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1. Introduction 

Combinatorics and physics interact in various ways. It is impossible to survey 
here all the connections. We concentrate in this chapter on statistical physics 
since several of the most basic problems in this area have a combinatorial fla­
vour. 

Sections 2 and 3 of this chapter are concerned with two of the most funda­
mental areas, namely the study of the Ising model and the theory of percolation 
processes. Both of these areas of research are huge, but they share the common 
property, that some of the most primitive and easily stated problems are, after 
more than thirty years of research, still largely unanswered. 

In section 4 we present, among other models, some of the classical enume­
ration problems of statistical physics; again there are many open questions and 
very few exact results. 
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Sections 5 and 6 are concerned with two of the (relatively few) "techniques" 

which have been developed to deal with the sort of problems we are discussing. 

Transfer matrices and subadditive function theory are basic tools in this area 

of mathematical physics. This is illustrated by a simplified version of the dimer 

problem, it amounts to counting the number of ways of placing dominoes on a 

rectangular chessboard. 

Finally we illustrate in section 7 the application of ideas from combinatorial 

optimization to statistical physics by showing how the problem of finding the 

ground states of a spin glass model may be reduced to a very basic, though 

difficult, (NP-hard) problem in discrete optimization. 

2. The Ising Model 

The density of water varies as a function of temperature, and generally as a 

continuous function. Of course the variation is not continuous in the neighbour­

hood of the boiling point, nor at the freezing point. Although we are accustomed 

to such behaviour, it is paradoxical. The forces acting between the individual 

molecules vary continuously as the temperature varies. Why then should there 

be a change of state at certain temperatures? Statistical physics is devoted to 

the attempt to understand this behaviour. 

As is customary in science and mathematics, the study begins by setting 

up a grossly simplified model. We assume that the system consists of a finite 

number of particles, and that the system is at any instant in one of a number 

of states. The behaviour of the system is governed by its Hamiltonian H, which 

is a°function of the state. Its value H{<r) is equal to the energy of the system 

in state a. Examples of Hamiltonians will be given later in this paragraph and 

also in § T*. The partition function of the system is defined to be 

(2.1) Z = Z(T) = £ exp[-H(a)/(kT)]. 

Here T is the temperature of the system and k is Boltzmann's constant. If the 

system consists of N particles, we sometimes write ZN in place of Z. It is taken 

as an axiom that all large-scale properties of the system are determined by Z. 

(Sometimes an attempt is made to disguise the fact that this is an axiom, and 
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not a theorem. Also a system can have more than one partition function; the 

one we have just defined is the canonical partition function.) 

In stochastic versions of the problem it is assumed that in the stationary 

state the probability that the system is in the state a is given by 

Z-1 exp[-H(<r)/(kT)] 

and that the free energy of the system is 

F= -JcTlogZ. 

The latter is a particularly important parameter of the system, and explains 

the fact that one deals with log Z as often as with Z. We are interested in the 

behaviour of Z for systems with a large number of particles, as the temperature 

T ranges over the positive reals. The value of Z depends on the number of 

particles N in the system as well as on the temperature. In all cases of interest 

to us, log Z is a linear function of N when all other parameters are fixed. The 

number of particles in any realistic physical system is, for all mathematical 

purposes, infinite. Hence we are lead to study 

Urn ± log ZN{T) 
N—KX> J\ 

as a function of T. Following Baxter (1982, p.14), we say that a model has been 

solved if its free energy is known. The phase transitions of the model correspond 

to the points, called critical points, at which the free energy is not an analytic 

function. 

We now consider a typical and important system, the hing model. We are 

given a graph G = (V,E) embedded in R2 or R3. There is an atom placed at 

each vertex. Each atom has a spin associated to it, this spin takes only two 

values. The energy of the system is understood to be the sum of the energies 

due to the interaction of each pair of atoms. The contribution due to a pair of 

atoms will be assumed to depend only on whether they are adjacent in G or 

not. The interaction is completely determined by whether the given pair have 

the same spin, or not. 

The state of the system can be represented by a function a from V(G) into 

the set {—1,1} and the Hamiltonian H(a) will be a sum over the edge set E 

of G. Writing <TJ for the state of atom i, we find that the partition function of 

this system at temperature T is 
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(2.2) Z(G) = ^ e x p [ - J2 ß°i°i\-
a- ijEE 

The constant ß — J/{kT) will vary inversely with the temperature and is pro­
portional to the interaction J. 

The graphs in which physicists are interested are usually infinite. However 
they are usually the limit, in a natural sense, of a sequence of finite graphs. This 
will be made clearer by the examples which follow. The most important cases 
of the Ising model are when G is either the 2-dimensional square lattice, or the 
3-dimensional cubic lattice. The solution of the 2-dimensional Ising problem on 
the square lattice was a major achievement of Onsager in 1944. (For an account 
of this, and any other historical remarks in this section, see Thompson (1972).) 
The 3-dimensional model is still unsolved. 

There are some important extensions of the Ising model. We assumed im­
plicitly that each of the two states available to an individual atom was equally 
likely. However, if there is an external magnetic field acting then one of the two 
states becomes more probable. The 2-dimensional Ising model has only been 
solved under the assumption that there is no external field. (The presence of 
an external field in any model is a major complication.) Another possibility is 
that the interactions between a pair of adjacent atoms may not be independent 
of the edge. (This is certainly a physically reasonable possiblity.) Thus on the 
square lattice, the interactions arising from the horizontal edges may differ from 
the interactions on the vertical edges. Allowing for this does not usually cause 
problems; on the contrary it can even be useful, as we will see. 

A question which may well have arisen by now is, what does all this have 
to do with combinatorics? To explain this, we study the basic Ising model on 
the square lattice. Let Gn denote the Cartesian product Pn x Pn of two paths 
with n vertices. Thus Gn has n2 vertices and, for large n, may be viewed as an 
approximation to the infinite square lattice. By expanding the exponential in 
(2.2) and since <Ti<jj takes only the values +1 and —1, we have 

exp(/?0-;<Tj) = cosh(/?) + <7i<7jSinh(/?) = cosh(/?)(l +orj<rjtanh(/?)) 

whence the partition function for Gn at temperature T can be expressed as 

Z{Gn) = $>osh(/3))l*<0«>l J J (1 + ^-tanhOS)). 
<r ij£E(Gn) 
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With some ingenuity (see, e.g., Section 6.1 of Thompson (1972) or page 22 of 

Biggs (1977)) this may be rewritten as 

(2.3) Z(Gn) = 2lv(G")l(cosh(/?))l^G")l £ Ar(Z)(tanh(/?))\ 
l>0 

where N(l) is the number of spanning subgraphs of Gn with I edges and all ver­

tices having even valency. (These are called the Eulerian subgraphs of Gn.) This 

shows that determining the partition function for the Ising model is equivalent 

to the purely combinatorial problem of enumerating the Eulerian subgraphs of 

Gn. 

It should be noted that (2.3) is valid with any graph G in place of Gn. In 

particular if we replace Gn by Pn then we obtain 

Z(Pn) = 2n(cosh(ß))n-1. 

Prom this we can deduce that 

lim (Z{Pn)y/n = 2cosh(/3). 
n—too 

Since cosh(/?) is an analytic function, it follows that the Ising model on the 

infinite path does not have a critical point. As we noted earlier in this section, 

Onsager showed that the Ising model on the infinite square lattice does have a 

phase transition. (See Chapter 5 of Thompson (1972).) 

Partition Functions and Rank Polynomials 

We now show how Fortuin and Kasteleyn (1972) demonstrated that the Ising 

and other physical problems could be related to the Whitney rank polynomial 

or Tutte polynomial (see Chapter Welsh). 

Let G be a graph, which now may have loops and multiple edges. Any 

subset S of E(G) forms a spanning subgraph of G, with the same vertex set as 

G, and edge set S. The rank of S is defined to be |V(G)|, less the number of 

connected components in the subgraph formed by S. We will denote it by r(S). 

The rank polynomial of a graph G is defined to be 

SCE(G) 

The rank polynomial has some interesting properties. If G is the disjoint union 

of graphs G\ and Gi then 
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(2.4) R(G'iz,y) = R(G1;x,y)R(G2;x,y). 

If e e E(G), let G\e be the graph obtained by deleting e from G, and let G/e 
be the graph obtained by contracting e (i.e., by deleting e and then identifying 
its end points). Then, if e is not a cut-edge or a loop, one can show that 

R(G;x,y)= £ x<s)y\s\-ns) + £ xr(s)y\S]-r(s) 

(2.5) SCE(G), e€S SCE(G), egS 

= Ä(G/c;x,y) + ü(G\e;»,y). 

In the remaining cases we have 

*<* «•») = { [} t y )R(G/e; x,y), if e is a cut-edge; 
t/)i?(G\e;x,y), if e is a loop. 

Now consider the partition function for the Ising model on a graph G, which 
can be written in the form 

Z(G)=Y, n A^ 
<r ij£E(G) 

where A = exp/3. The product <Ti<Tj is either 1 or —1. Define E+ to be the set 
of edges ij of G such that <ri<Tj = 1 and let E~ be the remaining edges of G. 
Let m = \E(G)\. Then we have 

Z(G) = Y, A|S*I-'B'I = £ A"1"2'** I. 

If e = ij is a fixed edge in E(G), not a loop or a cut-edge, it follows that 

Z(G)= X) Am-2I£-"I+ J ] Am-2'^"l 

= \Z{G/e) + A~1(Z(G\e) - Z(G/e)) 

= (A - yx)Z{G/e) + A"1Z(G\e). 

(2-6) _ w , „ , _ x , x-i 

We can now use the following theorem of Oxley and Welsh (1979). 

(2.7) Theorem. Let f be a real-valued function defined on graphs which sa­
tisfies the recursion 

f(G) = af(G/e) + bf(G\e) 

when e is an edge of G and not a loop or cut-edge, and 



,/^x _ / (1 + x)f(G/e), ife is a cut-edge, 
nU)-\(l + y)f(G\e), if eis a loop, 

where x and y are the values taken by f on a cut-edge and loop respectively. 
Then if G has n vertices, m edges and c components, we have 

/((?) = bm-n+ean-cR{G', ^-^- - 1, ̂ r1 - 1). 

D 

It follows that the partition function for the Ising model on a graph G is 
determined by its rank polynomial. From (2.6) we see that we can apply the 
previous theorem with Z{G) in place of f(G). Then 

a = \ - \ - \ b = A -1 

and 

l + s = A + A - \ l + y ^ A " 1 . 

(in deriving these it is important to note that if G is the graph with one vertex 
then Z{G) = 2). Theorem (2.7) now yields that 

Z(G) = A—(A2 - 1)»-*Ä(G; J^-J, A2 - 1). 

A natural extension of the Ising model is to allow the spins to take more than 
2 values. More precisely, if we allow the spin at each vertex to take values 
from the set {1,2,. . . ,g} and then define the partition function Z by Z = 
^<7e xPE»i£# ß6(<Ti,<Tj))] where S is the usual delta function, we have what is 
known as the q-state Potts model. 

Using a similar argument to that just given it is easy to see that again Z 
satisfies a contraction-deletion recurrence formula. Hence for any graph G, Z is 
an evaluation of the rank polynomial of G; though along a different curve in the 
xy-plane, namely xy = q. For a proof of this and for details of the way in which 
the percolation and ice models to be discussed below can be represented in 
terms of the rank polynomial see Welsh (1990) or the original paper of Fortuin 
and Kasteleyn (1972). 

For excellent rigorous mathematical treatments of these topics we refer to 
the monographs of Ruelle (1969) or Thompson (1972). 
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3. Percolation Processes 

As its name suggests percolation theory is concerned with flow in random media. 

Its origin in the work of Broadbent and Hammersley (1957) was as a model for 

molecules penetrating a porous solid, electrons migrating over an atomic lattice, 

a solute diffusing through a solvent, or a disease infecting a community. 

As an example of percolation in the wider sense consider the following 

problem in communication theory. 

Example: Random graphs and reliability 

Let JV be the network shown in Figure la . Suppose each directed edge has 

probabihty p of being reliable, that is, allowing a message to pass. Suppose 

further that the reliability of each edge is independent of the reliability of any 

other edge. What is the probabihty that there is a path from A to B consisting 

only of reliable edges? 

Fig. 1(a). 

Denoting this event by A ~ B, simple calcuation shows that it is just the 

probabihty that not all the routes from A to B are unreliable. Since the routes 

have no edge in common we are dealing with independent random variables and 

we have 

Pr{A~B] = l-(l-p2)3. 

However, if we try the same problem for the network JV', of Figure 1(b) the 

problem becomes much more complicated. This is due solely to the dependence 

in JV' of the events "the route ACDB is reliable" and "the route ACB is 

reliable". D 



This problem illustrates the intrinsic difficulty of percolation problems — 
stochastic dependence occurs in all but the most trivial cases and makes compu­
tation very difficult. Indeed, even with the speed of modern computing machines 
it is still impractical to determine the reUability of moderate sized networks. In 
the language of computational complexity the problem is #P -ha rd [see Chapter 
Shmoys and Tardos ]. 

In classical percolation theory we are concerned with the probability of 

infinite clusters in a 'regular crystal lattice'. The definition of what exactly is 

meant by a 'regular crystal lattice' is rather difficult to formulate precisely — 

it varies from author to author. For the purposes of this chapter it can be 

regarded as typified by the regular lattices shown in Figure 2, though of course 

the physically most interesting cases are when the lattice is 3-dimensional. 

Square Lattice Hexagonal Triangular 

Fig. 2 

Bond percolation 

Suppose now that we fix attention on the 2-dimensional square lattice, and 

suppose that there is a supply of fluid at the origin and that each edge of £ 2 

allows fluid to pass along it with probability p, independently for each edge. 

Let Pn(p) be the probability that fluid spreads to at least n vertices. Thus 

Pi(p) = l , 

P2(p) = l - ( l - p ) 4 , 

and in theory PN(P) can be calculated for any integer N. However, the reader 

will rapidly find it prohibitively time consuming. The case N = 7 is a fair piece 
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of work! Obviously, 

and hence the limit 

PN(P) > PN+I{P) 

P(p) = Jim PN(p) 

exists and represents the probability that fluid spreads an infinite distance from 

the origin. 

Very little has been rigorously proved about P(p)- For example, even 

though PN{P) is a polynomial in p and hence we would expect P(p) to be 

a continuous function of p, this has not yet been proved. It is clear that there 

exists a critical probability pc such that 

p < Pc =$. P(p) = 0 and p > pc =4> P(p) > 0. 

However determining the value of this critical probability is as we will see 

a very difficult problem. Monte Carlo simulations suggest that for all the well 

known lattices the behaviour of P(p) has roughly the same 5-shaped form as 

shown in Figure 3. 

Fig. 3 
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Atom or Site Percolation 

In atom percolation, instead of each edge being randomly blocked with proba­

bility 1 — p or open with probability p, each vertex is blocked independently 

with probability 1 — p or open with probability p. Again we are interested in 

the probability of fluid spreading locally or an infinite distance. 

Exactly analogous results hold for atom percolation as for bond percola­

tion, though of course the numerical values of the critical probabilities pc and 

percolation probabilities P{p) differ. In one sense atom percolation is the more 

important since any bond percolation problem on a lattice C can be turned into 

an atom percolation problem on a related lattice C, namely the line graph of C. 

One of the few relatively easy results which has been proved is the fol­

lowing due to Fisher (1961) and Hammersley (1961). For any regular lattice, if 

PA{V)IPB{P) represent respectively the atom and bond percolation probabili­

ties on the lattice then 

PA(p) < PB(p) 0 < p < 1. 

Clearly this implies that for any lattice the critical probability for atom 

percolation is at least as big as the critical probability for bond percolation. 

The Cluster Problem 

An alternative approach to percolation theory is the study of the distribution 

of white and black clusters when the edges (or vertices) of a graph are indepen­

dently painted white with probability p and black with probability q = 1 — p. 

Again we shall concentrate on the edge problem for the square lattice. A 

white cluster is a maximal connected subset of white edges of the lattice. The 

two main quantities of physical interest are: 

(a) the average number of white clusters; 

(b) the average number of vertices in a white cluster. 

To be more precise let £ m denote a square section of the square lattice 

containing TO2 vertices and hence 2(m — l ) 2 edges. If u denotes a particular 

black/white painting of £ m then let cm(v) denote the number of white clusters 

and let its average value over all paintings u> be denoted by Km{p). 

Similarly if we let the distinct clusters under u; be labelled Ax,..., Ac^, 

we define 
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Sm(p) = ( 
\V{A1)\ + ... + \V(A<u)\ 

) 

where | V(^li)| denotes the number of vertices in Ai, and < > denotes the ex­

pectation over all black and white paintings. Thus Sm{p) is the average number 

of vertices in a white cluster. 

Note that if isolated points are not counted as clusters then the expected 

number of clusters in this sense is given by Krn(p)—m2qi where q — 1 — p. This 

is because the probability that a particular vertex forms an isolated cluster is 

just the probability that the four edges incident with it are painted black, that 

is g4. Thus the average number of isolated points amongst the white clusters is 

m 29 4 . 

The average number of black clusters is obviously Km(l-p) and the average 

number of vertices in a black cluster is obviously Sm(l —p). Little more is known 

theoretically about either of these functions, other than that 

Km{p) ~ m2\(p) as m —> oo 

where A is an undetermined function of p. 

Roughly speaking the quantities Km{p) and Sm(p) are reciprocal, though 

theoretically all that has been proved is that 

Sm{p) > m2/Km{p). 

For p greater than the critical probability pc we have a positive probability of 

an infinite white cluster in £oo. Hence, a fortiori, as p —> pc the average size 

of a cluster tends to oo. Numerical evidence suggests that, as p approaches pc 

from below, there exist constants C and 7 such that as m —> 00, Sm(p) —• S(p) 

where 

S(p)~C(Pc-p)-\ 

where moreover 7 is an invariant depending only on the dimensionality of the 
lattice. 

One of the most interesting theoretical results on the cluster problem is 
the following theorem of Harris (1960). 

(3.1) Theorem For the cluster problem on the infinite square lattice, if p is 

strictly greater than the critical probability then, with probability one, the set 

of white edges contains only one infinite component. 
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Extensions of this to higher dimensions can be found in Grimmett (1989). 

Determining the critical probability 

The problem of finding critical probabilities for particular lattices, first posed 

in 1957, has received great attention, but is still proving to be a remarkably dif­

ficult problem. A vast amount of numerical estimation (based on Monte Carlo 

methods, Pade aproximations and the like) has been carried out, so good nu­

merical estimates exist for most of the 2- and 3-dimensional lattices. 

Theoretically much less is known. A landmark in the study of critical pro­

babilities was the paper by Sykes and Essam (1964) which, though unrigorous, 

gave convincing arguments for believing that for bond percolation on a planar 

lattice the critical probabilities were related by 

(3.2) P c ( £ ) + p c ( £ * ) = l 

where £* is the planar dual of £ . 

An obvious consequence of this is 

(3.3) For bond percolation on the square lattice, the critical probability is | . 

This result was finally proved by Kesten (1980) by a series of ingenious ar­

guments which have led to a rigorous proof by Wierman (1982) of the following 

result, again first shown unrigorously by Sykes and Essam (1964). 

(3.4) For bond percolation on the 2-dimensional triangular lattice (T) and the 

hexagon lattice (H), 

pc{T) = 2 sin(7r/18) 

pc(tf) = l -2s in(7r /18) . 

However, all of these arguments are very much restricted to 2 dimensions. 

A fundamental and very difficult problem is: 

(3.5) Problem: Determine the critical probability of bond or site percolation 

on the 3-dimensional cubic lattice. 

Even for 2 dimensional planar lattices there are many open problems. For 

example : it is known from Toth (1985) and Zuev (1987) that 

(3.6) The critical probability of site percolation on the square lattice is between 

0.5095 and 0.68189. 
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However this is a very wide range and we pose: 

(3.7) Problem: What is the critical probabihty for site percolation on the 

square lattice? 

First passage percolation 

This originated in the paper of Hammersley and Welsh (1965) as a model for 

a "time dependent" percolation process. It contains ordinary percolation as a 

special case and in its most general sense can be regarded as a randomized 

version of the shortest route problem in graphs. 

Consider the square lattice in which each edge is, independently, assigned 

a non-negative random length drawn from a known probability distribution F. 

Let tn be the random first passage (shortest) path length from the origin 

to (n, 0) in this lattice and let T(TI) be its expected value over all possible states 

(that is distribution of lengths). The fundamental observations are that for 

m,n £ TL 

(3.8) T(m + n) < T(m) + T(U) 

so that by the theory of subadditive functions 

(3.9) lim 1(2) = i n f IW = 
n—K» 77, n n 

exists. 

The time constant fi depends only on the distribution F and is , like the 
critical probabihty of ordinary percolation, a not very well understood lattice 
invariant. For example when the lengths are uniformly distributed in [0,1] it 
is known from Monte Carlo studies that fj, ~ 0.323 whereas the best bounds 
available, due to Janson (1986), are 

0.2492 < n < 0.41. 

First passage percolation was the origin of the theory of subadditive stocha­

stic processes which is now a fundamental tool in probabilistic combinatorics, 

see for example Kingman (1973). 

Correlated Percolation 

In an ideal world one would like to be able to remove the restriction that the 

random component associated with an edge in each of the above models was 
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independent of all other edges. This is the subject of correlated percolation 
which is now a topic of considerable interest in the physical literature but for 
which (understandably) there are very few theoretical results. 

For comprehensive rigorous accounts of what is now a huge area of research 
in statistical physics we refer to the monographs of Smythe and Wierman (1978), 
Kesten (1982) and Grimmett (1989). 

4. Enumeration and Related Problems 

Several fundamental problems in statistical physics and related areas of 

the natural sciences reduce to enumerating structures of different types. In this 

section we discuss a few of the most studied and basic problems of this nature. 

Animals or polyominoes 

Consider the 2-dimensional square lattice £ 2 with origin 0. An animal or po-

lyomino of n cells is a connected subgraph of £2 containing 0 and having n 

vertices. Let a(n) denote the number of distinct animals having n cells. Then 

clearly o(l) = 1, a(2) = 4 and counting the 3-celled animal types illustrated in 

Figure 4, we see a(3) = 18. 

<1) 

• 

0 1 o 

(k) to) 
f*> 

o (V 

Fig. 4 

The fundamental problem which is now at least 30 years old is to determine 
the form of a(n) for the different lattices. However, as with percolation theory, 
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rigorous exact results about animals are pretty scarce. 

First we will point out the connection between animals and percolation 

theory. Suppose that we could determine a(n,b), the number of animals with 

n cells and b boundary cells. (As the name suggests a cell is a boundary cell 

of a specific animal A if it is a vertex of C which is not in A but is adjacent 

to a vertex of A). Then from a(n,b) it is not difficult to compute the average 

cluster size in a percolation model. From this we get good bounds for the critical 

probability. 

Other applications of animals are to growth problems and as models of 

branched polymers with excluded volume. 

Now let us turn to some basic results about a(n) for the square lattice. A 

straightforward counting argument gives 

(4.1) 2n < a(n) < (6.25)n. 

It is also easy to prove that, for any positive integers m,n, 

(4.2) a(m + n) > a(m)a(n). 

Proof. Each animal has a top right corner and a bottom left corner. By "stic­

king" the bottom left corner of an n-celled animal to the top right corner of an 

m-celled animal we obtain an (m -f n)-celled animal. 

D 

By the basic property of subadditive functions, (4.1) and (4.2) give the 

fundamental result which holds (by analogous argument) for any regular lattice. 

(4.3) Theorem For any lattice C there exists a constant a(C) such that ifa(n) 

denotes the number of n-celled animals of C then 

lim a{nfln = sup [a(n)]1 / n = a(£) . 
n- ,°° n><x> 

Determining the limiting constant a(C) exactly seems to be very difficult 

and even the best known bounds are not very tight. For example, in the most 

studied case of the square lattice, concatenation methods coupled with compu­

ter counts give the best known lower bound of 3.79 for a{C"i) while the best 

upper bound gives a(£ 2 ) < 4.65. There are reasons for believing that a(C) is 

just above 4 in the case of this lattice. 
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For more details on these methods, the corresponding results for other 

lattices and a discussion of related problems we refer to a recent excellent review 

of Whittington and Soteros (1990). 

Self-avoiding walks and polygons 

Another counting problem closely connected with percolation theory and similar 

in spirit to the animal problem of the previous section is the following. A self-

avoiding walk of length n on a lattice £ is a path of n edges which has one 

endpoint at the origin. If / ( n ) denotes the number of such self-avoiding walks, 

on the square lattice then clearly / ( l ) = 4, / (2) = 12 and in general it is easy 

to show that 

(4.4) 2 n < / ( n ) < 4 . 3 n - 1 . 

Using the submultiplicative property 

f(m + n)< f(m)f(n) 

and a similar bound to (4.4) for a general lattice leads to the fundamental result. 

(4.5) Theorem For any lattice C, there exists a constant n = fJ>(C) (known as 

the connective constant) such that if fc(n) denotes the number of self avoiding 

walks of length n on C then 

lim fc{nf'n = mi[fc(n)Yln = / , (£) . 
n—•oo n 

Determining \i exactly for any lattice except the regular tree has been a 

much studied problem since it was first posed in 1957. Even good bounds seem 

to be difficult to obtain. For example, for the 2-dimensional square lattice, the 

best bounds so far known are 2.57 < \i < 2.73. 

A closely related quantity is gc(n) which counts the number of self-avoiding 

polygons of n steps. Clearly gc(n) < fc(n) but Hammersley (1961) proved that 

for any lattice with connective constant (i(C), 

lim gc(n)1/n = »(£). 
n—>oo 

There are physical reasons (based on renormalisation arguments) and some 

numerical evidence which support the intriguing conjecture that there exist 

constants a and ß such that 
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fc{n) ~ n a / i n , ^ ( n ) ~ nßnn 

and that a, /? are dimensional invariants, in other words they only depend on 

the dimension of the lattice. Little rigorous mathematical progress has been 

made since Kesten (1963). 

The Ice Problem 

As its name suggests the "ice problem" originates in the statistical physics 

associated with models used to calculate the residual entropy of 'square ice'. In 

its most general form an ice model specifies a set of allowable configurations at 

each vertex. All allowable configurations are of equal thermodynamic weight and 

the problem reduces to calculating the partition function, that is, enumerating 

the number of allowable configurations. 

Probably the most studied ice problem is the following. Given any 4-regular 

graph G count the number of orientations w of G which have the property that 

at each vertex there are exactly 2 inward and 2 outward pointing edges. 

Another way of looking at this enumeration problem is as follows. Fix an 

orientation u;0 of G. To each directed edge of G assign either a +1 or a —1 in 

such a way that the net flow into each vertex of G is zero. In other words, the 

ice problem on G is exactly the problem of counting nowhere zero flows mod 

3 in G, discussed in Chapter [Welsh]. But this is exactly the evaluation of the 

Tutte polynomial of G at the point (0, —2), or the rank polynomial of G at 

( - 1 , - 3 ) . 

Equivalently, by using the fact that when G is a planar graph, and G* is its 

planar dual, T(G;x,y) equals T(G*;y,x) and from the relation between Tutte 

polynomials and chromatic polynomials we see: 

(4.6) The ice problem on a 4-regular planar graph G is equivalent to counting 

3-colourings of the dual graph. 

A remarkable result of Lieb (1967) is that if Z(m,n) denotes the ice par­

tition function (that is the number of ice orientations) on the rax n portion of 

the square lattice, then 

(4.7) lim [Z(m,n) ] 1 / m n = (4 /3) 3 / 2 . 

Percus (1971) gives a very complete and clear account of the different ap­

proaches to the ice problems culminating in a proof of (4.7) by the transfer 

matrix method to be described in section 5. 
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As far as statistical physics is concerned, the problems of most interest are 
when G is a 3-dimensional lattice. As far as mathematical solution is concerned, 
only a few 2-dimensional ice models have been solved, a comprehensive account 
of these is given in Baxter (1982). 

The Monomer-Dimer Problem 

Let p(G, k) denote the number of fc-matchings in the graph G, with the under­

standing that p(G,0) = 1. Define the polynomial Q{G, z) by 

k>0 

This is a modified form of the matchings polynomial, which is discussed in 

Section 5 of Chapter [Godsil]. It can also be viewed as the partition function of 

a physical system. 

Consider a collection of sites on the surfaces of a metallic crystal. The 

surface is exposed to a gas consisting of monomers and dimers, e.g., hydrogen 

at a high temperature. Each site on the surface is occupied, either by a monomer 

or by one of the two ends of a dimer. Of course a pair of sites can be occupied by 

a dimer only if they are neighbours. The state of the system can be represented 

by a matching in a graph G. This has the crystal sites as its vertices, with two 

sites adjacent if and only if they can be occupied by the same dimer. Those 

pairs of sites occupied by dimers determine a matching. Hence the system is 

completely described by the graph G, the matching and the temperature. (The 

latter determines the energy gained by filling the crystal sites with monomers 

and dimers.) 

The physical question is whether this system will undergo a phase transi­

tion as the temperature varies. In fact it does not, except possibly when there 

are no monomers. This was proved by Heilmann and Lieb (1972). They sho­

wed that all zeros of Q(G,z) have zero real part, and their absolute value is 

bounded above by 2\/A — 1, where A is the maximum valency of a vertex in G. 

From these facts they eventually deduce the absence of a phase transition. The 

matchings polynomial has a number of interesting combinatorial properties see 

Chapter [Pulleyblank]. 

Hard Hexagons 

We work on the triangular lattice. Consider a system where some of the vertices 

of this lattice are covered by hexagons, with each hexagon covering a central 
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vertex and its six neighbours. Two adjacent vertices cannot be both at the 

centre of a hexagon. We can describe the state a of the system by assigning 

a weight 1 to each vertex at the centre of a hexagon, and 0 to the remaining 

vertices. Thus we may view a as a 0-1-vector indexed by the vertices of the 

lattice. The partition function is 

where the product is over all edges of the lattice, and the exponent of z is 

just the number of hexagons. Baxter establishes an invariance property of this 

partition function using the star-triangle relation. From this he then deduces the 

free energy. One surprise is an intimate connection with the Rogers-Ramanujan 

identities. We direct the reader to Andrews (1982) for more information about 

this relationship. 

5. Transfer Matrices 

Many of the combinatorial problems arising in statistical physics can be 

reduced to enumeration problems, and these in turn can sometimes be solved 

by the method of transfer matrices, which we now discuss. 

We begin with the problem of determining the number of ways an m x n 

chessboard can be covered with dominoes. Suppose that our board has been 

covered with dominoes. The given covering can be encoded by assigning one 

of four states {U,D,L,R} to each square of the board. The state of a square 

determines where the other half of the domino covering the square lies. Thus, 

if the other half of the domino covering a square is above it, then the square 

has state U. If it is below we use D, and if it is to the left or the right we 

use L or R respectively. It should be clear that many assignments of states to 

squares do not correspond to coverings, but every covering gives rise to a unique 

assignment of states to squares. 

Now we take our coding a step further. View our chessboard as a sequence 

of n columns. Once a covering is given, the state of the vertices in a given 

column can be respresented by a vector, with states as entries. (Of course, the 

set of possible vectors for the first and last columns will be a subset of the 
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possible vectors for an interior column.) Thus our covering can now be encoded 
as a sequence 

cr\, • • •, (Tn 

where <r» is the state vector for the i-th column. 

Let JC be the set of all possible state vectors for a column. Construct a 
graph G = G(S) with vertex set S, and with two vertices a and a' adjacent if 
there is a covering such that there are consecutive columns with states a and a'. 
The states that can be taken by the first column form a subset, S say, of V(G) 
and the states available to the last column form a subset F, say. The number 
of possible coverings of our TO x n chessboard can now be shown to equal the 
number of walks of length n in G which start at a vertex in S and finish at a 
vertex in F. (Our terminology here follows that used in Section 5 of Chapter 
[Godsil]) 

If A is the adjacency matrix of G and we denote the characteristic vectors 
of the sets 5 and F by x(S) a n d x(F) respectively then the required number 
of walks is 

x{S)TA"x(F). 

Using the theory of the spectral decomposition of a symmetric matrix we may 
write 

An = ^ °nz» 
e 

where 6 ranges over the distinct eigenvalues of A and Zg is the matrix repre­
senting orthogonal projection onto the eigenspace associated to 6. Denote the 
largest eigenvalue of A by 6\. Then by the Perron-Frobenius theory we know 
that if G is connected then 6\ is simple, and for any other eigenvalue 6, we have 
|0| < 0 i . l t follows that 

and hence that 

(5.1) (X(S)TAn
X(F))^ -> 6, 

as n tends to infinity. 

The number of domino coverings of our chessboard can be expressed as 
the number of perfect matchings in a graph, H say. The vertices of H are the 
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Squares of the chessboard, and two squares are adjacent in H if and only if they 

are adjacent on the board. Any domino covering gives a perfect matching in the 

graph. A generalisation of the original problem can now be obtained as follows. 

Assign a weight to each edge of H and define the weight of a matching to be 

the product of the weights of the edges it uses. Instead of simply computing the 

number of perfect matchings in H, we may determine the sum of the weights 

of all perfect matchings. The weights we use may be variables, in which case 

the sum will be a polynomial. (For example we might assign a weight a to each 

edge of H joining two squares in the same column of the board, and a weight 

ß to the remaining edges. The sum will then be a homogeneous polynomial in 

a and ß.) 

In particular, the partition function for the Ising problem itself can be ex­

pressed in terms of the number of perfect matchings in an edge-weighted planar 

graph. (See Appendix E in Thompson (1972).) If we then seek to determine 

this partition function by a transfer matrix argument, we will find it expressed 

in the form 

Z =uTAnv 

for a suitable matrix A and vectors u and v. A statistical physicist would then 

be concerned with properties of the limit 

(uTAnv)1/n 

as n tends to infinity. From the discussion above of the domino problem, we may 

see that this quantity may be expressed as the largest eigenvalue of a symmetric 

matrix. Alternatively, we could use the generating function 

]T \nuTAnv; 
n>0 

the largest eigenvalue of A is, in general, the reciprocal of the radius of conver­

gence of this power series. 

To close this section, we remark that a solution to the chessboard problem 
will be found in Section 4 of Lovasz (1979). (However it uses Pfaffians rather 
than transfer matrices. Pfaffians are discussed briefly in Section 5 of Chapter 
[Godsil]) A more leisurely introduction to the method of transfer matrices may 
be found in Percus (1971) and Stanley (1986). A number of applications of this 
method can be found in Baxter (1982). 
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6. Duality, Stars and Triangles 

In this section we shall illustrate by example a technique which has been 
frequently used to resolve (combinatorial) problems of physics. The partition 
function for the Ising model has two interesting invariance properties. First, if 
G is a plane graph with dual G* then their rank polynomials are related by 

R{G;x,y) = R{G*;y,x). 

A proof of this will be found in Chapter [Welsh]. If 

-m 
1/2 

then 

Recalling the relation of the rank polynomial to the partition function described 
in section 2, this leads to a relation between the partition function for the Ising 
model on the graph G, expressed in terms of A, and the partition function of G*, 
expressed in terms of [(/z2 + l)/(/i2 — I)]1/2- If G is the infinite square lattice 
then G* is isomorphic to G and the duality relation becomes an invariance 
condition. Physically this can be viewed as a relation between the values of 
the partition function at high temperatures and low temperatures. For more 
details, see Thompson (1972) or Baxter (1982). 

For our next invariance property, we need to consider a generalisation of 
the Ising model, with partition function 

Z(G) = £ e x p 

Recall from section 2 that in the case of uniform interactions ß = J/kT, here 
we allow the interactions J to vary so that ß also varies. 

By way of example, if G is the square lattice we might have ßij = K for all 
horizontal edges and ßij = L for all vertical edges. If e = ij and Ae = expßij 
then we find in place of (2.6) that 

Z(G) = (Ae - Kl)Z{Gle) d- \:lZ{G\e). 
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Consider the star S and triangle T, with weights as indicated in Figure 5. 

Fig. 5. 

Suppose that in both cases the vertices 1,2 and 3 are assigned states <TI,<T2 

and 0-3. Suppose that the vertices 1,2 and 3 in S are part of some larger graph 

G. Then Z(G) is a sum over all possible state assignments of its vertices. For a 

given state, the corresponding term in the sum is the product of a contribution 

from the edges of S, and one from the edges not in S. The contribution from S 

is 

exp[(7o(£i<7i + L2(T2 + Lz<Tz). 

We divide the possible states into pairs, where members of the same pair differ 

only in the value of <r0- Thus we may write Z(G) in the form 

(6.1) y~] 2cosh(Li<ri + L2<r2 + L3cr3)f(a) 

where f(cr) is the contribution of the edges not in 5, given the values of a on 

the vertices of G\0. 

Now suppose that we alter G by deleting the vertex 0 and the three edges 

of 5, replacing them with the three edges of T. The new graph, which we denote 

by G', thus has one less vertex than G. Its partition function can be written in 

the form 

(6.2) 2jexp(Üf i<7 2 0-3 + K2(TlCrz + Kz(T\<T2)f{<T). 

Then the surprise is that, given L\,L2 and £3, it is possible to choose Ki,K2 

and Kz so that 

24 



2cosh(Li0"i + L2a2 + LZCTZ) = i?exp(ÜTicr2a-3 + K2<y\a3 + Kza\a2) 

and then Z(G) = RZ(G'). To achieve this we need 

2cosh(ii +L2 + LZ) = Äexp(ü:1 + K2 + K3) 

2cosh(-Li + L2 + I s ) = RexpiKi - K2 - K3) 

2cosh(Li -L2 + Li) = Rexpi-Kx + K2 - Kz) 

2cosh(Li + L2 - L3) = Rexp(-Ki - K2 + K3). 

Denote the four terms on the left by c, c\, c2 and c3 respectively. Then multi­

plying these four equations together yields that 

R* = cc\c2c3 

is a necessary condition. Further manipulations yield 

sinh(2ü:1)sinh(2L1) = sinh(2ür2)sinh(2L2) = sinh(2üf3)sinh(2£3) = cT1, 

where 
! _ sinh(2£i )sinh(2X2 )sinh(2i:3) 

2(ccic2c3)1/2 

as a second necessary condition. If the values of R and K{ are as given by the 

last three equations then Z(G) = RZ(G'). (For help with the missing details, 

see Chapter 6 of Baxter (1972).) 

If G is the hexagonal lattice then it can be transformed into a triangu­

lar lattice by repeatedly replacing stars by triangles. (The hexagonal lattice is 

bipartite; replace all the stars centered on vertices in one of the two colour cl­

asses.) This gives us a relation between an Ising model on the hexagonal lattice 

and one on the triangular lattice. We obtain a second, independent, relation by 

recognising that the hexagonal lattice is the planar dual of the triangular lat­

tice. Composing these relations yields an expression for the partition function 

of an Ising model at low temperature in terms of a partition function at high 

temperature, for both the triangular and hexagonal lattices. This is an analogue 

of the relation obtained for the square lattice above. (Again, see Baxter (1972) 

for more detail.) 

Other applications of this star-triangle transformation, which is really a 

special instance of planar duality theory have been in percolation theory, to the 

Potts model and to the six and eight vertex ice model. More details may be 

found in Temperley (1981). 
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§ 7. Ground States of Spin Glasses 

We will now turn to a different application of combinatorics in statistical 

physics and outline how some questions about spin glasses can be answered 

by employing the mathematical machinery of combinatorial optimization. We 

concentrate on showing that the problem of determining ground states of spin 

glasses can be viewed as a so-called maximum cut problem in graphs. 

The study of order-disorder phenomena is a flourishing branch in today's 

physics. One of the most successful attempts to understand disorderly systems 

has been the study of spin glasses. They occupy a central position in this area. 

The composition of a spin glass is unremarkable — perhaps a few iron atoms 

scattered in a lattice of copper atoms — but its magnetic properties are con­

foundedly complicated and sometimes tantalizingly unpredictable. "Spin" is the 

quantum-mechanical spin from which magnetic effects arise; "glass" refers to 

the disorder in the orientations and interactions of the spins. For an introduc­

tion to the general theory of spin glass models see Mezard, Parisi and Virasoro 

(1987). 

Physicists have developed a number of theories to model spin glasses and 

explain their behaviour. Some of these theories predict contradicting pheno­

mena. These phenomena occur in situations which are hard to realize expe­

rimentally. In order to test the theories and guide the design of experiments, 

researchers have designed computer models to simulate the behaviour of spin 

glasses and then observe which phenomena occur. Some aspects studied in these 

models lead to optimization problems. The papers by Toulouse (1977), Bieche, 

Maynard, Rammal & Uhry (1980), and Barahona, Maynard, Rammal &: Uhry 

(1982) have pioneered the study of spin glasses from an optimization point of 

view and pointed out the close Unks of the ground state problem to interesting 

models in combinatorial optimization. 

A spin glass is an alloy of magnetic impurities diluted in a nonmagnetic 
material. Alloys that show spin glass behaviour are, for instance, CuMn; the 
metallic crystal AuFe; the insulator EuSrS; the amorphous metal GdAl. One 
characteristic of spin glasses is a peak in magnetic susceptibility at a certain 
temperature. This peak indicates a phase transition. Another phase transition 
may take place at very low temperature. However, it is an open question at 
present whether or under what conditions on the spin glass such a phase tran-
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sition occurs, and what order phenomena show up at low temperature. 

We will now present a mathematical model of spin glasses. We assume a gi­

ven spin glass that contains n magnetic impurities (atoms). Each magnetic atom 

i has a magnetic orientation (spin) which is represented by a three-dimensional 

unit-length vector Si. Between each pair i,j of magnetic atoms there is an in­

teraction Jij that depends on the nonmagnetic material and on the distance r y 

between the atoms. Several proposals in the literature model this interaction. 

One common feature of many of these models is that the absolute value of the 

interaction decreases rapidly with distance and that small changes of distance 

may result in a change of the sign of the interaction. One example of such an 

interaction function (used frequently) is 

j . . - j ( r . Q - A C O s ( Z ? r ' i ) 

where A, B, and D are material-dependent constants. In another model some 

number J is chosen and the interactions have to satisfy 

J y G { 0 , + J , - J } . 

If atoms i and j have spins Si and Sj, the energy interaction between i and j 

is given by 

Hij = JijOi • b j , 

where Si • Sj denotes the Euclidean inner product. Given a spin configuration 
or state <r, the energy of the whole system is given by the Hamiltonian 

n—1 n n 

*(") = " £ E JySi-Sj-Ä^Si.F, 
i= i j=i+i »=i 

where a unit length vector F € R3 represents the orientation of an exterior 

magnetic field and h represents the strength of this field. 

The study of this Hamiltonian is a major issue in statistical physics. Its 

difficulty has led to considering various simplifications. One such simplification 

is to replace the three-dimensional vectors Si and the magnetic field F by one-

dimensional vectors o-j, respectively / , with values +1 or —1 (called "Ising 

spin"), meaning magnetic north pole "up" and magnetic north pole "down". 

Such a representation is called the Ising model of spin glasses, see Section 2 of 

this chapter for a general introduction to this model and some of its properties. 
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There are, in fact, substances which show an up/down behaviour and for which 
the Ising model seems to be the "correct" model and not just a simplification. 

Models that consider interactions between all pairs of impurities were in­
troduced by Sherrington and Kirkpatrick and are called long range models. A 
number of models consider only interactions between "close" impurities (so-
called nearest neighbour interactions), and set to zero the interactions between 
impurities that are far apart. These models, introduced by Edwards and Ander­
son, are called short range models. Many physicists consider short range models 
more realistic (see Young (1984)). Moreover, a number of substances show short 
range interactions only: next-neighbour and second-next-neighbour, say. 

It is customary to make further simplifications and to consider the spins 
regularly distributed, say on a two- or three-dimensional grid (that is square or 
cubic lattice). In a typical short range model of such a grid structure, interac­
tions are nonzero only along edges of the grid, so, for instance, in two-space, 
an impurity interacts only with (at most) four other impurities, its neighbours 
in the grid graph. Two grid models of this type have been studied intensively: 
the Gaussian model, where the interactions are chosen from a Gaussian dis­
tribution, and the ±J-model, where the interactions between impurities take 
only the values +J or — J, J a fixed positive number, according to some pro­
bability distribution. In a real spin glass (an alloy), the magnetic impurities 
are randomly distributed. Note that in the models just introduced, the spins 
are regularly distributed in a grid, but the interaction values are considered 
random. 

The partition function of the Ising model has been introduced in Section 2. 
For our purposes, it is useful to write it in the following way. Let Q be the set 
of all possible configurations of Ising spins on a grid, say. So \fi\ = 2n , if there 
are n spins. Then the behaviour of the system at temperature T is believed to 
be described by the magnetic partition function 

where k is the Boltzmann constant. As mentioned in Section 2, analytic expres­
sions of the partition function, in general, are not known. 

At Q°K, the spin glass system attains a minimum energy configuration. 
Such a configuration is called a ground state. A ground state can be found by 
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minimizing the Hamiltonian associated with the system. We will now present 

the reduction of the problem of finding a minimum energy spin configuration 

in the Ising model to a max-cut problem in graphs. 

Suppose we have magnetic impurities 1,2,. . . ,n and an exterior magnetic 

field, 0. We set V = { 0 , 1 , . . . , n } and consider V as the vertex set of a graph 

G = (V, E). For a pair i,j of impurities, G contains an edge ij if the interaction 

Jij between i and j is nonzero. An edge Oi links every impurity i, 1 < i < n, to 

the magnetic field 0. Let us call G the interaction graph of the spin system. An 

Ising spin <TJ € {—1,+1} is associated with each impurity. The Ising spin <TQ of 

the exterior magnetic field can be set to +1 without loss of generality. Let h be 

the strength of the magnetic field and set Jot = h for i = 1 , . . . ,n , then we can 

write the Hamiltonian of this model as a quadratic function in ±l-variables in 

the following way: 

n 

•i€B i=l ijeE 
i,i>o 

Each spin configuration a corresponds to a partition of V into V + and V~, 

where V+ = {i € V\<n = +1} and V~ = { i e V|<T* = — ! } • So we can write the 

energy of the state a in the form 

ijeE(v+) ijeE(v-) ijes(v+) 

ij€.E(V+) ij£E(V~) ij€6(V+) 

Recall that, for each subset W of V, E(W) = {ij e E\i,j e W} and 6(W) = 

{ij e E\i € W,j G V \ W } and that the edge sets of type S(W) are called cuts. 

Setting C = YlijeE ^*i» w e s e e ^ a * 

H(a) + C = 2 Y, Jy> 
ij£6(V+) 

and defining cy = - Jij for all ij € E, we find that the problem of minimizing 

H is equivalent to maximizing 

c(6(V+))= Y, ^ 
ij€6(V+) 
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over all V+ C V. The problem of finding, given a graph with edge weights, 

a cut 6(W) such that the sum of weights of the edges of S(W) is as large as 

possible is known as the max-cut problem. Thus finding a ground state in the 

Ising model of a spin glass is equivalent to finding an optimum solution of the 

corresponding max-cut problem. 

To determine ground states of spin glasses or, equivalently, cuts of maxi­

mum weight, physicists have introduced the so-called simulated annealing me­

thod This is an algorithmic analogue of standard techniques in the material 

sciences where, for instance, large (and perfect) crystals are grown by using a 

careful scheme of cooling and heating the material to temperatures very close 

below and above the critical temperature where the liquid freezes into an or­

dered array of atoms, the crystal. This method was formulated as a general 

heuristic for the solution of arbitrary combinatorial optimization problems, see, 

for example, Kirkpatrick, Gelatt, Vecchi (1983), and usually turned out to be 

a reasonable, though slow, approximation algorithm, see Johnson, Aragon, Mc-

Geoch, Schevon (1989). 

It soon became clear that, by simulated annealing, states of low energy 

can be reached but that there is no guarantee or proof that a true ground 

state can be found. Thus more sophisticated combinatorial methods came into 

play that we briefly want to mention. More detailed and thorough surveys of 

these aspects with large lists of references are Barahona, Grötschel, Jünger and 

Reinelt (1988), Grötschel, Jünger and Reinelt (1987). 

From the complexity point of view (cf. Chapter Shmoys &; Tardos) it turned 

out that the max-cut problem is iVP-hard for general graphs, and so the spin 

glass problem is. But much more restricted spin systems turned out to lead to 

hard optimization models. For instance, finding a ground state is iVP-hard if 

the interaction graph of the spin system is a three-dimensional grid, or a three-

dimensional grid with just two layers, or even a planar grid with an external 

magnetic field, provided the interactions are taken from {—J, 0, J } . 

On the other hand, if the interaction graph of the spin system is a planar 

graph and there is no external field then using the duality theory of planar 

graphs one can transform the associated max-cut problem to a so-called Chinese 

postman problem. This problem can be solved by the algorithm of Edmonds and 

Johnson (1973) which combines a series of shortest path calculations and an 

application of the matching algorithm in an ingenious way. Barahona (1983) 
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extended this to graphs not contractible to the complete graph K$. Using the 
Edmonds-Johnson algorithm, ground states of large planar spin systems can 
(and have been frequently) calculated easily. 

The most interesting open questions about spin glasses occur, however, 
in three dimensions or when an external magnetic field is involved. To solve 
such (iVP-hard) instances various enumeration techniques (e.g. the transfer 
matrix method) have been designed. The most successful approach seems to 
be the use of cutting plane algorithms (cf. Chapter "Optimization") that are 
based on an intensive study of the so-called cut polytope. This approach is 
called polyhedral combinatorics and is explained in Chapter [Schrijver]. With 
these linear-programming based cutting plane algorithms, spin systems in three 
dimensions or two dimensions with magnetic field can be treated that have well 
over one thousand spins. Algorithms of this type terminate with an optimality 
guarantee, that is, true ground states can be found; and they have further 
desirable features. But, of course, no polynomial running time guarantee can 
be given. For more information, see Barahona, Grotschel, Jünger and Reinelt 
(1988) and Grotschel, Jünger and Reinelt (1987), in particular, for a list of 
open problems in physics that may reach a better level of understanding by a 
systematic and intensive use of the combinatorial methods outlined above. A 
collection of papers and surveys on various aspects of spin glasses (including 
the ones discussed here) is van Hemmen and Morgenstern (1987). 

8. Conclusion 

This has been just a glimpse of a fascinating but very difficult area of 
research. For example there is no mention of the important topic of cluster 
expansions. Details of this and many other links between combinatorics and 
physics may be found in the articles of Temperley (1979) (1979a). Almost all 
the problems discussed are provably hard in the sense of computational com­
plexity, except for the very restricted cases. The role of planarity appears to be 
significant in making a problem easier. 

As far as solution is concerned, apart from the approach suggested in sec­
tion 7, the most significant theoretical advance would appear to be the results 
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of Jerrum and Sinclair (1990) that the monomer dimer problem and the ferro­
magnetic version of the Ising model have a. fully polynomial randomised appro­
ximation scheme. Put more loosely, this says that there are fast (in the sense of 
polynomial time) good Monte Carlo methods for these problems. Whether such 
schemes exist for the other problems discussed in the chapter is an important 
but as yet unanswered question. 
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