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We consider the following planning problem in public transportation: Given a
periodic timetable, how many vehicles are required to operate it?

In [9], for this sequential approach, it is proposed to first expand the periodic
timetable over time, and then answer the above question by solving a flow-based
aperiodic optimization problem.

In this contribution we propose to keep the compact periodic representation of
the timetable and simply solve a particular perfect matching problem. For practical
networks, it is very much likely that the matching problem decomposes into several
connected components. Our key observation is that there is no need to change any
turnaround decision for the vehicles of a line during the day, as long as the timetable
stays exactly the same.
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1 Introduction

During the last decades, public transport has become one of the classic fields for applied math-
ematical optimization [I]. Typically, the planning process is subdivided into line planning,
timetabling, vehicle scheduling etc. Timetabling, in particular computing a periodic timetable
for instance for bus networks, is still attracting several teams of researchers [2] 4] [5 [10].

The design of public transportation services is pursuing several objectives, of course. One
is operating efficiency, where a key performance indicator is the number of vehicles that are
required for operation.



In this paper, we restrain ourselves to the classical sequential approach of planning. In
particular, having fixed the line plan as well as the timetable, the next task is to compute a
vehicle schedule, in particular defining the number of vehicles required to operate the given
timetable. This is essentially what in [9] is denoted “the traditional approach”.

In more detail, we are considering the following setting, right as in [9]:

e We restrict ourselves to periodic timetables, where we denote the common period time of
all lines as T'.

e For a given line plan and periodic timetable, we want to compute the number of required
vehicles, i.e., evaluate a so-called LTS-plan, according to [9].

We agree that in general a vehicle schedule is aperiodic. Hence, it makes most sense for software
providers such as IVU or GIRO to develop and promote highly specialized algorithms on a
commercial basis.

Yet, in our paper we show that the aperiodicity of optimum vehicle schedules is just a result of
aperiodic timetables. In practice, this may be due to extra peak-hour trips and/or shorter trip
durations during night hours. In contrast, as long as the underlying timetable is fully periodic,
we prove that one can always find a vehicle schedule with a minimal number of vehicles, even
when restricting the vehicle schedule to perform the very same turnaround activities of the
vehicles over the entire day. In a sense, this turns out to be a consequence of the structure
of bipartite matching polytopes. So, to compute the number of vehicles that are required to
operate a given periodic timetable, in contrast to the procedure that is reported in [9], actually
there is no need to expand (or, roll out) the periodic timetable for the number N of periods
that are needed to cover a whole planning horizon (e.g., a day), and then perform a full vehicle
schedule optimization from scratch, e.g., using a flow-based model. Rather, staying with the
much more compact periodic representation turns out to be absolutely sufficient. Although we
are aware that in several earlier contributions, minimization of operating cost had been done
pretty much in this way (e.g. [0, 8]), we were not able to detect any justification in those papers
that was equivalent to the one we are proposing here.

The paper is organized as follows: At first, we shortly recall the setting of periodic timetabling.
Second, we consider the task of periodic vehicle scheduling for a given fixed periodic timetable.
Our goal is to prove in Theorem [12] that there is no advantage to compute the minimum number
of vehicles on an expanded aperiodic network (as it is necessary for general vehicle scheduling),
given that the underlying timetable is 100% periodic. To build the bridge from the periodic
model to the expanded aperiodic model, we consider an expanded (or rolled-out) periodic version
as an intermediate step, serving as a theoretical benchmark.

2 Periodic Timetabling

The basis for our timetabling model is the periodic event scheduling problem (PESP) from
[12]. Since we are focusing on computing the number of vehicles that are required to operate
a periodic timetable, we are only considering activities that are associated with vehicles. The
main player is an event-activity network N = (G, T,{), where G is a directed graph with node
set V and arc set A satisfying the following properties:

e Each node v € V is either a departure node or an arrival node, so that the set of nodes of
G decomposes as V' = Vyep U Varr-
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Figure 1: Example event-activity network (7" = 10) with a periodic timetable

e The set A of arcs is the disjoint union of a set Ag C Viep X Varr of driving arcs and a set
Ai € Varr X Viep of turnaround arcs. In particular, G is a bipartite graph.

e Each departure node has exactly one outgoing arc, and arrival nodes have exactly one
ingoing arc, i.e., their respective driving arcs.

The event-activity network comes with a period time T € N. Moreover, we consider for each
arc a = (v,w) € A its time duration ¢, € [0,00). For a driving arc vw € Ay, the quantity £y,
denotes the time required to travel along vw. Similarly, if vw € A; is a turnaround arc, then
£, measures the waiting time from the arrival at v until the departure at w. We assume that
Ly, > 0 holds for driving arcs, later we will even motivate £, € (0, T].

A periodic timetable for an event-activity network ' = (G, T, /) is a vector = € [0,T)" such
that

Tw — Ty = Ly mod T for all vw € A.

In the case of technical minimum turnaround times (e.g., 3 min for subways), for a network
with 7" = 10 an arrival at m, = 5 and departure at m,, = 6 could yield a value £,,, = 11, because
the train that arrives at minute five is not ready for departure at minute six, and thus has to
wait until the next departure ten minutes later. This value is larger than the period time and
does not equal the positive immediate difference

T — Ty = 1 £ 11 = £y > T = 10.
We therefore define the periodic offset of an arc vw € A as

Loy — (T — T
Pow = ? (T ) € ZZO- (1)

Notice that compared to periodic timetabling, where an optimal timetable is sought, here
we are using a kind of simplified notation. Since in the setting that we are investigating the
timetable is the input, and thus fixed, there is no need to elaborate on any minimum time
durations serving as timetabling constraints. In fact, our values ¢,, are just the well-known
periodic tensions [7].

3 Periodic Vehicle Scheduling

Let N = (G, T, ) be an event-activity network with a periodic timetable 7. What is the minimal
number of vehicles required to operate the timetable?



To answer this question, we define a periodic vehicle schedule as a collection S of directed
cycles in G such that each driving arc a € Ay is contained in exactly one cycle in S. Moreover,
we define the length resp. periodic offset of a directed cycle v in G as

(y) = Zﬁa resp. p(7) = Zpa.

acy acy

Lemma 1. Let N be an event-activity network and let v = (v1,...,vg,v1) be a directed cycle
in G. If N' admits a periodic timetable w, then £(v) = p(v) - T is a positive integer multiple of
T.

Proof. By definition of 7w and p,

£(7> = Zga = €v1U2 + -+ g’uk_lvk + gvkvl
acy

= Tyy — Tyq +---+ 7rUk — Tup_1 + Ty — 7rvk + Tpv1v2 R Tpvk.vl

=T p(). O

In fact, this is a special case of the well-known cycle periodicity constraints in periodic
timetabling [7]. This means that a vehicle driving on a cycle v of a periodic vehicle sched-
ule S can periodically continue after a time of £(vy). Since each driving arc has to be covered in
every period, the cycle v requires in total £(v)/T = p(vy) vehicles. The number of vehicles n(S)
associated to a periodic vehicle schedule S is thus

n(S) = 23l = 2 S =Y p= Y.

yeS yES acy YES a€A yeS

In other words, in any periodic schedule S we can obtain the number of required vehicles
either by summing up all cycle lengths and dividing by the period time, or by counting for
each cycle the “jumps” to the next period. Notice already, that later we will translate this
optimal compact periodic solution to optimal solutions for both, the expanded aperiodic vehicle
scheduling problem as well as the expanded periodic model as an intermediate step.

The goal is now to compute a periodic vehicle schedule S such that n(S) is minimal. We call
this the minimal periodic vehicle schedule problem. This problem has an easy reformulation as
a minimum cost circulation problem, where the variables x, indicate whether the arc a is used
in the optimal vehicle schedule:

Minimize E PaTa

a€A
s.t Z Ty = Z LToyws velV, (2)
u: uv€EA w: VWEA
T =1, a € Aq,
Tq € {0,1}, (ZGAt.

Lemma 2. The integer program solves the minimal periodic vehicle schedule problem.

Proof. This follows directly from plugging in the definitions of periodic vehicle schedules and
their minimal number of vehicles into the standard integer programming formulation for mini-
mum cost circulations. O



A closer inspection of the IP yields the following: Since all driving arcs are covered exactly
once, their cost is fixed in the objective. As a consequence we may assume w.l.o.g. that for
any driving arc a € Ag we have £, € [0,T), and in turn add VT“J vehicles for each shortened
arc. By we then even find p, € {0,1}. Furthermore, as any departure (arrival) node has
only one outgoing (ingoing) arc, which is a driving arc, the flow conservation conditions may
be replaced by

Z Typ = 1, v E Vdep’
u: uv€E Ay

E Tyw = 1, v € Varr.
w: vwe Ay

In the end, we arrive at the following minimum weight perfect matching problem:

Minimize Y paZa+ Y Pa
(lGAt CLGAd
s.t. Z T, = 1, v eV, (3)

a€A:vEa
Tq € {0, 1}, a e At.

In other words, we have established the following:

Lemma 3. Let N = (G,T,{) be an event-activity network with periodic timetable 7. Let
Gy = (V, Ay) be the subgraph of G where all driving arcs are removed. There is a one-to-one
correspondence
{perfect matchings in Gy} < circulations in G covering
p g ¢ all driving arcs exactly once
Moreover, a minimum weight perfect matching w.r.t. £ (or p) in Gy corresponds to a minimum
cost circulation w.r.t. £ (orp) in G.

Note that the matching formulation is of rather local nature: It suffices to compute a perfect
matching for every weakly connected component of G;. Since the turnaround arcs usually stem
from turnarounds at certain stations, this means that we can compute a minimal periodic vehicle
schedule by optimizing the transitions at every station.

The following theorem summarizes the different ways to solve the minimal periodic vehicle
schedule problem:

Theorem 4. For an event-activity network N = (G, T,{) with periodic timetable 7, the num-
ber n(Smin) of vehicles of a minimal periodic vehicle schedule is given by:

(a) The cost of a minimum cost circulation in G w.r.t. ¢ covering all driving arcs ezxactly once,
divided by T.

(b) The sum of periodic offsets of the arcs occurring in a minimum cost circulation in G w.r.t.
¢ covering all driving arcs exactly once.

(¢) The sum of the weights ¢, of a minimum weight perfect matching of the turnaround arcs in
G w.r.t. £ plus the travel times of all driving arcs, divided by T .

(d) The sum of periodic offsets p, occurring in a minimum weight perfect matching of the
turnaround arcs in G w.r.t. £ plus the periodic offsets of all driving arcs.



4 Periodic Expansion

In this section, we describe a procedure to expand an event-activity network in a periodic way.
This construction will be of use for the proof of our main result Theorem the optimality
proof for a periodic vehicle scheduling solution in an expanded aperiodic context.

At first, we define for any € R and N € N the expression [z|y as the unique real number
y € [0, N) with = y mod N. For example, [—8]19 = 12.

Let N = (G,T,¢) be an event-activity network with periodic timetable 7. For any posi-
tive integer N, we define another event-activity network, namely the N-th periodic expansion
N = (GWN) T(N) ¢(N)) a5 follows:

e The node set of G is VIV) .= V % {0,1,...,N —1}. A node (v,1) is called a departure
(arrival) node iff v is a departure (arrival) node.

For each driving arc vw € Ag, add to the arc set AN) of GIN) the driving arcs

((%Z‘)v(w’ [i‘i‘pvw]N)), 1=0,...,N—1.

For each turnaround arc vw € A4, add to AY) turnaround arcs

((v,1), (w,5)), 4,7=0,...,N—1.

e The duration of an arc ((v,1), (w,j)) € AN is set to

/)

(’Ufi)v(wvj) = E’Uw + [j - Z - pvw]N : T

o TWN) .= N.T.
Remark. Some observations:
(a) Up to notation, NV is the same as N.
(b) Each driving arc in A/ has N copies in N/ (V)| whereas each turnaround arc has N2 copies.

(¢) Let vw be an arc in A'. Then the value of £(Y) of any arc ((v,7), (w, 7)) is at least £y, and
the arcs ((v,4), (v, [i + pyw|n)) for i =0,..., N — 1 are precisely the arcs whose duration is
exactly £y, -

Periodic timetables extend in a natural way to the N-th periodic expansion:

Lemma 5. Let 7 be a periodic timetable for N'. Define 7(N) € [0,N - T)V(N) via

(N)

Tipay = Mo +i-T, (v,9) € VIV,

v,i)
)

Then #™N) is a periodic timetable for N'N) for the periodic tension values fgv Diwg)’
)

Proof. Let ((v,1), (w,5)) € AN). We need to show that w((g)j) — ﬂ((lj)vz.)) — EEUN) (w,j) 1S an integer
multiple of N -T'. Plugging in the definitions,

Wgw}j) B ngd)) N EEU,Z‘)),(wJ') =mw+j T —=my—i T —Llow—[j—i—pow|n-T

:(j_i_pvw)’T_[j_i_pvw]N'T
=0 modN-T,

as 1, j, puw are all integers and  is a periodic timetable for N. ]



In the remainder of this section, we establish that n(Smin) = n(S (M)

min)7 where Spin denotes a
(N)

minimal vehicle schedule for N/, S; ./ a minimal vehicle schedule for the N-th periodic expan-

sion NV) of A, and n(-) the number of vehicles of the respective schedules. We first prove that
N

n(Sin) < 7(Smin).

Lemma 6. Let N be an event-activity network with a periodic timetable m and a periodic vehicle

schedule S using n(S) vehicles. For any positive integer N, the timetable 7N on NN) can be

operated with n(S) vehicles.

Proof. Let M be a perfect matching of the turnaround arcs in G, resulting in a periodic vehicle
schedule S using n(S) vehicles. Then

MW = {((v,1), (w, [i + pow]n) | vw € M, i =0,...,N —1}
is a perfect matching of the turnaround arcs in GV). By the previous remark, the arcs of M 1Y)
have the same turnaround time as their counterpart in M. Moreover, every driving arc in G
has N copies with the same travel time in G™). By T heorem M) Jeads hence to a periodic
vehicle schedule whose number of vehicles is

Nl.*T Yoo >y Zﬁ N-S 4 N-S ] =n(s). O

aEM(N) CLGA;N) aeM CLGAd

Theorem 7. Let N be an event-activity network with a periodic timetable 7. For any positive
integer N, the number of vehicles of a minimal periodic vehicle schedule w.r.t. #™) on N'(V)
equals the number of vehicles of a minimal periodic vehicle schedule w.r.t. ™ on N .

Proof. By Lemma @ here it remains to show that n(Smin) < n(Sﬁnj\Q), where S(M)min denotes a
minimal periodic vehicle schedule w.r.t. 7 on N V)| and Spin for the initial unexpanded periodic
network A/. By Theorem Sl(njyrz this induces a perfect matching M) of the turnaround arcs,

with corresponding binary variables :cgN) for a € AEN) in the integer programming formulation

(3)-
We define a — possibly fractional — periodic vehicle schedule Sgac w.r.t. m on A as follows:
For each turnaround arc vw € A, set the value of its matching variable x,,, as

1 N-1 ™)
Tow TN ,Zox(v,i),(w,j) (4)
Z?]:

By the definition of AN) and by the matching property of M®) Sg.. indeed constitutes a —
possibly fractional — periodic vehicle schedule w.r.t. © on N, i.e., a fractional perfect matching
in the bipartite graph of the turnaround arcs A; of G. By Remark [4], the travel time along any
arc used by Spac is at most the travel time of any of its counterparts in Sr(gz This implies that



the total cost of S is at most n(S( ))

min

1
n(Sfrac) - f Z evw + Z xaevw
vwEAy VWE A
a1 L Nl N-1 )
Sal 2 w2t Do D Tl
VwEAY =0 vwWE Ay 4,7=0
N-1
(1 /) Z Z (V) N)
- T N (/Uvi)7(v7[7;+pvw]N (’UZ 7.7) )(wvj)
vwEAg 1=0 vweAt 3,j=0
= n(Sp)

Recall several elementary results as they are collected, e.g., in the book of Schrijver [I1]:

e As the subgraph (V; 4;) of G is bipartite, the constraints 2, > 0 and 3¢5,y Za =1 (i€,
the incidence matrix) already determine the perfect matching polytope [11 Theorem 18. 1]

e The incidence matrix of any directed graph is totally unimodular [IT, Theorem 13.9].

e For a totally unimodular matrix together with an integer right-hand-side vector, their
associated polyhedron is integer [11, Theorem 5.20].

Now, due to the integrality of the perfect matching polytope (i.e., the assignment problem poly-
tope), we find an optimal integral perfect matching M in the bipartite graph of the turnaround
arcs A;. This induces a minimal periodic vehicle schedule Sy, w.r.t. m on N. Since Sgac is a
fractional solution of this perfect matching polytope, we finally find
N
n(Smin) < 1(Sac) < n(S).

min

min

Since Lemma@ asserts n(S (N)) < n(Smin), this finishes the proof. O

5 Aperiodic Vehicle Scheduling

The standard way to compute the minimal number of vehicles required to operate a — not
necessarily periodic — timetable is to use a network flow model [3], 2.4]. For a periodic timetable,
the first step is to expand (or roll out) the timetable for a sufficient amount of time, e.g., a day.

We formalize this process as follows: Starting from an event-activity network A with periodic
timetable 7, we construct the N-th aperiodic exzpansion NN = (G[N I, IV IV }) with node set
VIV and arc set ANV according to the following rules, see also Figure

e Initialize NV as the N-th periodic expansion N(V).

e Delete all arcs ((v,14), (w,j)) with pEUNQ)( ) > 1, i.e., those that leave the periodically
expanded graph at time N - T and re-enter it at t1me ZEro.

e Remove departure nodes with out-degree zero and arrival nodes with in-degree zero, to-
gether with any incident turnaround arcs.

e Add a super-source s and arcs from s to all remaining departure nodes (v,4) with length
N (N)
s,(vd) ~ T(va)"



Figure 2: The first N = 3 layers of the periodic expansion with selected turnaround activities
of the event-activity network in Figure [If on the left, and its aperiodic counterpart on
the right



e Introduce a super-sink ¢. Add arcs from all remaining arrival nodes (w,j) to t with

N ™)
by =N T =m0 5

e Finally make an extra arc t — s with ds -

Intuitively, we remove all arcs from the N-th periodic expansion that travel “backward in
time”. If we remove a driving arc, then we also remove the corresponding departure and arrival
nodes. The arc (s,t) is the only arc that travels “backward in time”. Moreover, think of
the deletion of a turnaround arc ((w,j),(v,7)) as a kind of replacing it with the new pull-in
arc ((w,j),t) together with the new pull-out arc (s, (v,1)).

Remark. (a) Every arc of the form ((v,4), (w,7)) € AW satisfies pgv Z)) (wy) = 0 and hence
(N) (N) _ ()
Twd) ™ Mwa) = i) = 0

(b) Suppose that v is a directed cycle in A/ IN] containing an arc of positive duration. Then ~
contains also the arc from t to s, as 7(V) increases along v and the arc (¢, s) is the only way
to decrease (V) again.

Define the sets of driving and turnaround arcs of NIV as AgN] = AEIN) N AN and AEN] =

A,EN) N AN respectively. An aperiodic vehicle schedule is a collection SV of directed cycles in
NI such that each driving arc is contained in exactly one cycle of SV,

By the previous remark, a vehicle starts at s, visits departure nodes and arrival nodes alter-
natingly until it reaches ¢, and finally goes back to s. The minimum number of vehicles n(SM)
of an aperiodic vehicle schedule SIN! is thus obtained by solving the following minimum cost
circulation problem, see [3| 2.4]:

Minimize Tts
s. t. Z Toyo = Z Tow, vevV,
u: uve AN w:vwe AN (5)
Tq =1, a € A[ ]
T € L0 aeAM\Afl

The minimal aperiodic vehicle schedule problem is to solve the above integer program, still for
a given fixed timetable.

Lemma 8. Let SN be a minimal aperiodic vehicle schedule corresponding to an optimal solution
x to the integer program . Then the following numbers are equal:

(a) n(SW),
(W]VT’E:E Ta,

acAlN]
(c) #45 —#{ac A |2a =1},
(d) #AEZN] — #M, where M is a mazimum cardinality matching of (VI ALN}),
(6) Ea:(s,v) La = Za:(w,t) La-

10



Proof. If a feasible circulation x for produces f units of flow on the t-s-arc, then it also

contains f arc-disjoint paths from s to t. Let ¢ = (s, (v1,41),- .., (Vk, i), t) be such an s-t-path.
Then
k—1
(] (q9) = Ek[i\gllyil) + Z EEZ]vij)v(ijrl:ijJrl) Ejzi],ik),t
o
- WE’]’\BM + (WEZ-)Flvij-&-l) B W((IJZ?Z’]-)) +N-T - Wgz]z\;?,ik) =N-T,

1

<.
Il

by the definition of NV, In particular, Y acAIN] Ny, = f+ N -T. This shows (a) = (b).
Each simple cycle in a feasible circulation uses the arc from t to s, proceeds to a departure

node, and then visits driving and turnaround activities alternatingly until it reaches its last

driving activity, from which it goes back to ¢. In particular, for each such cycle v holds

#{aeAgN]\aEW}—#{aeALN}\aEV}:l.

A minimum cost circulation decomposes into precisely n(S (v }) such cycles, and covers each arc
of At[iN] precisely once. Summing over these cycles, we obtain (a) = (c).

Observe that {a € AEN] | x4 = 1} is a matching of (V[N],ALN}). Conversely, let M be

any matching in (VI ALN]). Consider the circulation consisting of the #AgN]

simple cycles
(s, (v,17), (w,7),t,s) for each driving arc ((v,i), (w,j)) € A(BN]. For each a € M, connect the
cycles of the driving arcs incident to a, thereby reducing the value of flow by one. This yields
a circulation with value #AEIN] — #M.

Finally, (a) = (e) follows immediately from the structure of N and (). O

Remark. After N has been constructed, the number n(S™) does neither depend on £ nor
7. In other words, it is sufficient to look at feasible sequences of trips regardless of their actual
duration.

Now, let’s have a look at the cuts that are induced along the timelines (i + 1)T" — e:

Lemma 9. Let SV be an aperiodic vehicle schedule with the associated matching MW of
(V[N},A,[:N]). Then for any i € {0,..., N — 2},

n(S™M) > 57 o+ #{((v,), (wyi + 1)) € M.

a€Ay

Proof. Let x be the corresponding solution to the IP (5). For small ¢ > 0, examine the flow
x on all arcs at time (i + 1)7" — e: At this point, there is one unit of flow on each driving arc
departing before (i+1)T and arriving at (i+1)T or later. This means, there are p, units of flow
for each driving arc a € Ay in N'. Moreover, there is one unit of flow on each turnaround arc
matched by MV with arrival before (i + 1)T" and departure at (i + 1)T or later. In particular,
this comprises turnaround arcs starting at some (v,4) and ending at some (w,i + 1). Finally,
there is a non-negative flow on pull-in or pull-out arcs. O

We turn now to the comparison of periodic and aperiodic expansions:

Lemma 10. Let N be an event-activity network with periodic timetable w. Let SWNlmin pe g
minimal aperiodic vehicle schedule on NIV, and let SOV be any pertodic vehicle schedule on
N Then n(SI[IJl\ITI]l) < n(SW),

11



Proof. Let M®) be a perfect matching of the turnaround arcs in the N-th periodic expansion.
By Theorem [4]

n(sWy="3" pM+ > P
aEA(N> ae M)
> #{ac AN [P > 1} + #{a € MY | pM) > 1}
= #{ac ALY [P > 1} + MW — g{a e MM | pM) = 0}

Since M) is a perfect matching and in every directed cycle driving and (matched) turnaround
arcs alternate, #MWN) = #A( and we find

n(SM) > 24 AN — 10 e AJY | pV) = 0} — #{a € M | pM) = 0}
= 2#{a € A} >\p<N>>1}+#{aeA§l>|pa =0} (6)
— #{a e M| piN) = 0}.

The intersection M) N ALN} is some matching in NV, We will compare this with a maximum

cardinality matching M of the turnaround arcs in the N-th aperiodic expansion NV, The

matching M) N A?[fN] contains all arcs a from M) with p((lN)

(N)

to a driving arc a with pg ’ > 1. Since any such driving arc can be incident to two turnaround
arcs in M) this means

= 0, except those being incident

#MMN > g™ 0 AN > p{a € MO [P =0} —2#{a € AT | PV > 1} (7)
Therefore, using @ and , and then Lemma

n(SM) > #{a € AN | p™) = 0} — N = AN s pg IV — (g -

min

The following lemma is an interesting fact about the interplay of minimum-weight perfect
matchings and maximum-weight matchings in the N-th periodic expansion. The proof makes
use of the structure of the 2-matching polytope of a bipartite graph.

Lemma 11. Let M) be a minimum-weight perfect matching w.r.t. p™) of the turnaround
arcs in the N-th periodic expansion NV, Let q := (logQ (ZaeAt Pa + 1)—‘ If N > 29, then

MW magimizes #{a € M | V) = 0} among all matchings of turnaround arcs in NV,

Proof. Let M® be any matching of the turnaround arcs in the second periodic expansion of
. . . .. (2) .
N, giving rise to an incidence vector z(?) ¢ {0, 1}At . Then the vector z € {0, 1, Q}At with

Tow 1= 200 10) T 00001 T E oy o) F Fom @y V0 E A

is a 2-matching of the turnaround arcs in A/. Since N is bipartite, the vertices of the 2-matching
polytope correspond to matchings where each edge is taken twice [II, Theorem 31.10]. In
particular, a matching maximizing the number of arcs with p((f) =0 in N® can be found by
considering instead a matching in A. By construction of NV any turnaround arc a € A,
produces max(2 — pg,0) copies in N (2) with offset 0. We are hence interested in finding the
maximum-weight matching in A/ w.r.t. the weight function a — max(2 — pg, 0).

Repeating this process, we can analogously find for any k£ € N the matching maximizing the

k
number of turnaround arcs with pg ) =00 NC) by computing a maximum-weight matching
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in N w.r.t. the weights max(2* — p,,0), a € A;. If 2F > > acA, Pa + 1, then such a matching
is automatically a perfect matching MY minimizing the periodic offsets p. Performing the
construction of the proof of Lemma 6], we obtain from M ™) a perfect matching M (25) minimizing
p(2k). By Theorem [7] the weight of M1 w.r.t. p equals the weight of M) wrt. p(Qk).
Finally let N = 29 4 r for some r € N. Extending M) even further to a perfect matching
MW in NOV) yields in total Y oaca, 21+ =pa) = D 0c, (29— pa) +r#Ag arcs with p((lN) = 0.
If M is a matching in N'V) maximizing p = #{a € M | p((IN) = 0}, then M matches at most
2r#: Ay vertices that do not appear in N@". As M%) is maximum in N®"), in particular
p—1#As <D 0ca, (27— pa), so that M has at most as many p((zN) =0 arcs as M), O

We present now our main result, stating that rolling out and solving the minimal aperiodic
vehicle schedule problem has no advantage over working on the periodic network itself:

Theorem 12. Let N be an event-activity network with periodic timetable w. Consider

(a) the number n(Smin) of vehicles of a minimal periodic vehicle schedule Syin on N w.r.t. T,

(b) the number n(Sr(n]er) of vehicles of a minimal periodic vehicle schedule Sr(njyrz on the N-th
periodic expansion N w.r.t. ™) and

(c) the number n(Sl[ﬁlfr]l) of vehicles of a minimal aperiodic vehicle schedule Sr[r]l\llr]1 on the N-th
aperiodic expansion N

Then n(Smin) = n(S(N)

min

)z
29(2n(Smin) + 1), where q :=

n(SNL) - Moreover, n(Smin) = n(SU)) = n(SN) hotds if N >
[logy (Maea, Pa+1)].

Proof. The equality n(Smin) = n(S, (v )) has been established in Theorem By Lemma

n(Sr(éYg) > n(S’I[TJIﬁI) Thus it remains to show that n(Sr[mll) > 1(Smin)-
Fix a minimal aperiodic schedule Sr[i\g] Let M be a minimum-weight perfect matching of the

turnaround arcs in N w.r.t. the periodic offset p. Assume for the moment that

pa € {0,1} for all a € A, and

8
M maximizes the number of arcs a with p, = 0 among all matchings in (V, A;). ®
By Lemma the aperiodic schedule S}, v ] uses at most n(S v ]) < n(Smin) pull-out arcs and at

most n(Sr[mn) < n(Smin) pull-in arcs. Suppose now N > 2n(Smin) +1. Then, by the pidgeonhole
principle, we find an i € {0,..., N — 2} such that no vertex (v, ) is preceded by a pull-out arc
from s or followed by a pull-in arc to t.

Let M be the matching in (VIV ],AEN]) corresponding to Sgl\lfr]l By Lemma @

(S > 3 pu+ #{((0,0), (w,i + 1)) € MY,

a€Ay

As there are neither pull-in nor pull-out arcs, all #A4, arrival vertices of the form (v,7) have
to be matched by MN]. Moreover, each maching partner (w,j) of (v,i) has either j = i or
j =i+ 1 due to the assumption p, € {0,1} in . Thus we can write

n(SD) = 3 pat+ #44— {((0,4), (w,4)) € MV},

a€Ay
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The set {((v, 1), (w,i)) € M} yields naturally a matching in the unexpanded periodic network
N using only turnaround arcs a € A; with p, = 0. With #M = #A,, the assumptions and
Theorem
N
n(sr[mr]l) 2 Z Pa+ #Aq— #{a € M | p, =0} = Z Da + Z Pa = 1(Smin)-

a€Ay ac€Ay aeM

Note that might not be satisfied immediately. However, ' can be replaced by its 29-th
periodic expansion N2 where ¢ := ﬂogg (ZaeAt Pa + 1)]: Then 27 > p, for each a € Ay,
so that a minimum-weight perfect matching M2 constructed as in Lemma |6| uses only arcs
a with pgq) € {0,1}. In particular, we can delete all arcs from N 2 with pffq > 2, and still
obtain the same perfect matching. Moreover, Lemma [I1] now certifies the second assumption.
In particular, for N > 29(2n(Smin) + 1), we finally obtain

n(SY) > n(SZ)Y = n(Smin)- O

min min
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