
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

STEPHAN SCHWARTZ, LEONARDO BALESTRIERI,
RALF BORNDÖRFER

On Finding Subpaths With High Demand

ZIB Report 18-27 (Juni 2018)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

On Finding Subpaths With High
Demand

Stephan Schwartz, Leonardo Balestrieri,

Ralf Borndörfer

Abstract

We study the problem of finding subpaths with high demand in a given
network that is traversed by several users. The demand of a subpath is
the number of users who completely cover this subpath during their trip.
Especially with large instances, an efficient algorithm for computing all
subpaths’ demands is necessary. We introduce a path-graph to prevent
multiple generations of the same subpath and give a recursive approach
to compute the demands of all subpaths. Our runtime analysis shows,
that the presented approach compares very well against the theoretical
minimum runtime.

1 Introduction

In this paper we consider the following subpath load computation problem (SLCP).
Given a directed graph G and user demands in the form of weighted paths in G,
compute the load of every (sub)path in G. The load of a subpath P is the sum of the
weights of all user paths T which contain P as a subpath.

The problem has applications in toll billing where users of a given network are billed
for certain subpaths, called segments, which they cover during their trip. This graph
segmentation problem is described in detail in [3] where the problem is solved using a
set-packing integer programming formulation. The information of all subpaths’ loads
serves as an input for the IP and is therefore crucial for the formulation.

The SLCP has connections to finding frequent subpaths. In [2], the problem of
mining paths which are frequent subpaths of given trajectories is considered. There,
as usual for mining freqent substructures of a graph, the term frequent is determined by
a given threshold value. Consequently, the focus of the used algorithms is a bottom-up
approach where frequent substructures are combined to larger substructures which are
then pruned if they are not frequent themselves, see [1] for an overwiew. In contrast, we
aim at computing the loads or frequencies of all possible subpaths, favoring a different
approach.

While the SLCP can be solved in polynomial time, efficient computations become
necessary with large networks and even larger numbers of user paths. We tackle the

1

problem in two steps. First, we construct a subpath-graph to better handle duplicate
subpaths. In the second step, we employ a recursive approach on the subpath-graph
to compute the loads of all subpaths. Our runtime analysis shows, that the presented
approach compares very well against the theoretical minimum runtime.

2 The Subpath Load Computation Problem

Let G = (V,E) be a directed graph with |V | = n and let P denote the set of simple
paths in G. Moreover, let T ⊆ P be a set of user trajectories in G with |T | = t and a
demand dT ∈ N for every T ∈ T . For a path P ∈ P we define the load of P as follows:

`(P) :=
∑

T∈T :P⊆T
dT .

In other words, the load of a path can be seen as the number of users covering the
path during their trip. The subpath load computation problem (SLCP) is to compute
the load of every possible path in G.

First, we can observe that `(P) = 0 if P 6⊆ T for all T ∈ T . Consequently, we define

PT := {P ∈ P | ∃T ∈ T : P ⊆ T}

and state that |PT | ≤ t
(
n
2

)
since each user trajectory T ∈ T has at most

(
n
2

)
subpaths.

As a result, we only have to compute the loads for paths P ∈ PT and therefore avoid
the exponential size of |P |.

Now let us take a closer look at the size of PT and define s := |PT |. While there
are instances with s ∈ Θ(tn2), e.g. with arc-disjoint user trajectories, in many cases
we have s � tn2 due to intersecting user trajectories. For example, consider a path
graph on n nodes with every possible user trajectory

(
i.e. t ∈ Θ(n2)

)
. Therefore, we

have t
(
n
2

)
∈ Θ(n4) while on the other hand, we have s ∈ Θ(n2).

A natural first approach is to consider every user trajectory T ∈ T and every
possible subpath of T to collect the demand for all subpaths. As pointed out above,
this algorithm runs in O(tn2) since we consider every subpath of every user trajectory.

In particular, every subpath in the intersection of two trajectories is considered
multiple times. For example, consider the instance given in Figure 1. Since the subpath
(2, 3) is part of every trajectory it is explored |T | times with the above algorithm. In
particular, if trajectories share a longer subpath, e.g. (1, 2, 3), all subpaths of this
subpath are considered for each of those trajectories.

In order to avoid these multiple considerations we introduce a subpath-graph that
ensures that every subpath is expanded only once.

3 Constructing the Subpath-Graph
In the following we describe a problem-specific construction of what we call the subpath-
graph. For a given instance (G, T , d) of the SLCP, the corresponding subpath-graph
D = (W, A) is a directed graph, where each node w ∈ W represents a path w =

2

(1, 2, 3, 4, 5)

(1, 2, 3, 4)

(2, 3, 4, 5)

(1, 2, 3)

(2, 3, 4)

(3, 4, 5)

(1, 2)

(2, 3)

(3, 4)

(4, 5)

(2, 3, 4, 5)

(2, 3, 4)

(3, 4, 5)

(2, 3)

(3, 4)

(4, 5)

(5, 1, 2, 3)

(5, 1, 2)

(1, 2, 3)

(5, 1)

(1, 2)

(2, 3)

(4, 1, 2, 3)

(4, 1, 2)

(1, 2, 3)

(4, 1)

(1, 2)

(2, 3)

(1, 2, 3)

(1, 2)

(2, 3)

Figure 1: User trajectories and considered subpaths for an instance of SLCP with G =
K5, d ≡ 1 and T = {(1, 2, 3, 4, 5), (2, 3, 4, 5), (5, 1, 2, 3), (4, 1, 2, 3), (1, 2, 3)}.

(v1, . . . , vk) in G. More specifically, we have W = PT , i.e. the nodes in D correspond
to the subpaths of T . For every node w = (v1, . . . , vk) ∈W with k ≥ 3 we introduce an
arc (w,w1) with w1 = (v1, . . . , vk−1) and another arc (w,w2) with w2 = (v2, . . . , vk).
Figure 2 presents an exemplary subpath-graph on a small network.

First, we can observe that the subpath-graph is a directed acyclic graph, since the
head of every arc represents a proper subpath of its tail. Moreover, every node in D not
representing an arc in G has exactly two successors, namely the two subpaths obtained
by removing the first and the last node, respectively, which implies that |A| ≤ 2|W |.

Algorithm 3.1 specifies the construction of the subpath-graph. The set W contains
nodes for which all outgoing arcs have been created while Q contains the candidates
to be added to W . For every candidate w we check if it has already been considered
(line 5). If it was not added to W before, we generate the successors of w as well
as the corresponding arcs and add the successors as candidates to Q. The algorithm
terminates if the set of candidates is empty.

With the observations above we can evaluate the runtime of this algorithm. First,
note that in line 11 we only add node w to the candidate set Q if w is a head of an
arc in the subpath-graph D. As we have |A| ≤ 2s, the loop in line 3 is executed at
most 2s + t times which lies in O(s). If the check in line 5 is implemented using a
prefix tree with already added nodes (cf. [2]), the lookup can be done in O(n ∆(G))
where ∆(G) is the maximum degree of G. The total runtime of Algorithm 3.1 is then
in O(s n∆(G)).

4 Solving the SLCP Recursively

Now that we have constructed the subpath-graph, we will describe an algorithm to
efficiently compute the loads of all nodes in D to solve the SLCP.

3

(1, 2, 3, 4, 5)

(2, 3, 4, 5) (1, 2, 3, 4) (5, 1, 2, 3) (4, 1, 2, 3)

(3, 4, 5) (2, 3, 4) (1, 2, 3) (5, 1, 2) (4, 1, 2)

(4, 5) (3, 4) (2, 3) (1, 2) (5, 1) (4, 1)

Figure 2: Examplary subpath-graph for T = {(1, 2, 3, 4, 5), (2, 3, 4, 5), (5, 1, 2, 3), (4, 1, 2, 3), (1, 2, 3)}
and G = K5 as well as d ≡ 1.

Algorithm 3.1 construct subpath-graph

Input: user trajectories T of paths in G
Output: subpath-graph D = (W, A)
1: W, A := ∅
2: Q := T
3: while Q 6= ∅ do
4: w := Q.pop() // w = (v1, . . . , vk)
5: if w /∈W then
6: W := W ∪ {w}
7: if k ≥ 3 then
8: w1 := (v1, . . . , vk−1)
9: w2 := (v2, . . . , vk)

10: A := A ∪ {(w,w1), (w,w2)}
11: Q := Q ∪ {w1, w2}
12: return (W, A)

4

Algorithm 4.1 Compute loads for all subpaths

Input: subpath-graph D, user trajectories T with demands (dT)
Output: loads L =

(
`(w)

)
w∈W

1: Compute Wm := {w = (v1, . . . , vm) ∈W} for m = 2, . . . , n
2: `(w) := 0 ∀w ∈W
3: `(w) := dT ∀w = T ∈ T
4: for m ∈ {n, . . . , 2} do
5: for (v1, . . . , vm) ∈Wm do
6: if m ≥ 3 then
7: `(v1, . . . , vm−1) := `(v1, . . . , vm−1) + `(v1, . . . , vm)
8: `(v2, . . . , vm) := `(v2, . . . , vm) + `(v1, . . . , vm)

9: if m ≥ 4 then
10: `(v2, . . . , vm−1) := `(v2, . . . , vm−1)− `(v1, . . . , vm)

11: return L =
(
`(w)

)
w∈W

Algorithm 4.1 starts by partitioning the node set W into several level sets depending
on the length of the path associated with each node (line 1). Afterwards, starting at the
top level we descend the graph and for every node w = (v1, . . . , vm) that we consider,
we add the load of the current node to the load of both of its successors, given that w
is not a leaf, i.e. m ≥ 3. We also subtract the current load from the load of “the inner
path” (v2, . . . , vm−1), if this is still a path, i.e. m ≥ 4. We will see in a moment that
this is necessary to respect the inclusion-exclusion priciple (cf. Theorem 1) and that
the algorithm indeed computes the loads of all subpaths.

Let us first analyze the runtime of Algorithm 4.1. Computing the level sets Wm can
be done in O(s) if we start at the leafs (m = 2) and traverse the graph with reversed
arcs. In the main part we consider every node in W exactly once and since all other
operations can be performed in O(1) the total runtime of this algorithm is in O(s).

In the following we prove the recursion which is implemented in Algorithm 4.1.
We start by introducing further notation to simplify the illustration of the recursion.
For P = (v1, . . . vk) ∈ P we define N−(P) := {v0 ∈ V | (v0, v1, . . . , vk) ∈ P} and
for v ∈ N−(P) we set v � P := (v, v1, . . . , vk). This means that N−(P) are the
predecessors of node v1 which are not part of path P . Therefore, (v, v1, . . . , vk) with
v ∈ N−(P) is a simple path in G which we denote by v � P . Analogously, we define
N+(P) := {vk+1 ∈ V | (v1, . . . , vk, vk+1) ∈ P} and set P � v := (v1, . . . , vk, v) for
v ∈ N+(P). Finally, for P ∈ P we write T (P) := {T ∈ T : P ⊆ T} and obtain the
following result.

Lemma 1. For P ∈ P we have

T (P) = ({P} ∩ T) ∪
⋃

u∈N−(P)

T (u� P) ∪
⋃

v∈N+(P)

T (P � v). (1)

5

Moreover, for arbitrary u ∈ N−(P) and v ∈ N+(P) we have

T (u� P) ∩ T (P � v) = T (u� P � v).

Proof. Let P ∈ P and T ∈ T . We know that P = T ⇐⇒ ({P}∩ T) = T and we can
also observe that P is a proper subpath of T if and only if there is a node u ∈ N−(P)
or v ∈ N+(P) such that u� P ⊆ T or P � v ⊆ T . This proves the first equation. To
prove the second equation let P = (v1, . . . , vk) and let u ∈ N−(P) and v ∈ N+(P).
Now obviously (u, v1, . . . , vk) ⊆ T and (v1, . . . , vk, v) ⊆ T iff (u, v1, . . . , vk, v) ⊆ T
which concludes the proof.

Now we extend the user demand to all paths by defining dP := 0 ∀P /∈ T to
formulate the following recursion.

Theorem 1. Let P ∈ P , then

`(P) = dP +
∑

u∈N−(P)

`(u� P) +
∑

v∈N+(P)

`(P � v)−
∑

u∈N−(P)

∑
v∈N+(P)

`(u� P � v).

Proof. We use Lemma 1 and the inclusion-exclusion principle. First note that for u1 6=
u2 ∈ N−(P) we have T (u1�P) ∩ T (u2�P) = ∅. Analogously, for v1 6= v2 ∈ N+(P)
we have T (P �v1) ∩ T (P �v2) = ∅. Inserting the identity from (1) into the definition
of `(P), the statement immediately follows using the inclusion-exclusion principle.

Theorem 2. Algorithm 4.1 is correct.

Proof. With Theorem 1 it is easy to prove the correctness of Algorithm 4.1. For any
path P ∈ PT and for arbitrary u ∈ N−(P) we know that either u� P 6∈ PT or u� P
is a predecessor of P in the path-graph D. While the first implies that `(u� P) = 0,
the latter ensures that the load is added to `(P) in line 8 of the algorithm when the
node u� P and its successors are considered. Analogously, this holds for v ∈ N+(P)
and the paths P � v and u� P � v, proving the correctness of Algorithm 4.1.

We conclude that the subpath-graph can be constructed in O(s n∆(G)). In many
networks we can assume that the maximum degree is bounded, leading to a runtime
of O(s n). If the subpath-graph is constructed, our recursive algorithm to solve the
SLCP runs in O(s). Given that considering every subpath at least once leads to a
minimum runtime of O(s), the presented algorithms are very well suited for solving
the SLCP.

6

References
[1] Cook, D., Holder, L. (eds.): Mining Graph Data. John Wiley & Sons (2006)

[2] Guha, S.: Finding Frequent Subpaths in a Graph. International Journal of Data
Mining & Knowledge Management Process 5 (2014), 35

[3] Schwartz, S., Borndörfer, R., Bartz, G.: The Graph Segmentation Problem. In
Proceedings of INOC 2017, ENDM (to appear)

7

