
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

SVEN O. KRUMKE MADHAV V. M ARATHE DIANA POENSGEN

S. S. RAVI HANS-CHRISTOPHWIRTH

Budgeted Maximum Graph Coverage

ZIB-Report 02-24 (May 2002)

Budgeted Maximum Graph Coverage

Sven Oliver Krumke2, Madhav V. Marathe3, Diana Poensgen2, S. S. Ravi4, and
Hans-Christoph Wirth1

1 University of Würzburg
Department of Computer Science, Am Hubland, 97074 Würzburg, Germany

e-mail: wirth@informatik.uni-wuerzburg.de
2 Konrad-Zuse-Zentrum für Informantionstechnik, Berlin (ZIB)

Takustraße 7, 14195 Berlin-Dahlem, Germany
e-mail: {krumke,poensgen}@zib.de
3 Los Alamos National Laboratory

P.O.Box 1663, MS 997, Los Alamos, NM 87545, USA
e-mail: marathe@lanl.gov

4 University at Albany – SUNY
Department of Computer Science, Albany, NY 12222, USA

e-mail: ravi@cs.albany.edu

Abstract An instance of the maximum coverage problem is given by a set of
weighted ground elements and a cost weighted family of subsets of the ground
element set. The goal is to select a subfamily of total cost of at most that of a
given budget maximizing the weight of the covered elements.
We formulate the problem on graphs: In this situation the set of ground elements
is specified by the nodes of a graph, while the family of covering sets is restricted to
connected subgraphs. We show that on general graphs the problem is polynomial
time solvable if restricted to sets of size at most 2, but becomes NP-hard if sets of
size 3 are permitted. On trees, we prove polynomial time solvability if each node
appears in a fixed number of sets. In contrast, if vertices are allowed to appear an
unbounded number of times, the problem is NP-hard even on stars. We finally give
polynomial time algorithms for special cases where the subgraphs form paths and
the host graph is a line, a cycle or a star.

Keywords: budgeted maximum coverage, approximation algorithm, dynamic program-
ming

1 Introduction, Preliminaries, and Related Work

The budgeted maximum coverage problem is defined as follows: An instance specifies a
set X = {x1, . . . , xn} of ground elements with weight function w : X → R+

0 , further a
family F ⊆ 2X of covering sets with associated costs c : F → R+

0 . The goal is to select
a subfamily F ′ ⊆ F which does not exceed a given constraint on the total cost and
maximizes the weight of the covered elements.

The unit cost variant c ≡ 1 of the problem is known as the maximum coverage problem
(see e. g. [Hoc97a] for a survey). A straightforward reduction from the Vertex Cover
problem shows that the unweighted maximum coverage problem is NP-hard even if each
ground element appears in no more than 2 sets.

The problem with general cost function c 6≡ 1 has been investigated by Khuller et al.
[KMN99]. The authors give an approximation algorithm with performance (1−1/e) ≈ 0.63
and show that this is best possible unless NP ⊆ DTIME(NO(log log N)).

There is an alternative definition of the budgeted maximum coverage problem used
by Ageev et al. [AS99,AS02]: “Given ground elements I and family F ⊆ 2I with weights

2

w : F → R+
0 and an integer p ∈ N, find a subset X ⊆ I of the ground elements with |X| = p

which maximizes the total weight of the sets from F intersecting X.” Comparing the two
definitions, is appears that the role of ground elements and sets is interchanged. Notice
that a set of size k in the Ageev definition transforms into a ground element appearing in
k sets in the definition employed by Khuller et al. We will stick to the notation used by
Khuller et al. [KMN99] throughout the paper.

Definition 1 (Budgeted Maximum Graph Cover problem)
An instance of Budgeted Maximum Graph Cover (GC for short) is given by an
undirected simple graph G = (V, E) with node weight function w : V → R, a weighted
family F = {S1, . . . , S|F |} of connected induced subgraphs Si with cost function c : F →
R+

0 , and a budget value B ∈ N. The goal is to find a selection F ′ ⊆ F of subgraphs of
total cost

c(F ′) :=
∑

S∈F ′
c(S) ≤ B ,

such that the total weight w(F ′) covered by the selection, defined by

w(F ′) :=
∑

v∈SS∈F ′ S

w(v) ,

is maximized.

We assume without loss of generality that each of the subgraphs does not violate the
budget constraint, i. e., c(S) ≤ B for all S ∈ F . By GCunit we denote the set of instances
where all sets have cost 1. For a graph class Γ , we use the notion “Γ -GC” to denote the
fact that all graphs of the family F belong to graph class Γ . Further, the notion “GC on
Γ” means that the input graph G is restricted to graph class Γ . We denote by GCk the
subset of instances of problem GC, where each set has cardinality at most k.

2 Maximum Graph Coverage on General Graphs

This section considers the case of GCunit on general graphs. We first address the case of
GCunit

2 where each set has cardinality at most 2 and give a polynomial time algorithm
based on matching techniques. We then show hardness of GCunit

k for k ≥ 3.

2.1 GCunit with Sets of Cardinality Bounded by 2

Given an instance of problem GCunit
2 , we claim that we can assume without loss of

generality that each set has cardinality exactly 2. This can be verified easily: for each
singleton set S = {v} ∈ F we can insert a dummy node v′ with zero weight into the
graph, add a dummy edge joining v and v′ and replace S by S′ := {v, v′}. We thus obtain
an equivalent instance of GCunit

2 whose optimal value equals the optimal value of our
original instance. Thus, for the remainder of the section we will assume that we are only
given sets of size 2. Due to this observation, each set S ∈ F corresponds to an edge in G.
We will also assume in the sequel that G does not contain “useless edges”, that is, edges
which are not sets from F . The following lemma shows that the graph cover problem can
be reduced to a matching problem with cardinality constraint:

Lemma 2
GCunit

2 with input graph G = (V,E) and budget constraint B is equivalent to the problem
of finding a maximum weight matching in a graph with 2|V | vertices and |E|+ |V | edges
subject to the constraint that the matching contains exactly B edges.

3

Proof. Consider the graph H consisting of all vertices and edges in G and, in addition,
for each vertex v ∈ V a new vertex v′, called the “mate” of v, which is joined to v by an
edge of weight w(v) (hence the only neighbor of a mate note v′ is v itself). The weight of
an edge (u, v) in H which originates from the edge (u, v) ∈ E is set to w(u) + w(v).

Let S = {S1, . . . , SB} denote an optimal solution for the given instance of GC2 on
graph G, which covers a total weight of W ∗. Observe that without loss of generality we
can assume that the edge set S decomposes into node disjoint stars, i. e., there is no path
of length 3 formed by edges from S.

We construct a matching in H of weight at least W ∗ which uses exactly B edges. View
the sets {S1, . . . , SB} as edges in H and denote by HS the subgraph of H containing all
vertices of H and the edges in S. Obviously, if each vertex in HS has degree at most one,
then the edges in S form a matching. In this case, since no two edges in S share a common
endpoint, the weight covered by the sets in S equals that of the corresponding matching.

It remains to handle the case where there are vertices of degree greater than 1 in
HS . Let v ∈ H be such a vertex, u be one of its neighbors in HS . Then the degree of u
equals 1, otherwise there would be a path of length 3. Hence we can replace edge (v, u)
by edge (u, u′) thus decreasing the degree of v by one. By repeating this replacement
procedure, we end up with a matching in graph H. It is easy to observe that the weight
of the edges of this matching equals the weight of the nodes covered by S.

Conversely, let HS be an arbitrary matching in H of total weight W , consisting of
B edges. Obviously, the total weight of the nodes from G incident with edges from HS

equals W . To construct a valid covering, replace each edge (v, v′) of HS incident with a
mate node v′ by an arbitrary edge incident with v. This is possible, otherwise v would be
an isolated node in G. Obviously, this replacement operation does not shrink the set of
covered nodes from G. 2

The following result shows how to solve a maximum weight matching problem with
cardinality constraint.

Lemma 3
The maximum weight cardinality k constrained matching problem in a graph H =
(VH , EH) can be solved in polynomial time by computing a maximum weight perfect
matching in an auxiliary graph with 2|VH | − 2B vertices and |EH |+ |VH | · (2|VH | − 2B)
edges.

Proof. We construct the auxiliary graph H ′ mentioned in the statement of the lemma as
follows: H ′ contains all vertices and edges of H. Moreover, we add a set X of |VH | − 2B
new vertices, each of which is connected to all vertices in VH . The weight of the edges
between vertices in X and VH is set to 0, the original edges from EH retain their weights.

Clearly, a matching of cardinality B can be augmented to a perfect matching in H ′

of the same weight by adding, for each of the |VH | − 2B unmatched vertices in VH an
edge to a vertex in X. Conversely, any perfect matching in the auxiliary graph H ′ must
contain exactly |VH | − 2B edges between vertices in X and VH . Hence, we can derive
from this matching a matching of cardinality exactly k in the original graph H. Since all
edges between X and VH had zero weight, this matching in H has the same weight as the
perfect matching in H ′. 2

From Lemma 2 and Lemma 3 we can immediately conclude:

Theorem 4 (Solving GCunit
2)

GCunit
2 can be solved in polynomial time. 2

4

2.2 GC with Sets of Cardinality Bounded by k ≥ 3

The results of the previous section for GCunit
2 are now complemented by a hardness

result which shows that the problem gets NP-hard when the bound on the size of the sets
increases.

Theorem 5 (Hardness of GCunit
k)

GCunit
k is NP-hard to solve for any fixed k ≥ 3, even when restricted to path-GCunit

k on
bipartite graphs.

Proof. We use a reduction from 3-Dimensional Matching which is well known to be
NP-complete (see [GJ79, Problem SP1]). The reduction shows the hardness of Path-GC3

on bipartite graphs and easily extends to any fixed k ≥ 3.
An instance of 3-Dimensional Matching is given by a set M ⊆ W ×X ×Y , where

W , X, and Y are disjoint sets having the same number q of elements. The question posed
is, whether M contains a matching, i.e., a subset M ′ ⊆ M such that |M ′| = q and no two
elements of M ′ agree in any coordinate.

We construct the natural bipartite graph G with vertex set W ∪ X ∪ Y and edge
set W × X ∪ X × Y . For any triple (w, x, y) ∈ M the collection F contains a the set
S = {w, x, y} which forms a path in G. The budget is set to B := q. It is easy to see
that M contains a matching if and only if there is a cover in G with q sets from F which
covers the whole graph. 2

3 Maximum Graph Coverage on Paths and Cycles

In view of the results of Section 2 we consider restricted families of host graphs. We start
with the imaginably simplest case, namely the restriction of the input graph to being
a path. Obviously, also the family of subgraphs consists of paths in this case. It will
turn out that even this very simple setting leads to an NP-hard optimization problem
(Theorem 14), while the unit cost variant of the problem is solvable in polynomial time
(Theorem 8).

3.1 Unit Cost Function

We first consider the situation where the cost of each set is one. We introduce some easy
observations. Let G = (V,E) be an instance of GCunit on paths with family F ⊆ 2V of
subgraphs. Let V = {v1, . . . , vn} be the set of nodes and E = { (vi, vi+1) | i = 1, . . . , n−1 }
be the set of edges of the input graph. For an arbitrary subgraph S ∈ F , denote by

l(S) := min{ i | vi ∈ S }

the node of subgraph S with the lowest index. For arbitrary subgraphs Si, Sj ∈ S, we say
that Sj dominates Si if Sj ⊃ Si and l(Si) = l(Sj). It is easy to see that the following
assumptions can be made without loss of generality:

Assumption 6 (Valid for GCunit on paths)
1. Family F contains no dominated sets.
2. The size of the family is bounded by |F | ≤ n.
3. The budget is bounded by B ≤ |F |.
4. For F = {S1, . . . , S|F |} we have l(S1) < · · · < l(S|F |).
5. We have v1 ∈ S1 and vn ∈ S|F |.

5

We will now develop a dynamic programming scheme for solving the problem. Define

f(b, i) (where 0 ≤ b ≤ B and 1 ≤ i ≤ n)

to be the maximum weight of nodes from the restricted node set {v1, . . . , vi} which can
be covered by up to b subgraphs from F . Let F ′(b, i) ⊆ F be a corresponding selection
implementing that value. By S(b, i) we denote the set S of maximal index from F ′(b, i)
which covers vi; if vi is not covered by F ′(b, i) at all then we set S(b, i) := ∅. From this
definition it follows that f(B, n) is the value of an optimal solution.

It is easy to observe that for i = 1 we have

f(b, 1) =

{
w(v1), if b > 0,
0, otherwise.

and S(b, 1) =

{
S1, if b > 0,
∅, otherwise.

We now define for i = 1, . . . , n− 1

f(b, i + 1) :=

{
f(b, i) + w(vi+1), if vi+1 ∈ S(b, i),
max{f∗(b, i), f(b, i)}, otherwise,

(1)

where we use the shortcut

f∗(b, i) := max
S∈F

vi+1∈S

(
w(S ∩ {v1, . . . , vi+1}) + f(b− 1, l(S)− 1)

)
. (2)

We claim now that Definition (1) is compatible with the above definition of f(., .),
i. e., the dynamic program maintains an optimal solution at each stage. To this end, let
ÕPT := {S̃1, . . . , S̃B} denote an optimal solution to the instance, OPT := w(ÕPT) its
value. Assume that l(S̃1) < · · · < l(S̃B). Restricted to the subgraph induced by nodes
v1, . . . , vi, this solution induces costs

c̃(i) :=

{
min{ b | vi ∈ S̃b }, if vi is covered by ÕPT,
c̃(i− 1), otherwise.

(where c̃(0) := 0) and contributes a weight of

w̃(i) := w(
⋃

S̃∈ÕPT

(S̃ ∩ {v1, . . . , vi})) .

Our claim is justified by the following lemma which can be proved by induction.

Lemma 7
For all i = 1, . . . , n, we have f(c̃(i), i) ≥ w̃(i).

Proof. Let ÕPT be an optimal solution. We prove the claim by induction on i. Case
i = 1 can be verified by inspection. Assume that the claim is valid for some i ≥ 1.

First consider the case where vi+1 ∈ S(c̃(i + 1), i). Then we conclude

f(c̃(i + 1), i + 1) = f(c̃(i + 1), i) + w(vi+1)
≥ f(c̃(i), i) + w(vi+1) by monotonicity of f(., i)
≥ w̃(i) + w(vi+1) ≥ w̃(i + 1) by induction hypothesis .

6

The remaining case, vi+1 /∈ S(c̃(i+1), i), splits in two sub-cases. On the one hand, assume
that vi+1 is covered by the optimal solution. Let S ∈ ÕPT be the set with vi+1 ∈ S. Then
the budget spent by the optimal solution satisfies

c̃(i + 1) = c̃(l(S)− 1) + 1 , (3)

and the total weight gained can be distributed in the same manner. Hence,

f(c̃(i + 1), i + 1) ≥ w(S) + f(c̃(i + 1)− 1, l(S)− 1) by the above observation
= w(S) + f(c̃(l(S)− 1), l(S)− 1) by (3)
≥ w(S) + w̃(l(S)− 1) ≥ w̃(i + 1) by induction hypothesis

On the other hand, node vi+1 is not covered by ÕPT. Then we have c̃(i + 1) = c̃(i) and
w̃(i + 1) = w̃(i) and the claim follows immediately. 2

Theorem 8 (Solving GCunit on paths)
GCunit on paths can be solved in polynomial time.

Proof. The claim of the theorem immediately follows from Lemma 7 for the case i = n,
using the observation that c̃(n) = B and w̃(n) = OPT. 2

This result can be generalized. The algorithm behind Theorem 8 can be used to solve
the problem on cycles. There are n ways to break up a cycle of n nodes into a path. Each
of these n instances can be solved using the above algorithm. At the end, we take the
best solution as the solution on the original cycle.

Corollary 9 (Solving GCunit on cycles)
GCunit on cycles can be solved in polynomial time. 2

3.2 General Cost Functions

If the constraint c ≡ 1 on the cost function is relaxed, the problem becomes NP-hard
(Theorem 14). However, we will show that there is a PTAS. To this end we use a com-
monly used technique of employing a (pseudopolynomial) algorithm for the dual problem
together with a binary search to construct an algorithm for the original problem. Scaling
the input parameters then yields a polynomial time approximation algorithm.

Solving the Dual Problem The dual problem is characterized as follows: Given a
positive number W ∈ N, find a subfamily F ′ ⊆ F of total weight w(F ′) ≥ W , while the
budget c(F ′) needed by the solution is minimized.

We solve this problem by dynamic programming: Define

g(w, i) (where 0 ≤ w ≤ W and 1 ≤ i ≤ n)

to be the minimal budget which must be spent on the subgraph with nodes v1, . . . , vi,
such that the covered weight on this subgraph is at least w. For i = 1 we observe that

g(w, 1) =

{
c(S1), if w(v1) ≥ w,
∞, otherwise.

To calculate g(w, i+1) one can observe that the previous solution implementing the value
of g(w, i) is also valid for the new situation. However, there might be a solution with a

7

strictly lower budget: This solution must cover the new node vi+1 by a subset S ∈ F
since otherwise the solution would have been discovered in the step before. The cost of
such a solution is distributed to c(S) and the remaining graph consisting of the nodes
v1, . . . , vl(S)−1. Hence we define

g∗(w, i) := min
S∈F

vi+1∈S

c(S) + g(w − w(S ∩ {v1, . . . , vi+1}), l(S)− 1)

and claim that

g(w, i + 1) = min{g∗(w, i), g(w, i)} for all 0 ≤ w ≤ W . (4)

Thus, g(W,n) is the cost of the optimal solution. It is easy to see that the running time
of the dynamic program is in O(Wn2), i. e., the algorithm for the dual problem has
pseudopolynomial running time.

Lemma 10
Equation (4) is valid, i. e., the dynamic program approach is correct.

Proof. Omitted in this abstract. 2

Solving the Primal Problem We now come back to the original problem which is
given a bound B on the available budget. Observe that no valid solution can cover more
weight than a total of Wtot :=

∑
v∈V w(v). Hence, we use a binary search to find the largest

W ∈ [1,Wtot] such that the algorithm from above, given W as the weight constraint, finds
a solution which satisfies the budget constraint. The solution found by this procedure is
an optimal solution of the original problem. The running time is in O(log Wtot ·Wtot ·n2).

Corollary 11
Problem GC on paths can be solved in pseudopolynomial time. 2

Approximating the Problem At this point one can apply a well known scaling tech-
nique to derive a fully polynomial time approximation scheme (FPAS) for GC on paths.
Let ε > 0 be an arbitrary accuracy parameter. Define scaling parameter M by

M :=
Wmax

n(1 + 1/ε)
where Wmax := max

v∈V
w(v) .

Given instance I with weight function w : V → R+, setup a scaled instance I ′ with weight
function w′ by defining

w′(v) := bw(v)/Mc for all v ∈ V .

Notice that

w(v)/M − 1 ≤ w′(v) = bw(v)/Mc ≤ w(v)/M . (5)

If we solve the problem on the scaled instance I ′, we get an optimal solution of
weight OPT′. This is performed in polynomial running time, which follows from the
fact that the total weight on the scaled instance is bounded by

W ′
tot =

∑

v∈V

w′(v) ≤
∑

v∈V w(v)
Wmax

n(1 + 1/ε) ≤ n2(1 + 1/ε) .

Now we interpret the solution found on the scaled instance as a solution of the original
instance. Let W be the weight of this solution under the unscaled cost function w.

8

Lemma 12
The inequality OPT

W ≤ W+Mn
W ≤ 1 + ε holds true.

Proof. Denote by OPT the weight of an optimal solution, and let O ⊆ V be the subset
of nodes covered. From Equation (5) we conclude

W ≥ M ·OPT′ (6)

and, similarly,

OPT =
∑

v∈O

w(v) ≤
∑

v∈O

(w′(v) + 1)M ≤ M
∑

v∈O

w′(v) + Mn ≤ M ·OPT′ + M · n, (7)

where the sum is taken over all nodes which are covered by the solution.
Now observe that the weight covered by an optimal solution is bounded from below

by

OPT ≥ Wmax , (8)

since otherwise one could replace the current optimal solution by a strictly better solution
containing only one set S ∈ F which covers a node of weight Wmax.

We are now enabled to estimate the approximation performance of the approach:

OPT
W

≤ W + Mn

W
= 1 +

Mn

W
≤ 1 +

Mn

OPT−Mn
by (6) and (7)

≤ 1 +
Mn

Wmax −Mn
=

Wmax

Wmax −Mn
by (8)

=
Wmax

Wmax − Wmax
n(1+1/ε) n

=
1 + 1/ε

1 + 1/ε− 1
= 1 + ε 2

The previous lemma now implies the main result of this section:

Theorem 13 (Approximating general cost GC on paths)
There is a FPAS for GC on paths. 2

Hardness of the Problem A straightforward reduction from Knapsack (see [GJ79,
Problem MP9]) shows the hardness of GC on paths:

Theorem 14 (Hardness of GC with general cost function)
GC is NP-hard to solve, even when restricted to GC1 on paths. 2

4 Maximum Graph Coverage on Trees

The following result shows that GC on trees is intractable as long as the cover sets of the
instance are allowed to be (very simple shaped) trees themselves.

Theorem 15 (Hardness of GC on trees)
GCunit is NP-hard even on a star and even if all vertices have weight one.

Proof. The claim follows from a straightforward reduction from Exact Cover by 3-
Sets (X3C, see [GJ79, Problem SP2]). Use the set X of ground elements of the X3C
instance as the node set of the graph, and augment the node set by a new center node.
Construct a star by connecting each node by an edge to the center. Each covering set
defines in the star graph a sub-star with 3 rays in an obvious manner. The budget is set
to B := |X|/3. 2

Due to this result, we will restrict the investigation to path shaped covering sets in
the following section.

9

4.1 Path-GCunit on Stars

In this section we consider problem path-GCunit on stars, which can be equivalently
formulated as problem path-GCunit

3 on stars. We derive a polynomial time algorithm
based on the algorithm for GCunit

2 given in Section 2.

Lemma 16
On stars, any instance of path-GCunit can be solved by solving at most b|F |/2 + 1c
instances of GCunit

2 , where |F | is the number of cover sets.

Proof. Let (G = (V, E), F) be the input graph and covering family. Denote by v0 the
center node of the star shaped graph G. First assume that F contains no singleton sets. In
other words, each set S ∈ F satisfies |S| ≥ 2. Hence, each set contains the center node v0.
Moreover, we can assume that each set has cardinality 3: this can be achieved by adding
a dummy ray with a dummy endpoint of zero weight to the star and augmenting all sets
of cardinality 2 by that dummy node.

Since node v0 is contained in each set and thus covered anyway, we can remove v0 from
each set of the family F . This yields an instance of GC=2 which is solvable in polynomial
time according to Theorem 4. The solution for (G, F) is obtained afterwards by adding
the center node and incrementing the total weight by w(v0).

We now handle the case where family F contains singleton sets. Then, any optimal
solution either consists solely of singleton sets (which can be chosen by a simple greedy
algorithm) or the center node v0 is covered by at least one non-singleton set. If we know
in advance that some non-singleton set S0 is part of the optimal solution, we can reset the
weight of the nodes from set S0 to zero, decrease budget B by 1, augment all sets including
the singletons to sets of cardinality 3 and solve the remaining instance as described above.
In order to determine such a set S0, we can perform the test for all of the at most |F | − 1
non-singleton sets and take the best solution.

The following observation shows how to reduce the number of tests. Assume that
S0 ∈ F is a non-singleton set of maximal weight, i. e., w(S0) ≥ w(S) for all S ∈ F . Let
S0 = {v0, x0, y0}. Let F ∗ ⊆ F be any solution. We claim that we can transform F ∗ into
a solution F ′ which covers both nodes x0 and y0 and satisfies w(F ′) ≥ w(F ∗): Assume
that node x0 is not covered by F ∗. If node y0 is covered by some set S1 ∈ F ∗, then
w(S1) ≤ w(S0), and replacing S1 by S0 yields solution F ′ without decreasing the total
weight. Otherwise, the same argument holds even for arbitrary chosen set S1. This proves
the claim.

To this end, let κ be the number of non-singleton sets of maximal weight, let S1, . . . , Sκ

be the collection of that sets, where Si = {v0, x2i−1, x2i}. Denote by n(xi) the number
of sets from family F which contain node xi. The number of sets from F which share all
of its points with {v0, x1, . . . , x2κ} is bounded from above by min{2κ2, F}. An averaging
argument shows that there is a foot x∗ ∈ {x1, . . . , x2κ} which is covered by no more than

1
2κ

2κ∑

i=1

n(xi) ≤ 1
2κ

(|F |+ min{2κ2, |F |}) ≤ min
(|F |

2κ
+ k,

|F |
k

)

sets from F . Observe that this number attains its maximum value |F |/2 + 1 for k = 1.
Since we can assume that foot x∗ is contained in an optimal solution, it suffices to perform
the test on at most b|F |/2 + 1c instances as described above. 2

Corollary 17
Path-GCunit on stars is polynomially solvable. 2

10

4.2 GCunit on Trees with Elements of Bounded Frequency

Recall Theorem 15 which shows that GCunit on trees is hard to solve. Observe that the
instance used in that reduction contains elements which appear in many (or all) covering
sets. We show that bounding the frequency of elements can be exploited to attack the
problem.

Let I = (G,F) be an instance of GC, where G = (V,E) is a tree. For arbitrary node
v ∈ V , denote by φv := |{S ∈ F : v ∈ S }| the frequency of v, i. e., the number of
covering sets containing v. By φ(F) := maxv∈V φv we denote the maximum frequency of
the family F . The remainder of this section is devoted to proving the following result:

Theorem 18 (Solving GCunit on trees)
For any fixed b ∈ N, problem tree-GCunit restricted to instances with bounded frequency
φ(F) ≤ b and polynomially bounded weight function w (i. e., w(x) ∈ O(poly|X|) for all
ground elements x ∈ X) can be solved in polynomial time.

We recall the notion of a tree-decomposition (see e.g. [Bod92]):

Definition 19
A tree-decomposition of a graph G = (V,E) is a pair D = (S, T) where S = {Xi : i ∈ I }
is a collection of subsets of V and T is a tree with node set isomorphic to S, such that
the following three conditions are satisfied:

(i)
⋃

i∈V (T) Xi = V ,

(ii) for all edges (u, v) ∈ E, there exists a subset Xi ∈ S containing both vertices u
and v,

(iii) for each vertex v ∈ V , the set of nodes { i : v ∈ Xi } forms a subtree of T .

The width of the tree-decomposition D is defined to be maxi∈I |Xi| − 1. The treewidth
tw(G) of a graph G is the minimum width of a tree-decomposition of G.

In the following, we describe GCunit on trees as an integer linear program. Then we
define the interaction graph on that program, which describes the correspondence between
variables, and we use a result from [HM+02] to show that this interaction graph is of
bounded treewidth. This allows us to apply a result from [SH96] providing a polynomial
time algorithm for (a class of) integer linear programs with bounded treewidth interaction
graphs.

To this end, let Z be a set of variables and C be a set of constraints on Z. The bipartite
graph BP(Z, C) associated with (Z, C) is the bipartite graph with color classes Z and C,
where z ∈ Z is adjacent to C ∈ C if and only if variable z appears in constraint C. The
interaction graph IG(Z, C) for (Z, C) is defined to be the graph with vertex set Z, where
two vertices are adjacent if and only if they have a common neighbor in the constraint
graph.

We consider the following integer linear program formulation of GCunit:

(IP) maximize
∑

v∈V

w(v) · yv

subject to yv ≤
∑

S∈F :v∈S

xS for all v ∈ V (9)

∑

S∈F

xS ≤ B (10)

yv ∈ {0, 1} for all v ∈ V

xS ∈ {0, 1} for all S ∈ F

11

The following two theorems show that in order to prove that program (IP) is solvable
in polynomial time, it suffices to show that it can be re-formulated in an equivalent form
which has an associated bipartite graph of bounded treewidth.

Theorem 20 ([SH96])
Let p be a polynomial. Let Z be a set of variables taking values from the domain
{0, . . . , K}, where K ∈ O(p(|Z|)), and let C be a set of constraints on Z. Then, for
any fixed k ∈ N and any nonnegative vector c = (cz)z∈Z ∈ {0, . . . , p(|Z|)}Z , the integer
program of maximizing

∑
z∈Z cz · z subject to the constraints C, restricted to those in-

stances where the interaction graph for (Z, C) has bounded treewidth at most k, can be
solved in time KO(k). 2

Theorem 21 ([HM+02])
Let Z be a set of variables and C be a set of constraints on Z. Suppose that each constraint
contains at most k variables. Let BP(Z, C) be the bipartite graph associated with (Z, C)
and IG(Z, C) be the interaction graph. Then,

tw(IG(Z, C)) ∈ O(k · tw(BP(Z, C)))

2

As a first step, we consider the bipartite graph of (IP) without the single constraint
node introduced by the budget constraint (10).

Lemma 22
The bipartite graph of (IP) with node set introduced by variables x and y and con-
straints (9) has a treewidth at most φ(F) + 1.

Proof. We construct a tree decomposition (S, T) of width at most φ(F) + 1 as follows.
The tree T in the decomposition is a copy of the tree G in the given instance I = (G,F)
of GCunit on trees. For each vertex v ∈ T we define the set Xv := {yv, xS1 , . . . , xSφv

, Cv},
where S1, . . . , Sφv are the subtrees in F containing v and Cv is the constraint from (9)
for vertex v. Clearly, the maximum cardinality of a set Xv is at most φ(F) + 2.

We now argue that (S, T) is in fact a tree-decomposition. It is obvious that condi-
tions (i) and (ii) are satisfied. Also, condition (iii) clearly holds for the yv and Cv vertices,
each of which appear in exactly one set. To see that condition (iii) also holds for the
xS-vertices in the bipartite graph, observe that xS appears exactly in those sets Xv with
v ∈ S, that is, on the sets attached to those vertices v which form the subtree S. 2

The previous construction shows that if we restrict GCunit on trees to those instances
where φ(F) is fixed, the constraints (9) will result in a constraint graph with bounded
treewidth. However, the budget constraint (10) in its original formulation has |F | variables
and a straightforward use will cause the treewidth to become unbounded. Our goal is now
to replace constraint (10) by an equivalent set of new constraints and variables such that
the bounded treewidth will be preserved.

To this end, we first transform the tree-decomposition of Lemma 22 into a new tree-
decomposition where the tree is binary. This can be done without increasing the width
of the decomposition (see e.g. [Bod92]). Moreover, we also modify the decomposition in
such a way that for each variable xS there is a leaf containing only xS . This can also
be accomplished without increasing the treewidth. Let (S ′, T ′) be the resulting new tree-
decomposition. We root the tree T ′ at an arbitrary node r. The depth of a node w in T ′

is defined to be the number of edges on the unique path from r to w. For two vertices u
and w in T ′ their lowest common ancestor lca(u, w) is defined to be the node of largest
depth which is both an ancestor of u and w in T ′.

12

We now define a set A of new variables and a set C of new constraints guided
by the tree T ′ as follows. Initially, both A and C are empty. We maintain a set L
of pairs (α, vertex(α)) where α is a variable and vertex(α) is a vertex in T ′. Initially,
L := { (xS , leaf(xS)) : S ∈ F }, where leaf(xS) is an arbitrary leaf in T ′ containing solely
variable xS .

As long as |L| > 1, we choose two variables α and β from L with the property that
the lowest common ancestor w of vertex(α) and vertex(β) has maximum depth among
all possible combinations of variables in L. Let γ be a new variable. We add γ to A.
We remove (α, vertex(α)) and (β, vertex(β)) from L, and add (γ, w) to L. We add the
constraint Cα,β,γ : α + β = γ to C.

Let P be the unique path between vertex(α) and vertex(β) in T ′ (which passes through
their least common ancestor w). For all nodes u ∈ P we add α, β, γ, Cα,β,γ to the sets Xu

from the tree decomposition. Then the procedure is iterated.
If L = {(δ, vertex(δ)} contains only a single element, we finally add the constraint

Cδ : δ ≤ B to C. We also add Cδ to Xvertex(δ).
Let (S ′′, T ′) denote the tree T ′ together with the modified sets Xu at termination

of the above procedure. The following lemma can be proved easily by induction on the
number of iterations:

Lemma 23 (Equivalent tree decomposition)
The pair (S ′′, T ′) is a valid tree-decomposition for the bipartite graph associated with the
old variables xS and yv, the new variables A and the constraints (9) together with the
new constraints C.

Moreover, upon termination the set of constraints (9) in conjunction with all con-
straints C are equivalent to (9) in conjunction with (10). 2

We finally address the width of the decomposition (S ′′, T ′). It is easy to see that each
vertex in T ′ participates in at most two paths where labels are added. Since each addition
yields four new labels, this gives us the following result.

Lemma 24 (Bounded treewidth of new constraint graph)
The width of the tree-decomposition (S ′′, T ′) is at most φ(F) + 10. 2

Proof (of Theorem 18). By Lemma 23 and Lemma 24, there is a formulation of GC
on trees with bounded frequency which has an associated bipartite graph of bounded
treewidth. The claim follows then from Theorem 21 and Theorem 20. 2

5 Conclusion and Open Problems

Table 1 gives an overview of the variants of the maximum graph coverage problem inves-
tigated in this paper. It turns out that the unit-cost problem is easy to solve on paths,
while on trees we can expect polynomial time algorithms only for the case of bounded
frequency. The most interesting open questions which remain are to settle the complexi-
ties of the problems path-GCunit and path-GCunit

k for fixed k ∈ N (without restrictions
on the frequency).

References

[AS99] A. A. Ageev and M. I. Sviridenko · Approximation algorithms for maximum coverage
and max cut with given sizes of parts · Proceedings of 7th Conference on Integer Pro-
gramming and Combinatorial Optimization (IPCO’99), Lecture Notes in Computer
Science, vol. 1610, 1999, pp. 17–30.

13

unit cost general cost

on paths on trees on general graphs

path-GC1 NP-hard (even on
paths)

[Theorem 14]

path-GC2 P [Theorem 4] P [Theorem 4]

path-GC3 NP-hard
[Theorem 5]

path-GC P [Theorem 8] ?

tree-GC (not defined) P (with restricted
frequency)

[Theorem 18]

NP-hard
(even on stars)

[Theorem 15]

Table1: Overview over the complexity of problem GC.

[AS02] A. A. Ageev and M. I. Sviridenko · Pipage rounding: a new method of constructing al-
gorithms with proven performance guarantee · Preliminary version appeared as [AS99],
to appear, 2002.

[Bod92] H. L. Bodlaender · A tourist guide through treewidth · Tech. Report RUU-CS-92-12,
Department of Computer Science, Utrecht University, Utrecht, The Netherlands, 1992.

[GJ79] M. R. Garey and D. S. Johnson · Computers and intractability (a guide to the theory
of NP-completeness) · W.H. Freeman and Company, New York, 1979.

[HM+02] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and
R. E. Stearns · Parallel approximation schemes for a class of planar and near planar
combinatorial problems · Information and Computation (2002).

[Hoc97a] D. Hochbaum · Approximation covering and packing problems · in [Hoc97b], 1997.
[Hoc97b] D. S. Hochbaum (ed.) · Approximation algorithms for NP-hard problems · PWS Pub-

lishing Company, 20 Park Plaza, Boston, MA 02116–4324, 1997.
[KMN99] S. Khuller, A. Moss, and J. Naor · The budgeted maximum coverage problem · Infor-

mation Processing Letters 70 (1999), 39–45.
[SH96] R. E. Stearns and H. B. Hunt III · An algebraic model for combinatorial problems ·

SIAM Journal on Computing 25 (1996), no. 2, 448–476.

