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0. Introduction 
Direct discretization of second order ODE systems is known to pay off in 
cases where only second derivatives appear in the system. In such cases the 
so-called Stoermer discretization is the basis of a rather efficient extrapo
lation method - see e.g. the survey article [3] or the recent textbook [8], p . 
271-274. The associated quadratic asymptotic expansion was;tfirst shown 
to hold by Gragg [6]. s> 

An extension of the Stoermer discretization for the case, w^en the first 
derivatives are present, was given by the author together witji a proof of 
the quadratic asymptotic expansion (cf. [3] and references therein). For 
a special subclass of such problems an extrapolation code (DIFEXM) has 
been implemented and tested by Bauer in [l]. 

The present note first reports about progress made beyond [l] in the devel
opment of the extended Stoermer discretization (section 1). The theoretical 
basis is a rather elementary stability model in the spirit of Dahlquist [2j. 
In section 2, the generalization to implicit ODE systems, which typically 
arise in mechanical engineering, is worked out. A special semi-implicit Eu-
ler discretization is derived as well. Finally, in section 3, numerical tests 
over critical parameter values of the van der Pol oscillator are included. 
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1. Ex t ended S toe rmer Discret izat ion 

Consider the initial value problem (FVP) for the second order system (of 
dimension n): 

u" = f{u) + D(u)u' 
u ( 0 ) : = t t o , u ' ( 0 ) : = t / 0 . . { } 

Herein typically D is a diagonal (n, n)-matrix representing the dissipativity 
of the system, in which case the entries of D are negative. This feature 
nicely shows up in the model problem. 

u" -\u' + u2u = f{t) , (1.2.a) 

which has 
tthomM := eAf cos(ut + a) (1.2.b) 

as homogeneous part of the solution. For A < 0 asymptotic stability is 
guaranteed, whereas A > 0 characterizes inherent instability. For large 
negative A, the second order system may be regarded as "stiff". 

Of course, ( l . l ) can be reformulated as a first-order system and then dis-
cretized using any method for stiff ODE's. However, in the present case, 
the "stiffness effect" is only caused by the u'-term. Hence, an efficient dis
cretization of (1.1) needs only be implicit for non-vanishing u'-term. This 
property holds for the extended Stoermer discretization (stepsize h): 

t*o> v0 given 

til := w0 + h I vQ + - ( / K ) + £>(u0)i>o) ) 
(1.3.a) 

* = 1 , . . . , / - 1 : 

/ - ^ % ) ^ ^ ( ^ - « M J + ^ / W (l.S.b) 

uk+1 := 2uk - u t_! + /i2(/(ujfc) + D{uk)vk) 

(I - \D{U$)VI = \(Ui - U!_!) + ^/ (U|) . (1-3.C) 

The existence of a quadratic asymptotic expansion of the discretization 
error is known. Let 

D := d i a g ( d i , . . . , < y . . 
p := maxdi(u) . * * ' 

i 

Then a natural condition for the interval, within which the asymptotic 
expansion holds, will be 

4 < 1 • (1-5) 
For ß < 0 (purely dissipative case), condition (1.5) holds for all h>0. 
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Stability considerations. In order to analyze any discretization of (1.1), 
the model (1.2) suggests a further simplification in the spirit of [2] : 

u" - Xu' = 0 
u(0) = u0, u'(0) = VQ 

(1.6.a) 

The associated analytic solution is 

vo u{t) = tio + y(exp(At) - 1) 

u'(t) = v0exp(Xt) 

The asymptotic behavior for Xt —• — oo appears to be 

u(*) -* u0 , u'(i) -»• 0 . 

(1.6.b) 

(1.6.c) 

Of course, a similar behavior would be desirable for the discrete solution. 

For the analysis of discretization (1.3) applied to (1.6) one conveniently 
introduces the notation 

= (ujt+i -uk)/h 
= Xh 

Straightforward calculation leads to 

(1.7) 

vk = qkv0 

A* = (l + | ) A o 
, / z \ l - q l 

m — UQ = hv0 1 + -

(1.8) 

2 / 1-q 

In order to study the case z —• — oo, first note that asymptotically 

«±(-u(i+3 • 
Insertion into (1.8) then yields 

ui — UQ = hvc ( i - ( - i ) O i - ' ( - i ) 1 (1.9) 

Let //i = H and u"(0) = Xv0. Then (1.9) implies 

for I = 2m> 0': 
^ — u 0 = — v0H , Vf = v0 

(l.lO.a) 
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for / = 2m -f 1 > 0 : 
ut-u0 = v0E + \u"{0)h2 , Vl = ~v0 . ( L 1 0 - b ^ 

Upon examining the implementation of (1.3), a cheaply computable sym
metric final step appears to be (compare (2.2.c) ) 

üi := \{ui-i + 2ui + ul+i) , ( l . l l . a ) 

which exhibits the asymptotic behavior 

üi - u0 = |u"(0) • h2 , ro > 0 . ( l . l l .b ) 

Note that one step of extrapolation removes the A-dependence - at least in 
the linear model problem. 

The associated symmetric ending for the derivative variable 

vi := }(vi_i + 2vi + vl+1) (1.12.a) 

would exhibit the most desirable property 

vt = 0 , (1.12.b) 

but require an additional evaluation of the right-hand side for £/+i > H. 

Summarizing, the above analysis shows that a mixture of values / even 
and / odd should be avoided. Numerical experiments showed that the 
extrapolation method with double harmonic refinement sequence 

?2H:= {2,4,6,8,10, . . .} 

is slightly more accurate than a version with sequence 

?odd:= {1 ,3 ,5 ,7 ,9 , . . .} . 

For this reason, numerical results only for 72H are presented in section 3. 

Reversibil i ty. For some kinds of applications, especially in large scale 
boundary value problems, a desirable property is the symmetry of the dis
cretization with respect to the transformation 

(M) -^(l-K-h) , (1.13) 

which is often called reversibility. Reformulation of (1.3.c) yields 

m-i = tii - h L - | ( / ( u « ) + P(u,),t/,)J , (1.3'.c) 
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which by transformation (1.13) is just (1.3.a). Next, the second line of 
(1.3.b) is obviously reversible. Insertion of this line into the first line of 
(l.3.b) yields 

J - £ 0 ( t t * ^ ) W i - ( / + ^ , (1.3'.b) 

which is now also seen to be reversible (implicit trapezoidal rule for u'). Of 
course, extrapolation or any "final step" at one interval end will destroy 
this property. 
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2. Treatment of Implicit Second Order ODE 
Systems 

In mechanical engineering, the following class of problems arises typically: 

M(u)u" = f(t,u) + D(u)u' 

u(0) = u0 , u'(0) = v0 { ' } 

Herein M is positive definite symmetric. Hence, there exists the Cholesky 
decomposition (let M=const.). 

M = LLT , L nonsingular . 

Now, introduce 
ü := LTu, D := L~lDL-T , 

Then (2.1) may be rewritten as 

ü"-Dü' = f{t,ü) 

with properly defined / . Herein D and D are congruent, which means that 
the sign structure of the eigenvalues is the same (Sylvester's law of inertia 
[5]). As a consequence, the stability considerations of the preceding section 
based on the model problem (1.6), should apply here as well. 

In order to use discretization (1.3), multiply (2.1) by M _ 1 (note that M 
is assumed to be nonsingular). Remultiplication by M and introduction of 
the notation 

A* :=' r{uk+i - «*) i tk:=t0 + k>h,k = 0,l,... 

then yields (including final step (1.11)): 

u0,v0 given 

M(u0)&o := ^(f{to,u0) + D{u0)vo) (2.2.a) 

A0 := Äo + v0 

* = 1 , . . . , / : 

\M{uk)-^D{uk)\vk 

M(uk)Ak 

Ak 

= g (/(**,«*)+ ^ («* )^* - i ) (2.2.b) 

= Ak-!+Vk 

= h{f(tk,uk) + D(uk)vk) 
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ui := vi + - A , (2.2.c) 
4 

Obviously, the discretization requires the solution of two different linear 
n-systems per step, which may be prohibitive when the computing costs 
are dominated by the linear algebra part or when storage is restricted. 
An alternative treatment of (2.1) would be to rewrite it as a first order 
system (with v = u') and apply the semi-implicit Euler discretization with 
/i-extrapolation - see [3]. If one exploits the special structure of the thus 
arising linear systems, then (ra, n)-matrices of the form 

M-hD- h2[fu + Duu' - Muu") 

have to be decomposed. In the light of the stability considerations of the 
preceding section, however, one may as well apply an implicit Euler scheme 
just to the variable v - which leads to [k = 0 ,1 , . . . ) : 

M(uk)—±~ D(uk)vk+i = f(tkiuk) 

uk+i - uk 

—h— = VM 

(2.3) 

or, equivalently: 

(M{uk)-hD{uk))Avk 

vk+i 

= h(f[tkiuk) + D(uk)vk) 
= vk + Avk (2.3'] 
= uk + h- vjt+i 

Compared with (2.2), only one type of linear n-system arises. On the other 
hand, /^-extrapolation for (2.2) is replaced by /i-extrapolation for (2.3). 

S tabi l i ty cons idera t ions . Application of discretization (2.3) to the model 
equation (1.6) yields (z := Xh): 

vk = v0/{l-z)k (2.4) 

This implies the asymptotic behavior (for Re(z) -> — oo): 

vt = 0 , ut - u0 = 0 , (2.5) 

which is just the desirable property (1.6.c) independent of any restriction 
on the refinement sequence. Hence, the harmonic sequence TH can be used. 

R e m a r k 1. Both discretizations can be generalized to the case when u' 
appears nonlinearly in the right-hand side of (2.1). The proper generaliza
tions might be efficient only, when special structure of the problem class can 
be exploited as, for instance, in regular celestial mechanics or mechanical 
engineering. 

7 



R e m a r k 2. Note that discretization (2.3) can be extended to the case of 
singular M (differential-algebraic systems), if only the matrix pencil 

remains regular. This property does not hold for discretization (2.2). 
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3. Numerical Comparisons 

A small but nevertheless both typical and challenging test problem is the 
van der Pol oscillator. This example is either given as 

u" = a(l-u2)u'-u ,« ^ 
u(O). = 2, u'(O) = 0 [ ' } 

or, after rescaling t —• t/a , as 

eu" = (l-u2)u'-u , « 
e = 1/a 2 . ( j 

For test purposes, (3.1) was solved over the interval [0,T] with 

r : = 2 ( 3 - l n 2 ) a , 

which is equivalent to solving (3.1') over [0,T/a}. In this problem, the 
stiffness effect can be nicely studied by variation of a for a > 1. 

The subsequent test covers results from the following extrapolation codes: 

El : based on the semi-implicit Euler discretization [3], 
newest EULSIM version from [4], 

DIFEXM: based on the extended Stoermer discretization [3], 

E2: based on the second order semi-implicit Euler dis
cretization, section 2 herein, code EUSIM2. 

Of course, EULSIM is applied to the first order equivalent system (with 
v = u'). Three versions of DIFEXM are compared: 

D-B: Code DIFEXM due to Bauer [1], harmonic refine
ment sequence Juy 

D-NO: new DIFEXM version (this paper), double harmonic 
sequence 72H, no final step, 

D-Nl: as above, but with final step ( l . l l ) . 

All computations were done in FORTRAN double precision on the Siemens 
7.865 of the Konrad Zuse Center, Berlin. The following characteristic num
bers will be used: 

NF - number of function evaluations (/ , D) 

TOL - user prescribed local error tolerance 

ERR - actually obtained global error at T (using same scal
ing as internally) 

The "exact" reference solution needed to determine ERR was computed by 
EUSIM2 and DIFEXM with TOL=10~12 and TOL=10"1 3 . 
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Figure l.a presents a comparison NF over ERR of the 5 different codes (El , 
E2, D-B, D-NO, D-N1) over a range of prescribed local error tolerances from 
TOL=l.D-4 to TOL=1.D-10 for test problem (3.1) with a = 102. Among 
the DIFEXM codes, the old version D-B is clearly superceded by the two 
new versions: obviously, the restriction to even refinement sequence J2H 
pays off. The effect of the final step (1.11), however, is less marked but 
visible as an increased global accuracy. Among the semi-implicit Euler 
codes, E2 is fastest and more accurate. The parameter a = 102 has been 
selected for presentation, since at this value the code D-B still performed 
in a comparable way (compare also Figure 2). 

For a = 104 , see Figure l .b, the code D-B failed to solve the problem within 
any comparable scale of NF and over all TOL. For this parameter, E2 is the 
clear winner over all tolerances. For low tolerances, all other codes fail to 
supply the correct solution and show a rather irregular NF/ERR pattern -
which is even inverse to the expected pattern in the DIFEXM codes. For 
high tolerances, say TOL=1.D-10, the computing times of the satisfactory 
runs are 

D-Nl: 3 sec E2: 4 sec E l : 8 sec 
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The following three Figures vary a. and keep TOL. Runs with ERR>TOL*100 
are regarded as inaccurate and therefore omitted throughout Fig. 2. For 
low precision (Figure 2.a, TOL=l.D-4), the new code E2 is the clear win
ner, both in terms of speed and of accuracy (E2 produces ERR<TOL*10). 
This situation is typical roughly up to precision TOL=l.D-7 (Figure 2.b). 
For very high precision (Figure 2.c, TOL=1.D-10) the new code D-Nl is 
the winner, since E2 spends too much effort in the mildly stiff case (lower 
values of a). This effect indicates the existence of a perturbed asymptotic 
expansion for discretization (2.3) - similar as shown for the semi-implicit 
Euler method in [7], Finally, in Figure 3.a,b, a graph of the solution (Fig
ure 3.a: u, Figure 3.b: u') for a = 104 is presented, obtained from E2 with 
TOL=l.D-4. The both flexible and robust behavior of the code E2 is nicely 
illustrated by the sequence of automatically selected integration points in 
Figure 3.a. 

Finally, note that in large scale problems the computing time will essen
tially depend on NF. For implicit systems, which are typical in real life 
applications, the extension of EUSIM2 will have an additional advantage: 
as can be seen from section 2, the linear algebra work of E2 is lower than 
for the extension of D-Nl, the new DIFEXM version. 
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Conclusion 
The above though restricted numerical experiments seem to indicate that 
the extended Stoermer discretization with /^-extrapolation (as modified 
herein) may be efficient for non-stiff and mildly stiff non-self adjoint second 
order ODE systems - with the rule of thumb "the suffer the more precision 
needed". The special semi-implicit Euler method suggested herein seems 
to be the extrapolation method of choice for low precision computations 
(typical in engineering problems) or for stiff systems up to differential-
algebraic second order systems. On the present basis numerical experiments 
with real life and large scale problems seem to be promising. 

Acknowledgement . The author wishes to thank U. Pöhle for his exten
sive and efficient computational assistance. 
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