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Abstract

Decomposition of the high dimensional conformational space of bio-
molecules into metastable subsets is used for data reduction of long
molecular trajectories in order to facilitate chemical analysis and to
improve convergence of simulations within these subsets.

The metastability is identified by the Perron-Cluster Cluster Analy-
sis of a Markov process that describes the thermodynamic distribution.
A necessary prerequisite of this analysis is the discretization of the con-
formational space. A combinatorial approach via discretization of each
degree of freedom will end in the so called ”curse of dimension”.

In the following paper we analyze Hybrid Monte Carlo simulations
of small, drug-like biomolecules and focus on the dihedral degrees of
freedom as indicators of conformational changes. To avoid the ” curse of
dimension”, the projection of the underlying Markov operator on each
dihedral is analyzed according to its metastability. In each decompo-
sition step of a recursive procedure, those significant dihedrals, which
indicate high metastability, are used for further decomposition. The
procedure is introduced as part of a hierarchical protocol of simula-
tions at different temperatures. The convergence of simulations within
metastable subsets is used as an ”a posteriori” criterion for a success-
ful identification of metastability. All results are presented with the
visualization program AmiraMol.

Key words. metastability, Perron-Cluster Cluster Analysis, curse of di-
mension, Hybrid Monte Carlo, significant dihedrals
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1 Introduction

A molecule can theoretically adopt an infinite number of spatial states, so
called conformations. But the probabilities of molecular states are not evenly
distributed. Due to the Hamiltonian of a molecule, the state space can be
divided into regions of high metastability, in which a molecule tends to stay
for a long time, before it changes into another metastable conformation.
Conformational analysis aims to identify these regions under the following
conditions:

e Conformational space should be divided into a finite number of subsets,

e that are distinguishable according to physical properties, and



e cover almost the whole conformational space.

Cluster analysis [12, 16] of sampling data or exhaustive search of local min-
ima on the energy hypersurface [1] are commonly used for conformational
analysis. The latter method is generally combined with clustering to build
conformational families and avoid redundancy. The number of conformers
depends on the number of energy minima, which is normally very large [9],
and the similarity measure of the clustering. Conventional methods are un-
able to decide a priori, how many conformational subsets are to be expected.
Conventional clustering uses the geometry of molecules to distinguish be-
tween different clusters. In this context, a certain number of conformers can
form a Voronoi coverage of the space. But the borders between Voronoi cells
of different clusters do not reflect the cluster membership very well, at least,
if the number of generated conformers is low.

Metastability has been introduced as a measure for the dynamical prop-
erties of a conformer [4, 3, 6]. The common property of metastable con-
formations are low transition probabilities between different conformers.
Metastable conformations can be identified within equilibrium distributions
of states, e.g. the canonical distribution Q(¢) in position space. In contrast
to exhaustive search techniques, these conformations are based on statistical
sampling data and are connected with thermodynamical weights. In con-
trast to conventional clustering, the number of metastable conformations
can be identified a priori as the number of almost invariant sets C; C 2,
i =1,...s in the conformational space Q [6].

A necessary prerequisite for the identification of metastability is a spatial
discretization of €2 into N pairwise disjoint boxes A; C 2,i=1,...,N. One
can determine transition probabilities 7}; from A; to A; by counting tran-
sitions between the states of the equilibrium distribution. If the transitions
are realized by Hybrid Monte Carlo, the N x N-transition matrix T = (1};)
can be interpreted as a discretization of a Markov operator P obtained
from the Perron-Frobenius operator by momenta averaging with respect to
the given ensemble [4, 3]. Since we are interested in the equilibrium state,
the detailed balance condition holds. T is self-adjoint [4], i.e its spectrum
is real valued and via Perron-Cluster Cluster Analysis (abbreviated PCCA
according to [5]) of T for a given discretization Ay, ..., Ay of Q one can find
the number s of conformations C1,...,Cs and s pairwise disjoint index sets
I(i) C {1,..., N} such that C; = U, e ;) 4j-

A main advantage of the metastability analysis is used in more efficient
sampling methods [8]. Since critical slowing down of simulations, either
Molecular Dynamics or Monte Carlo, is strongly connected with metasta-
bility, the decomposition of conformational space can be used to uncouple
the sampling into simulations within separate subsets. Combined with a
hierarchical temperature or potential embedding, the efficiency of the Hy-
brid Monte Carlo simulation is increased, because rare transitions between



metastable conformations, which can be identified on a higher temperature
level, are avoided on lower temperatures.

The critical point of metastability analysis is the spatial discretization of
Q) into N pairwise disjoint boxes A;. In former publications we have shown
[15], that uniform discretization suffers from the ”curse of dimension”. Even
if one concentrates only on dihedral angles as the indicators of most signif-
icant conformational changes, the division of every angle into for example
only three intervals leads for N degrees of freedom to 3"V boxes, thus to
exponentially increasing computational costs. Identification of essential de-
grees of freedom [2, 14] can reduce costs, but is not trivial for multimodal
distributions.

Neural networks describe another method, we have applied successfully
to reduce the dimension of conformational space [17]. The self organizing
box maps (SOBM) designed for this purpose are able to cover almost the
complete space according to the underlying distribution [10]. But the reso-
lution of the network is high at the centers of metastability, where most of
the data trained the network. In transition regions the density of data and
therefore the resolution of the network is low, which leads to an unprecise
separation between clusters.

So far, the introduced algorithms have clarified the following points:
Discretization of conformational space has to be fine enough to identify
and separate metastable subsets, but it has to be coarse enough to avoid
the ”curse of dimension”. Therefore, we first reformulate the identification
of high metastability into an optimization of autocorrelation to emphasize
the meaning of resolution of the discretization. The reformulation leads to
an optimal decomposition of conformational space in terms of membership
functions instead of sign structure of eigenvectors [19, 6]. The practical im-
plication of this approach is an algorithm which identifies transition regions
via fine discretization at least for projections of the Markov Chain on specific
dihedrals and decomposes the whole space via coarse discretization. Finally,
some numerical results for small molecules are presented.

2 Methods

Maximizing the autocorrelation. In the following section we will refor-
mulate the problem of identifying high metastability into the optimization
of autocorrelation.

We will first look at the simplest case where we have the given Markov
operator P7 and search for a decomposition of §2 into metastable sets C, C'¢ C
Q.

Metastability is defined as the probability M (C') that a trajectory start-



ing in C ends up in C after time 7 [4, 3]:

Ellc PTl¢]

M(C) = T (1)

where
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In equation (5) we will show a relation between autocorrelation §(1¢) for
the characteristic function ¢ and the sum M(C) + M (C®).
For the propagator PT we define the autocorrelation value 6(v)

E|(v — E[4])(P™0 — E[PTv) 2
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where v € X and X is the set of membership functions v : @ — [0,1] with
E[(v — E[v])?] > 0. In particular v € X is a non-constant membership
function, cf. [19].

To illustrate the relation between autocorrelation and metastability take
a characteristic function 1. For the function values of 1~ the Markov chain
defined by the HMC method jumps inside and between C' and C'¢ and thus
is a sequence of 0 and 1. The more this sequence is autocorrelated the more
metastability M (C) + M(C*¢) we expect for the sets C' and C°.

Further we will proof that the second largest eigenvalue Ao of the prop-
agator P7, if 1 = A\{ > A9 are simple eigenvalues and lie inside the discrete
spectrum of P7, is the maximal autocorrelation value Ao = §*.

Proof: Since P7 is self-adjoint and P71l = llg, we have
FEv] = E[Pv]. (3)
0(v) for v € X can be transformed with (2) and (3) into

E[vP™v] — (Ev])?
o) = “ g e W

Define the set X C X of all possible characteristic functions 1o : Q —
{0,1} with 0 < E[1.] < 1.
Since 12 = li¢ we get from (4) and (1):

M(C) =é(1¢c)(1 - Ellc]) + E[lc],

and with E[ll¢] =1 — E[l¢e] and §(1¢) = 0(LLge), because autocorrelation
¢ is invariant with respect to scaling and translation, we get

M(C) + M(C%) =1+ 6(1¢). (5)



Thus maximizing metastability is equivalent to maximizing §.

Let 0* be the maximal value of § for all v € X'. Since again autocorrela-
tion ¢ is invariant with respect to scaling and translation, maximization can
be transformed into the space of functions u with expectation value Flu] = 0
and normalization E[u?] = 1:

0 = max E[uP"u] = max <u,PTu>g. (6)
E[u]:O,E[uQ]:l <lgq,u>g=0,<u,u>g=1

For the self-adjoint operator P7 this optimization problem is the Rayleigh-

Ritz term for the 2"¢ largest eigenvalue Ay of P7. E[u] = 0 means that u

and Il are orthogonal, whereas 1 is the eigenfunction corresponding to

the largest, simple eigenvalue Ay = 1 of P (see [4]). And we see that the

second eigenvalue of P7 is the maximal possible autocorrelation, Ay = 6*.
O

Equation (6) has shown, that the second eigenfunction of P™ maximizes
the autocorrelation. Since autocorrelation is invariant with respect to scaling
and translation, an optimal membership function v* € X can be generated
by these transformations on the second eigenfunction v of P7. In other
words: v* can be expressed by a linear combination of the Perron
eigenfunctions Il and u. We use this idea for the identification of the
almost invariant sets in the next section.

In our algorithm the transition matrix 7T is a discretization of the prop-
agator P7 and the eigenvectors of T are piecewise constant discretizations
of the eigenfunctions of P7. Therefore, the optimal membership function v
is approximated with a piecewise constant function v like in Fig. 1. The
autocorrelation value of ¥ is lower than §(v) and hence the Perron-Cluster
of T, which should be near 1, moves away from 1. Mainly in the transition
region the difference between ¥ and v is significant. The transition regions
of realistic molecules have a non-negligible statistical weight. To get a good
approximation of v and therefore a high autocorrelation value we need a fine
discretization of §2.

Decomposition of 2 with Inner Simplex Algorithm. The idea of
the last section can be generalized to s metastable conformations, and a
discretization of 2 into n boxes. The system of membership functions
{v1,...,vs} C R™ can be expressed as linear combinations of the eigen-
vectors 1o, us,...,us € R™ corresponding to the Perron-Cluster of T'.
Let
U:=(lqug...us), V:i=(v1...v4)

denote the n x s-matrix of eigenvectors and the n x s-matrix of membership
functions respectively. Then we have to find an invertible s x s-matrix A
such that V = UA.
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Figure 1: Transition region between metastable conformations:
Characteristic 1o versus membership function v and discretization o of v.

There are many possible linear transformations, but only some are lead-
ing to so called indecomposable cluster solutions. If we assume, that there
is only one unique indecomposable cluster solution, then we can apply the
inner simplex algorithm to identify this matrix A (cf. [19]).

The rows of U define a set Y of n points y; € R*,i = 1,...,n. By the
following algorithm we determine s points out of Y, which are the rows of
A~1. This will give us A.

1. Find two points y1,y2 € Y having maximum Euclidean distance with
regard to every pair of points in Y.

2. For k=3,...,sfind a point y; € Y maximizing the Euclidean distance
between point yx and the hyperplane defined by y1+span{(y2—y1), ...,

(Yr—1 — Y1)}

The s rows of A~! span an inner simplex of Y. After transformation
V = U A one obtains the desired membership functions.

Going back from V to characteristic functions, we assign each discretiza-
tion box A; C Q,i =1,...,n to the cluster k € {1,...,s} where it attains
the maximum value with regard to the computed membership functions:

Vi, = max V.
7j=1,...;s

Successive Perron-Cluster Cluster Analysis of dihedrals. The PCCA
of T' is improved, if a fine discretization of conformational space is used. But
to make T' computable, we are restricted to a coarse discretization. The fol-
lowing algorithm is an approach to solve this paradoxon.

1. For every dihedral:



Project the conformational space represented by all samples of a
Hybrid Monte Carlo simulation on the dihedral,

take a fine, uniform discretization,

construct the transition matrix 7" and

calculate second eigenvalue.
2. select dihedral with highest autocorrelation § > 0,4,

e apply PCCA to partition the projection of the selected dihedral

e use the resulting partitioning to decompose the space into metastable
subsets.

3. repeat 1 and 2 for all subsets which contain a reasonable number of
transitions and a dihedral with autocorrelation ¢ > ,,n.

4. apply PCCA to the coarse decomposition of the conformational space.

The algorithm generates a hierarchy of decompositions (Fig. 2), which are
generated by othogonal cuts on dihedrals.

It is worth to mention, that the dihedrals are not necessarily the cause
of metastability. But significant conformational change effects a change in
one or more dihedrals.

Hierarchical protocol for temperature embedding. The decompo-
sition of conformational space can be used to start independent HMC sim-
ulations within the generated subsets of high metastability. These simu-
lations should not suffer from the critical slowing down, if all metastable
conformations have been identified. Therefore, convergence of resimulation
serves as an ”a posteriori criterion” for the quality of metastability analysis.
Moreover, resimulation is combined with a hierachical embedding proto-
col introduced in previous publications [8]. Starting the simulation at high
temperature facilitates the crossing of energy barriers and improves conver-
gence. After analysis of metastability, resimulation is started as a ”bridge
sampling” between the initial high and a new, lower temperature. The pa-
rameters for bridge sampling are automatically generated by the previous
simulation [7]. ”Bridge sampling” can still overcome barriers at high temper-
ature but delivers also information for the distribution at low temperature.
In the present paper we perform initial simulations at 1500K and bridge sam-
pling between 1500K—1000K, 1000K—600K and 600K—300K. All results
can be used within a reweighting scheme to produce the thermodynamically
correct distribution at the lowest temperature [8].



D

paRRy

!!!!li“i

i
T

i
!
gunnRnzausn
ol

Figure 2: Algorithmic scheme for successive PCCA of dihedrals:
Four metastable regions are drawn as ellipses in a 2-dimensional dihedral
space. Thin lines show the fine discretization of the dihedral, which indi-
cates highest metastability according to the second eigenvalue of the corre-
sponding transition matrix. Figures a. to d. illustrate the alternation of
fine discretization followed by coarse decomposition.

3 Numerical Results

Parameter for simulation and analysis. We have performed HMC-
Simulations for small biomolecules. Results are presented for the uncharged
form of the amino acid glycine and the tripeptide ala-gly-gly with charged
termini. The molecules were parameterized by the MMFF force field [13].
The propagation of dynamics within the HMC simulation was performed
with a timestep of 1.4 femtoseconds. The length of the MD trajectory was
chosen randomly between 40 to 80 integration steps. 5 independent Markov
chains were started in every subset of metastable conformations. Conver-
gence of HMC was controlled by the Gellmann and Rubin criterion, which
evaluates the mixing of the chains [11]. All simulations have generated
between 20000 and 200000 molecular states to reach convergence. The tem-
peratures of the hierarchical embedding protocol were 1500K, 1000K, 600K
and 300K. All simulations were performed in vacuum. The discretization
per dihedral was performed under a resolution of 5.0°, which results in 72
boxes in the intervall [—180.0°,4+180.0°]. A cluster of eigenvalues near 1 is
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Figure 3: Hierarchical simulation protocol: After decomposition, the
metastable subsets of the conformational space are sampled independently
at a lower temperature level. Two temperature level are connected via bridge
sampling, i.e. the HMC simulation samples a generalized distribution, which
is constructed from the canonical distributions of both temperatures [7].

identified as a Perron-Cluster if
e the second eigenvalue is greater 0.9,

e the difference between two successive eigenvalues < 1.0 in the cluster is
smaller than the difference between the lowest eigenvalue of the cluster
and the next eigenvalue of the spectrum,

e the lowest eigenvalue of the cluster is greater than 0.8.

Results glycine. Figure 4 shows 3 conformations out of 6 for glycine at
300K. The other 3 conformations are chemically identical but differ mathe-
matically due to an exchange of hydrogens at the amino group. The most
stable conformation Fig. 4 c is stabilized by a hydrogen bond between N-
and C- terminus. The corresponding energy minimum is responsible for the
identification of the first metastability at 1500K, reflected in the high sec-
ond eigenvalue 0.963 of dihedral o (Tab. 1). Although metastable regions
of this small molecule should be clearly separable, the autocorrelation still
depends on the coarseness of the discretization which results in a lower sec-
ond eigenvalue of 0.953 for the decomposition into only two subsets. The
identified conformations at 1500K serve as starting points for the subse-
quent bridge samplings between 1500K and 1000K. The PCCA of dihedrals



Figure 4: Mean molecules calculated from 3 metastable subsets of
the uncharged form of the amino acid glycine: The thermodynamical
weights of conformation a,b,c at 300K are 0.48%,0.29%, 99.23%

reveals metastability of the improper dihedral 3, which is connected to the
inversion of the amino group. The energy barrier for inversion is about 20
kJ/mol [18] and significant higher than the thermal energy at 300K. Cross-
ing this barrier at 300K is nearly impossible, but at 1000K rare transitions
occur. Each of the metastable subsets generated with respect to (3 is further
splitted according to Another metastability of the dihedral «. The confor-
mational space decomposes into a coarse discretization four subsets, but the
fina PCCA on the coarse discretization offers only two metastable confor-
mations. A visual inspection of the coarse decomposition clarifies, that only
the inversion contributes to the split as the dominant metastability. Within
the following bridge sampling between 1000K and 600K the metastability
indicated by = increases (Tab. 1) and leads to the final split, which results
in conformations a and b of Fig. 4. Since all results of the hierarchical
simulation protocol are connected via reweighting between successive tem-
perature level, thermodynamical weights can be calculated after the last
bridge sampling between 600K and 300K. The set of metastable conforma-
tions is dominated by conformation c of Fig. 4 due to the strong hydrogen
bond between N- and C-terminus.
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‘ T[K] ‘ coarse spectrum ‘ coupling matrix ‘ spectrum « ‘ spectrum [ ‘ spectrum -y

1.000 0.985 0.015 1.000
1500 0.953 0.031 0.969 0.963
0.373
1.000 0.946 0.054 1.000 1.000 1.000
1000 0.894 0.052 0.948 0.911 0.901 0.902
0.837 0.318 0.740 0.729
1.000 0.983 0.017 1.000 1.000 1.000
1000 0.967 0.017 0.983 0.971 0.919 0.916
0.875 0.350 0.630 0.641
1.000 0.969 0.031 1.000
600 0.942 0.027 0.973 0.969
0.779
1.000 0.971 0.029 1.000
600 0.944 0.026 0.974 0.968
0.773

Table 1: Hierarchical temperature embedding for glycine : The spec-
tra of fine discretization of different dihedrals and the resulting coarse dis-
cretization are presented.

Results ala-gly-gly. Glycine is a simple example to demonstrate the fea-
tures of the introduced algorithm. To get an impression, how the method
works with more degrees of freedom, we present data of a tripeptide, sam-
pled under the same protocol. The only difference concerns the restriction of
the analysis to only those dihedrals, that contain no hydrogens, because we
are not interested in chemically identical conformations, which only differ
in rotations of the methyl or amino group. Therefore, we concentrate on
the remaining backbone dihedrals as descriptors for the essential conforma-
tional flexibility of the tripeptide. Figure 5 shows mean molecule represen-
tations of 8 out of 11 metastable conformations at 300K. For presentation
reasons, we have skipped the remaining 3, which possess thermodynamical
weights below 0.05%. The pictures are orientated with the amino and car-
boxylate group in the background. All conformations show these groups
in a close neighborhood, which results from their strong electrostatic inter-
action. The selected metastable subsets reflect the global conformational
changes indicated by ¢, transitions of the backbone. Again, only a few
conformations (a,b) dominate the thermodynamic distribution. Since, the
number of metastable conformations is too high to reproduce the history of
the sampling in a table, we summarize only some observations. The first
run at 1500K decomposes into 2 subsets weighted with 90.0% and 10.0%
respectively. After bridge sampling down to 1000K, these conformations are
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Figure 5: Mean molecules calculated from 8 metastable subsets of
the peptide ala-gly-gly: The molecules are arranged in pairs to emphasize
the partial symmetry of the conformations. The thermodynamical weights
of the conformations in a,b,c, and d at 300K are 63.07% and 33.18%, 1.52%
and 1.66%, 0.19% and 0.08%, 0.09% and 0.05%

further separated into 12 and 3 subsets each. The sampling down to 600K
results in the final splitting into 22 clusters, which means, that only a few of
the 15 conformations at 1000K decompose further. The analysis of the final
22 metastable conformations exhibits 11 pairwise identical conformations,
which only differ in a 180.0° rotation of the carboxylate group.
Perron-Cluster derived from fine discretization per dihedral are compara-
ble to the results of glycine. In general, gaps are clearly observable and clus-
ter analysis generates splittings into 2 to 5 intervalls. Perron-Cluster from
the coarse discretization are denser, at least in cases, in which the spaces de-
composes into a very high number of subsets. For one coarse discretization
derived from a 1000K—600K sampling we get the following spectrum:

1.00000 | 0.999999 | 0.999549 | 0.998979 ().998138‘
0.998109 | 0.998104 | 0.997246 ‘

The weights of the corresponding subsets are very low. A visualization
of these subsets suggests, that the observed metastabilities are connected
with an unsufficient sampling of conformations with low thermodynamical

12



weight. This is a typical effect of importance sampling in Monte Carlo.
To circumvent the generation of a lot of artificial metastable subsets with
low thermodynamical weights, we have experimented with a heuristic filter,
which neglects clusters with a weight below a given threshold of for instance
0.01%.

4 Conclusion

The proposed successive PCCA of dihedrals satisfies the criteria of confor-
mational analysis mentioned in the introduction. Metastable conformations
describe a finite number of separable conformational subsets, which cover
the whole conformational space, at least with respect to the quality of the
underlying sampling. Metastable conformations do not reflect every local
minimum of the energy hypersurface, but only those, which are responsi-
ble for critical slowing down. Therefore, sampling the whole conformational
space with the hierarchical simulation protocol increases the efficiency of the
HMC simulation. The uncoupling of simulations is further used for a parallel
implementation of the simulation. With the coupling of the different bridge
samplings [8] thermodynamical weights of every metastable subsets can be
calculated. Therefore, the algorithm provides the opportunity to compare
results with experimental data of the occupancy of states e.g. NMR - data.

Improvement of the algorithm has to be concentrated on correlations be-
tween dihedrals. If two or more dihedrals are correlated and form a metasta-
bility, then an orthogonal cut as described in Fig. 2 can be impossible. A
discretization of such dihedrals, which indicate a”correlation metastability”
will be missed. Critical slowing down in a subsequent sampling will be the
consequence. This ”a posteriori” indicator of metastability is time consum-
ing. The molecules we have analyzed so far have not shown this effect.
Metastability behind two correlated dihedrals for example in rings has been
resolved, because a third dihedral separated the metastable regions.

Another future task concerns symmetrically related conformations, which
are not recognizable in the current version of the algorithm. If such confor-
mations are detectable, they should be removed from the simulation hierar-
chy to save computer time.
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