The shallow water example presents yet
another situation due to the large number of events in the solution paths. Here the cost
of evaluating the event function dominates the overall cost of the classical methods, which
leads to a significant advantage of the ANF-free fixed point approach. The Newton-type
approaches using the ANF turn out to be virtually infeasible due to the cost of computing
the full ANF.

There are several parts of each of the algorithms that require function evaluations. The
first one is the computation of the initial Euler guess which is identical for each method.
Another part is the integration step. For the trapezoidal rule it always requires two function
evaluations. The generalized rules use a single propagation of one ELEMOP object. The
cost of such a propagation can be assessed as follows: The piecewise linearization has two
development points & and . Every elementary function in the computational graph has to
be evaluated once for each of these points. The total amount of machine instructions is thus
virtually identical to that of two function evaluations. The methods using the ANF require
function evaluations for the derivation of the ANF on top of that. The computational cost
is similar to that of computing a Jacobian matrix using AD. We need a single forward
evaluation per row of the ANF wich can be bounded by roughly two function evaluations
[6]. The number of rows in the ANF equals the dimension n of the RHS F' plus the number
of absolute values s. Thus the tangent ANF needs 2 - (n + s) function evaluations while the
secant ANF needs 2-2 - (n + s), because it has two development points.

For the event detection it is necessary to approximate the event location, i.e., the root
of the event function. This can be accomplished by using any type of bisection or secant
method. In our implementation, a Brent’s method is employed. The evaluation cost for the
event function is usually different from the RHS evaluation cost. To have a sharp estimate
of the difference one would need to count evaluations of elementary functions for RHS

17

and event function and convert them into the corresponding number of memory accesses
for a modern CPU. For the examples discussed below, the evaluation cost of the event
function ranges from very cheap for Example 5.1 to comparable to an evaluation of the
RHS function in Example 5.3. In neither of the examples event function evaluations are
scale-tipping in the that a precise estimate of their cost would change the overall result.
Thus they are not converted but documented in parallel to the RHS evaluations. Since
the components of the event function have to be tracked separately, we chose to take an
average over all components to give an approximation of the full event function evaluations.
Note further, that, in addition to the evaluation of the event function, event handling needs
additional integrations to evaluate at approximated event locations. This usually dominates
the computational cost of event handling. For context on event detection, cf. [3, 14].

When solving a semi-explicit DAE system, the new point & has to be derived as the root
of a nonlinear equation system after each integration. This is accomplished in the usual
way by employing a suitable type of root-finding algorithm. Below, the root algorithm of
the SciPy package is used.

5.1 LC Circuit with Diode

As a first sample application we reprise a problem previously investigated in [7], which
resembles problems arising in actual applications. We take a simple LC-circuit and replace
the resistor with a diode, providing an element which causes a nondifferentiable impact on
the equations describing the system. Figure 6 depicts the circuit.

Figure 6: Circuit Diagram

It is modeled by the following system of ODEs, where z; represents the time, x5 repre-
sents the charge (at the capacitor) and x5 represents the electric current in the circuit:

i 1
iy | = F(z) = 3 ' 21
i3 —(z2 = C-V(x1) + 9(C3)) 1

Here V(x1) := sin(wz1) is the forcing current and g(z) models the diode (for small currents)

18

in the piecewise linear form

ﬂ@-—z¥4+zif|—{

We consider a set of constants similar to those occurring in actual electric circuits:

ifz>0
ifz<0

@l Q |w

L =1°% ¢ =101 w=23-10° a=2 g = 0.00001.

Moreover, we set the initial values to z1(0) = 22(0) = x3(0) = 0. The result of the numerical

1074 10713
di — 1) | —Qw
1.5 *
) N
1| N
1 N
0.5} s
0 N
| | | 0 | | |
0 0.5 1 1.5 0 0.5 1 1.5
1078 108
(a) Current (b) Charge

Figure 7: Solution of the ODE System

integration solution of (21) is depicted in Figure 7, (a) and (b). As one can see, the capacitor
is initially charged over one cycle and discharged over a few more, before the solution adopts
a periodic behavior. The solution trajectory changes its behavior every time the current
changes its sign.

Comparison Results

For our comparison we chose the time interval I = [to, T], where tg = 0, and T' = 2.5-107%,
and an initial value xo = (0,0,0)". We calculated 10,000 steps, resulting in a (uniform) step
size of h = 2.5 - 10~'2. Additionally, the two methods using the ANF were also computed
with 500 steps. For this step size the ANF-free algorithm does not converge. Figure 8
depicts the 19 events occurring in the given time interval I.

Table 9 displays the number of function evaluations for each of the methods. We denote
by EULER the number of function evaluations during the Euler guess, and by INTEG and
EVENT the function evaluations due to integration and event detection, respectively. For

19

0.00030 A
— I(t)

® Event locations
0.00025 A — [(t)=0, real event location

0.00020 ~

0.00015 A

0.00010 -

0.00005 ~

0.00000

0.0 0.5 1.0 1.5 2.0 2.5
le—-8

Figure 8: Numerical Solution with Event Locations

this example there is only a single absolute value and thus evaluating the event function
is significantly cheaper than evaluating the RHS. The function evaluations for deriving the
ANF are denoted by ANF.

In Table 9 it can be seen that the classical method is slightly more expensive than
the ANF-free method, but — especially given the cheap event function — they are almost
identical. This is due to the fact that this example is a stiff system and has an almost
negligible amount of kinks and thus the impact of the nondifferentiabilities is minimal. If
the same step size is employed, the Newton-type iterations using the ANF are 2-3 times as
expensive both the ANF-free and the classical method. However, these methods already
converge for much larger step sizes. For 500 steps only the Newton-type iterations succeed
in producing a solution. At this setting they are several times cheaper than the classical
and the ANF-free method. Unfortunately though, it is very hard to tell for which choice of
step sizes ANF-free and ANF-utilizing methods produce a result of similar accuracy.

5.2 Human Cardiovascular System

The example in this section is based on the lumped-parameter model of the human cardio-
vascular system from [11]. Further informations complying with the model given here can

20

Classical | ANF-free | Secant Tangent | Secant Tangent

10° steps | 10° steps | 10° steps | 10° steps | 500 steps | 500 steps
EULER 10,020 10,000 10,000 10,000 500 500
INTEG 109,064 108,828 40,096 40,134 2,394 6,436
EVENT 20,063 0 0 0 0 0
ANF 0 0 320,768 160,536 19,152 25,744
TOTAL 119,084 118,828 370,864 | 210,670 | 22,046 32,680
+EVENT | + 20,063

Figure 9: Function Evaluations of Classical and Generalized Trapezoidal Rule

third section (sa3, pa3, resp.).

@

Left Chambers

Systemic Cycle

Pulmonary Cycle

be found in [4]. The latter is a system of differential-algebraic equations (DAE).

The system consists of 14 compartments. There are 2 for left resp. right atrium (la
and ra), as well as for the left resp. right ventricle (lv and rv). These are connected to the
systemic and pulmonary cycles. Each of these cycles is composed of 5 compartments where
each compartment contains one of the following categories of blood vessels:

Arterial system: First section (sal, pal, resp.), second section (sa2, pa2, resp.), and

Vein system: First section (sv2, pv2, resp.), and second section (sv1, pvl, resp.).

Right Chambers

(=)

Figure 10: Schematic of the Compartments

21

@
|
o e oo - - o 1

The diodes in Figure 10 indicate the locations of the heart valves (MV - Mitral valve, AV
- Aortic valve, TV - Tricuspid valve and PV - Pulmonary valve). These ensure a nearly
uni-directional flow of blood with almost no friction. In forming the model equations we
will deviate from the reference and employ a piecewise differentiable mechanism. The model
equations for the respective compartments are thus:

sal,svl, sa2,sad, sv2,
Large Vessels k € Smaller Vessels k €

pal,pvl pa2, pa3, pv2
L - q; = pr — Psuce — Bi - qi Ry - g1 = Pk — Dsuce
U = Qprec — Gk U = Gprec — gk
Cr-pr = vk — Vi Cr-pr = vk — Vi

The subscript in pgycc refers to the variable (pressure) of the next compartment, gprec
to the corresponding variable (flow) of the previous compartment in the sense of Figure 10.
Further, Ly, Ry, C, Vi are compartment-specific (positive) constants. The heart chambers
are modeled as:

Atria k € {la,ra} Ventricles k € {lv,rv}
. max (pr — Psuce, (Rr —60)qr) — Rrqr . max (pr — Psuce, (R — 60)qr) — Rrqr
gk = I qx = I
k k
U = Qprec — 4k U = Gprec — gk
i = By - (vp — Vi) pr = Eg(t) - (v — Vi)

Ek(t) = Emin ,k(l - qb(t)) + Emax ,k¢(t)

where ¢(t) = max (0,asin (t) — Bsin (2t)) and t = 71—,
Ko + K1tp
and Eyin k, Pmax k, as well as o, 3,1, k; are positive constants.

Now let C = {la,lv,sal,sa2, sa3,sv2,svl, ra,rv, pal, pa2, pa3, pv2, pvl} be the set of all
14 compartments and summarize the set of intrinsic variables into one vector x = (v, q, p),

where v = (vk)rec, 4 = (qr)rec and P = (pr)rec-

Comparison Results

For our comparison we chose the time interval I = [tg,T], where to = 0 and T = 0.8, which
is the timespan corresponding to a single heartbeat. As initial values we used the ones given
in Table 12.

For the secant ANF-based and tangent ANF-based iteration, as well as the one employ-
ing a classical Newtons method, h = 1072 was chosen.

For the classical and the ANF-free algorithm the considered step size was h = 1073, The
reason for that is simply that the latter two methods do not converge for h = 10~2. Figure
11 depicts the numerical solution. In Table 13 the accumulated function evaluations for
each of the methods are documented. Again, INTEG documents the number of evaluations
of F' during the integration, ANF denotes the function evaluations for the ANF. For the
classical method with Newton ANF represents the function evaluations for the Jacobian
matrix. Note, that there are no Euler evaluations because it turns out that explicit Euler is

22

120 p_sv

— p:sal
100
80

60
40

20

P E———

0.0 0.2 0.4 0.6 0.8

(a) Blood Pressure

600

400
300

200

100
0

— q_sv

o

v_sv

0.0

0.2 0.4 0.6 0.8

(b) Blood Flow

Figure 11: Solution of the Cardiovascular System

Pressure | Flow | Volume Pressure Flow | Volume

Arterial 0 4.67 | 0.00 93.28 Arterial 0 2.67 0.00 74.42
Arterial 1 79.96 | 20.46 | 267.13 Arterial 1 13.31 | 32.07 79.58
Arterial 2 78.28 | 61.08 | 498.38 Arterial 2 12.59 | 51.45 48.64
Arterial 3 67.41 | 90.10 | 523.01 Arterial 3 9.86 | 165.24 70.53
Vein 0 5.81 | 0.00 | 128.29 Vein 0 3.10 0.00 | 137.50
Vein 1 5.19 | 94.90 | 2321.30 Vein 1 5.52 | 61.86 | 102.58
Vein 2 7.31 | 95.14 | 692.78 Vein 2 3.67 | 73.53 | 102.05

(a) Systemic

(b) Pulmonary

Figure 12: Initial Values of the Cardiovascular System

23

Classical | ANF-free | Secant | Tangent | Classic Newton
INTEG 31,350 30,664 688 570 0
ROOT 347,793 | 340,147 0 0 0
ANF 0 0 67,424 | 27,930 25,872
EVENT 1910 0 0 0 202
TOTAL 379,143 | 370,811 68,112 | 28,500 25,872
+EVENT | + 1910 + 202

Figure 13: Function Evaluations of Classical and Generalized Trapezoidal Rule

an unsuitable predictor for this particular problem. The question about a suitable predictor
requires further investigation. In contrast to the diode example, we also have to count the
function evaluations by the root-finding algorithm applied after the integration. They are
denoted by ROOT.

The evaluations of the event function are tracked separately for each component. EVENT
gives an average between these values. During the computation, 7 events occurred. For this
example the evaluation of the event function is cheaper than the evaluation of the RHS.

As in Example 5.1, the step size for the classical and ANF-free method has to be
chosen smaller. Additionally, the root-finding algorithm is expensive and dominates the
overall cost. The event function is of very little impact in comparison. Thus, classical
and ANF-free method are again similar in terms of computational cost. The algorithms
using the ANF are much cheaper, roughly one order of magnitude for the considered step
sizes. But as in Example 5.1, this estimate is not reliable. The tangent ANF method is
roughly as expensive as the secant ANF based method. As an additional experiment we
solve the system employing a classical trapezoidal rule with classical Newton. This method
is asymptotically equivalent to the tangent ANF based method with a small constant offset
in favor of the classical method. This is due to the fact that for the given example with
few absolute values, i.e. n significantly bigger than s, the cost for the computation of a
Jacobian matrix (via AD) is, up to a small constant factor, the same as the cost for the
computation of an ANF (via generalized AD).

5.3 Shallow Water Equation

The final example is a 2-dimensional shallow water equation. This is a PDE with the

following system function:

2
(h;‘) +gh2] — 0.

ht + (hu), = 0, (hu): + [(22)
The two system variables are the fluid depth h and the flow hu. The latter is given by the
depth h and the fluid velocity u := u(hu, h). We solve a finite volume discretization of sys-

tem (22). For this we employ the well-balanced positivity-preserving central-upwind scheme

24

presented in [10] with the Runge-Kutta solver replaced by the generalized trapezoidal rule.
The minmod flux limiter used in [10] is the system’s main source of non-differentiability.
Note however, that system (22) is simplified in comparison to the one in the latter reference
in that we set the bottom elevation to zero. We intend to investigate in future publications
whether our piecewise linearization methods can be used to obtain a piecewise linear ap-
proximation of the bottom topography that improves upon the formulation developed in

[10].

Comparison Results

For this example we chose the time interval as [to, 7] = [0, 40] with a step size of h = 0.5.
The space interval was chosen as [a, b] = [0, 50], discretized into 20 cells. The initial values
xo are chosen as a normal distribution centered at (b — a)/2 for h and zero for hu. Figure
14 shows the first component of the numerical solution.

Numerical Solution of h(x,t)

0.20

0.19

0.18 0.17

0.17 0.16
0.16 0.15
0.14 0.14
0.13

0.12 0.13
0.11 0.12
0.10 0.11
50 0.10

5
10
t 35 40 0

Figure 14: Numerical Solution for h

In Table 15 the number of function evaluations for each of the methods is is presented.
The same labels as in the previous examples are used. An event occurred in 40 of the
time steps. As in Example 5.2, the different components of the event function were tracked
separately. In total there were 162,671 event function component evaluations. Table 15

25

Classical | ANF-free | Secant | Tangent
EULER 196 79 79 79
INTEG 862 366 336 316
EVENT 298 0 0 0
ANF 0 0 838,656 | 406,848
TOTAL 1,058 445 839,071 | 407,173
+EVENT | + 298

Figure 15: Function Evaluations of Classical and Generalized Trapezoidal Rule

gives an average over the 546 components. Note that the event function for this example is
comparatively expensive. If the cost was converted into multiples of a RHS evaluation, the
given average might actually underestimate this number.

The secant ANF-based method requires about twice as many function evaluations as
the tangent ANF-based one. However, both methods should not be applied to this example
since they are multiple orders of magnitude more expensive than the ANF-free approach.
The compuational cost is completely dominated by the calculation of the ANF. While there
are only 56 variables, the ANF has a dimension of almost 1200 and is thus very expensive
to derive. The ANF-free method is significantly cheaper than the classical method for this
example. It is at least 2-3 times cheaper. How much exactly, depends on the cost of the
event function evaluations. This result is in contrast to Example 5.1 and Example 5.2. The
reason is that here about every other step contains a kink and thus the non-smooth elements
are dominant while in the other examples the smooth parts of the system are dominant.

6 Conclusions

The merits of generalized and classical trapezoidal rule with event detection strongly depend
on the system to be solved. An advantage of the generalized method is noticeable if many
absolute values occur in the ODE resp. DAE function and becomes more pronounced the
more they are nested. In these cases the event function has a complexity of the same
magnitude as the ODE function and the location of the roots of the event function is costly.
Testing for events incurs a constant cost per step. In the case that an event is found,
multiple additional evaluations of ODE resp. DAE and event function become necessary.
The more events are found along the solution path, the more this overhead is pronounced.
On the other hand, in this situation the propagation of the piecewise linear segments is
faster for the detection of the occurring kinks.

Acknowledgements

The work for the article has been partially conducted within the Research Campus MODAL
funded by the German Federal Ministry of Education and Research (BMBF) (fund number

26

05M14ZAM).

Appendix

In the following we present pseudo-code for methods for the propagation of ELEMOP. The
application of smooth elementary operations v = ¢(u) or binary arithmetic operations
v = u o v translates into the application of a linear transformation to the piecewise linear
approximation of the input, as Av = ¢, ,Au resp. Av = ¢, Au + ¢, wAw. Since the linear
functions over the segments of the sub-division are computed as linear combinations of the
data u,u etc. in the ELEMOP instance, this linear transformation needs to be applied to
all those values. For unary operations this is all, as depicted in Algorithm 8, while in the
binary case the subdivision of the result v is a common refinement of the subdivisions of u
and w, which requires care in the correct assignment of the relevant linear functions of u and
w over the segments of the subdivision of v. See Algorithm 9 for the implementation of the
general linear combination common to all binary arithmetic operations. The example code
for the multiplication is given in Algorithm 10. Depending on the programming language
and its data structures, allocation of arrays of sufficient length for refined sub-divisions can
proceed implicitly with variable-length arrays or with a separate counting loop for fixed-
length arrays.

Algorithm 8 unary propagation: v = ¢(u)

Require: u,u, 1,

Ensure: 0,0, 7,

Ty = SET_REFERENCE_ON(T,)
fyy = LEN(Ty)

0 = array_of zeros(len = fu,, — 1)
& = w(alo])

¢ = (0[ptu — 2])

if @ # U then

—
=
@
=
o
=

_ ¢t U+
V= T

—_ =
N =

: ¥ = array_of_zeros(len = p1,, — 1)

: for iy, = 0,1,... until 4,y < gy — 1 do
Oline] = atifiyy] +

Oliyw] = Qt[iyy] + 7y

: end for

e e

The only operation that, purposefully, deviates from that scheme is the absolute value
as the sole non-differentiable operation. For v = abs(u) the propagation rule Av = |u +

27

Algorithm 9 propagation of linear combination: v =« -u+ 8- w + 7, for a, 5,7 € R

Require: 4,1, 7y, W, W, Ty, , 5,7y
Ensure: 9,0, 7,

1: 4y = 0,74 =0

2: T, = MERGE_ORDERED_TAU_LISTS(Ty, Ty)
3: py = LEN(7y)

4: ¥ = array_of zeros(len = p,, — 1)

5. 0 = array_of zeros(len = p,, — 1)

6: for i, =0,1,... until ¢, < u, — 1 do
7: Oliy] = - Ufiy] + B - Wiw] +

8: Oliy] = a - afiy] + 8 - Wliw] +

9: if Ty[iw + 1] < Tuliy + 1] then

10: iw +=1

11: else if 7,[i, + 1] < 7y[iy + 1] then
12: iy +=1

13: else

14: iy +=1

15: w +=1

16: end if

17: end for

Algorithm 10 propagation of multiplication: v = u - w

Require: u, 1, 7, W, W, Ty
Ensure: 9,0, 7,

1: fy, = LEN(Ty,)

2: fly = LEN(Ty)

3 o = w[ﬂw—§]+w[0}
4 B = U[#u—§]+u[0]
5 y=—a-f

6:

[0,0, T,] = PROPAGATION_OF _LINEAR_COMBINATION (U, T, Ty, W, W, Ty, &, 347Y)

28

Au)|—0 which for the piecewise linear segment means that positive sub-segments get copied,
completely negative sub-segments get the sign inverted and sub-segments with a sign change
get split in two. The governing quantities in Algorithm 1lare thus the values ug(7) and
ug(7k+1) at the left and right end of the sub-interval.

29

Algorithm 11 propagation of absolute value: v = abs(u)

Require: i, i, 7,
Ensure: 0,0, 7,
1: iy, = LEN(Ty,)
2: oy = Py
3: for i, =0,1,2,...,u, — 1 do
4: wp = (0.5 — 7y [i]) - @lin] + (0.5 + 7fin]) - @iy
5: ur = (0.5 = 7y fiy + 1)) - alin] + (0.5 + Ty [ty + 1]) - @fiy]
6: if u; - u. <0 then
7 My +=1
8 end if
9: end for
10: © = array_of zeros(len = p,, — 1)
11: © = array_of zeros(len = p,, — 1)
12: 7, = array_of zeros(len = p,,)

13: 3, =0

14: 7,]0] =0

15: for i, =0,1,2,...,u, — 1 do

16: s = sign(afiy))

17: Oliy] = s - Uiy

18: Vliy] = 5 - Uiy

19: if fi,] - 4fiy] < 0 then

20: Troot = —0.5« ([iy] + @liy])/(G]iy] — @liy])
21: if 7yfiu] < Troot < Tuliuw + 1] then
22: iy +=1

23: Ty [’Lv] = Troot

24: Oliy] = =8« Uiy

25: Oliy] = —5 - Uiy

26: end if

27: end if

28: iy +=1

29: Toliv] = Tultu]

30: end for

30

References

1]

2]

[10]

[11]

K. Atkinson, An Introduction to Numerical Analysis (2nd ed.), John Wiley & Sons,
New York, 1989.

F. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society
Series of Monographs and Advanced Texts, Wiley-Interscience, 1983.

W. Enright, K. Jackson, S. Ngrsett, and P. Thomsen, Effective solution of discontinu-
ous 1wps using a runge-kutta formula pair with interpolants, Applied Mathematics and
Computation 27 (1988), pp. 313-335.

L. Formaggia, A. Quarteroni, and A. Veneziani, Cardiovascular Mathematics - Model-
ing and simulation of the circulatory system, MS&A, Vol. 1, Springer-Verlag, Milan,
20009.

A. Griewank, On stable piecewise linearization and generalized algorithmic differen-
tiation, Optimization Methods and Software 28 (2013), pp. 1139-1178, Available at
http://dx.doi.org/10.1080/10556788.2013.796683.

A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation, Other Titles in Applied Mathematics, Society for Indus-
trial and Applied Mathematics (STAM), 2008, Available at http://epubs.siam.org/
doi/book/10.1137/1.9780898717761.

A. Griewank, R. Hasenfelder, M. Radons, and T. Streubel, Integrating lipschitzian
dynamical systems using piecewise algorithmic differentiation, Submitted 2016 .

A. Griewank, T. Streubel, R. Hasenfelder, and M. Radons, Piecewise linear secant
approximation via algorithmic piecewise differentiation, Submitted 2016 .

A. Griewank, J. Bernt, M. Radons, and T. Streubel, Solving piecewise linear sys-
tems in abs-normal form, Linear Algebra and its Applications 471 (2015), pp.
500 — 530, Available at http://www.sciencedirect.com/science/article/pii/
S0024379514008209.

A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-
upwind scheme for the saint-venant system, Commun. Math. Sci. 5 (2007), pp. 133-160,
Available at https://projecteuclid.org:443/euclid.cms/1175797625.

J. Ottesen, M. Olufsen, and J. Larsen, Applied Mathematical Models in Human Physi-
ology, Monographs on Mathematical Modeling and Computation, Society for Industrial
and Applied Mathematics, 2004, Available at http://epubs.siam.org/doi/book/10.
1137/1.9780898718287.

D. Quispel G.R.W.; McLaren, A new class of energy-preserving numerical integration
methods, Journal of Physics A: Mathematical and Theoretical 41 (2008).

31

http://dx.doi.org/10.1080/10556788.2013.796683
http://epubs.siam.org/doi/book/10.1137/1.9780898717761
http://epubs.siam.org/doi/book/10.1137/1.9780898717761
http://www.sciencedirect.com/science/article/pii/S0024379514008209
http://www.sciencedirect.com/science/article/pii/S0024379514008209
https://projecteuclid.org:443/euclid.cms/1175797625
http://epubs.siam.org/doi/book/10.1137/1.9780898718287
http://epubs.siam.org/doi/book/10.1137/1.9780898718287

[13] S. Scholtes, Introduction to Piecewise Differentiable Equations, SpringerBriefs in opti-
mization, Springer New York, 2012, Available at http://1link.springer.com/book/
10.1007/978-1-4614-4340-7.

[14] L. Shampine and S. Thomson, Event location for ordinary differential equations, Com-
puters & Mathematics with Applications 39 (2000), pp. 43-54.

32

http://link.springer.com/book/10.1007/978-1-4614-4340-7
http://link.springer.com/book/10.1007/978-1-4614-4340-7

	Introduction
	Algorithmic Piecewise Differentiation
	Piecewise Linear Functions
	Piecewise Linearization of Piecewise Composite Smooth Functions
	The Abs-Normal Form

	Generalized Trapezoidal Rule
	Energy Preservation
	Implementation Strategies

	Implementation Details
	Calculation of Critical Multipliers and Integration using the ANF
	ANF-free Calculation of Critical Multipliers and Integration
	Solving a Semi-Explicit Index-1 DAE

	Numerical Results
	LC Circuit with Diode
	Human Cardiovascular System
	Shallow Water Equation

	Conclusions

