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Abstract

The paper investigates the efficient use of a linearly implicit stiff integrator
for the numerical solution of density driven flow problems. Upon choosing a
one-step method of extrapolation type (code LIMEX), the use of full Jacobians
and reduced approximations are discussed. Numerical experiments include
nonlinear density flow problems such as diffusion from a salt dome (2D), a
(modified) Elder problem (3D), the saltpool benchmark (3D) and a real life
salt dome problem (2D). The arising linear equations are solved using either a
multigrid preconditioner from the software package UG4 or the sparse matrix
solver SuperLU.
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1. Introduction

Density-driven flow problems appear widely in the mathematical simula-
tion of real life processes. In [1], their numerical solution has been compared
in terms of several linear and nonlinear algorithms. The present paper intro-
duces a further suggestion, the application of stiff integrators, here predomi-
nantly the quite popular stiff integrator based on the linearly implicit Euler
discretization combined with extrapolation (code LIMEX).

The paper is organized as follows. In Section 2, we present the class of
nonlinear density driven flow PDEs of interest here, indicating their degener-
ate character. In Section 3, we give essential algorithmic details: In Section
3.1, we survey possible stiff integrators especially for large scale problems;
we end up with suggesting WW-methods, among them the linearly implicit
extrapolation code LIMEX. Any of the stiff integrators is known to require a
Jacobian of the right-hand side or its approximation. Therefore, in Section
3.2, we discuss two choices, a “full” Jacobian version, Jy, and a “reduced”
Jacobian version, Jiequeed- Finally, in Section 4, we present comparative nu-
merical experiments with the three stiff integrators IMPEX, LIMEX!! and
LIMEXreduced for four problems, which are treated in the order of the increase
in complexity: Diffusion from a saltdome (2D) in Section 4.1, a modified El-
der problem (3D) in Section 4.2, and the saltpool problem (3D) in Section 4.3
serve as benchmark problems. Finally, Section 4.4 is devoted to the so-called
Gorleben problem, a real-world problem in a heterogeneous domain that had
not been solved efficiently before.

2. The problem class

The governing equations for density driven flow are the conservation of
salt mass and fluid, which read

O (6p0) + V- lwopd ~ DY) = wpQ. (1)

O on + Dol = Q. (1)

where w denotes the salt-mass-fraction, and ¢ and ) denote spatially depen-
dent porosity and fluid sources and sinks respectively. The system is closed
by constitutive laws for the Darcy flow

7= —S(Vp — pg) (2)



which introduces the gradient of the pressure p as the second unknown into
the system. Moreover, mechanical dispersion (Scheidegger-type) is given by

qq"
I
Here, D, is the molecular diffusion coefficient, while a7 and «;, denote the
dispersion lengths in transversal and lateral direction, respectively.
The density p and the viscosity i depend on the salt mass fraction w

and are given by empirical relations. For the density this work considers the
linear relationship

D= (b]Dmol + @T‘@I + (CYL — OéT) (3)

w

(4)

where w,,q, denotes the salt mass fraction of a saturated haline solution. The
viscosity is given by either of the following:

p(w) = po+ (1 — po)

max

Mconst(w) = Mo (53’)
freat(w) = po (14 1.85w — 4.1w” + 44.5w°) (5b)

Upon combining all these relations, the PDE system (1) is nonlinearly cou-
pled.

Resulting system after spatial discretization. Due to the lack of time deriva-
tives in the equation for the pressure p the PDE system appears to be de-
generate. After discretization of this PDE system by the method of lines one
arrives at a differential algebraic (DAE) system of the kind

M(u) v’ = f(u), u(0) =uo, (6)

wherein M (u) represents a solution dependent matrix, which is singular due
to the fact that the PDE system is degenerate. In view of uniqueness of the
solution the matrix pencil {M (u) — 7.J(u)} must be regular, where J means

J(u) = J¢(u) = '[u, ']

Jp(u) = (af <“)> and T[u,z] = (Mgiu)z) . (7)

with




3. Preliminary considerations

In this section, we want to display the most important algorithmic parts
that are necessary to attack the challenging class of problems that we have
in mind here.

3.1. Choice of Stiff Integrator

Suppose we are focusing on the regime where the PDE systems appear to
be parabolic and large scale. As for the choice of a stiff integrator, we typi-
cally have the following options, see, e.g., the textbooks by Hairer/Wanner
[2] or Deuflhard/Bornemann [3] .

o Implicit one-step or multistep methods:
This class of algorithms covers the BDF method as a multistep method
or the Radau method as a one-step method. In both cases, the real-
ization of three nested loops is needed: the outer discretization loop
(adaptive time step), the medium-level Newton-like iteration loop for
the solution of the nonlinear system, and the inner loop for solving the
linear equations to compute the Newton corrections.

o Implicit Euler discretization:
In an earlier algorithmic approach [1], the problem class of interest
here had been attacked by the simplest implicit one-step method, an
implicit Euler discretization. That approach had been combined with
extrapolation of order 2 and a heuristic time step control. In passing
we note that with that version of stiff integrator the Gorleben problem
addressed in Section 4.4 could not be solved.

In contrast, the code IMPEX included in the numerical experiments in
Section 4 below uses the same implicit discretization, but an adaptive
order and time step control based on extrapolation, see, e.g., [3]. Con-
vergence of the Newton-type iteration in each discretization step has
been assumed, as soon as the outer residual has been reduced by 7
orders of magnitude.

e Linearly implicit methods of Rosenbrock-Wanner type (ROW):
This class of algorithms only requires two loops, the outer loop for an
(adaptive) time step discretization and the innerloop for the numerical
solution of the arising linear systems. An exact Jacobian matrix is



required, an information that enters into the derivation of the algebraic
equations for the coefficients.

e Linearly implicit W-methods:

This class of algorithms also only requires two loops, the outer loop
for an (adaptive) time step discretization and the inner loop for the
numerical solution of the arising linear systems. In contrast to the
ROW class above, only a reasonable approximation of the Jacobian is
needed. Unfortunately, the construction of this class of methods leads
to a blow-up in the number of the arising algebraic conditions for the
coefficients. For this reason, only low orders have been developed by
the scientific community.

e Linearly implicit extrapolation methods:
These algorithms can be formally subsumed under W-methods, but do
not require any algebraic conditions for coefficients. They, too, realize
a certain freedom of choice of the Jacobian approximation.

Remark. In passing we note that, for incompressible Navier-Stokes prob-
lems, a long list of ROW methods has been collected in [4, Table 1, 4-8],
which, however, excludes linearly implicit extrapolation methods.

Specification of the integrator LIMEX. In view of our challenging differential-
algebraic problem class (6), we here selected the popular integrator LIMEX,
based on a linearly implicit Euler method with adaptive time step and order
control. The corresponding discretization has been worked out in detail in
[5], see also the textbook [3]. In our numerical experiments below, we use
the notation LIMEX, to indicate the maximum permitted number gpax
of columns in the extrapolation table. Throughout the paper, the error
tolerance for time integration has been set to TOL = 0.001. All of the LIMEX
variants feature the usual sub-diagonal error criterion (see [3]). In order to
estimate the error of the variable u(t) = (w, p)’(t), we use the scaled norm

IMmeF?:M%VMﬂM+WQM@M, (8)

where |72 := [, p*0” measures the kinetic energy of a velocity field 7 w.r.t a
reference density p*. The scaling in the second term is provided by the filter
velocity

k(z) = "ag, (9)
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where a ~ S_Z' This choice can be motivated by the Darcy velocity (2): For
the linear density (4) and constant viscosity (5a), one readily verifies

P1 — Po

max

16 — @ll, < V2max(1, Ml (wr — w2, p1r = pa)ll-
Thus convergence w.r.t || || directly induces convergence of the Darcy ve-
locity.

Order reduction. As theoretically analyzed by Lubich/Ostermann [6], LIMEX
as a W-method will exhibit an order reduction to an “effective” order p* = 2,
as soon as the quasi-stationary solution has been reached, for more details see
also Section 9.3.1 in the textbook [7]. It is not that easy to algorithmically
identify the neighborhood of the quasi-stationary solution in a nonlinear PDE
system. In view of this feature, the following heuristic strategy has been
implemented: As soon as the suggested order ¢ has been successfully reduced
for consecutive two (or three) time steps to ¢ = 2, the future order is fixed
to ¢ = p* = 2. For step size selection, we use

where p = 0.25 is a safety factor, TOL is a user-provided tolerance, and [[¢]]
is the estimate for the relative error w.r.t. (8). Note that this is a classic
proportional controller. Experiments with controllers considering a longer
time history (see, e.g., [8, 9]) turned out to be less successful in our tests.

3.2. Computation of full and reduced Jacobian
For the DAE system (6) Deuflhard/Nowak [5] suggest the following step:

(Mi = 7Jo) (41 — ) = 7 f (), (10)
where M), = M (uy) and Jy = J(up) according to (7).

In our PDE context, the Jacobian Jy will be most easily computed via
solving the linearized perturbation equations. Upon inserting

<w7p>T = (wOva)T + (6W7 5p)T )



and considering the linearization of equation (1), we obtain a system for the
increment (dw, dp)T that reads

o+ ngt)) + 7 | (i +n { 5 oo + (oo
— (poDg) Vow — {a%(p]l]))éw + (%(p]]))ép} Vwy| (11a)

= (po + wopp) Qow

B 0 0 '
g(pi)&u) + V- [%(pi)&v + 8—p(p§)5p_
= (p'Q)ow (11Db)

The system decouples in the variables w and p whenever

0 oq
Woa_p(PCDCSP = wopo%&? =0,
and 5 oD 67
_ q) 04 _
ap (pD)épVwy = po a7 ap5pr0 0.

Analogously, one can expect a block decoupling in the arising matrix after
discretization, which will be beneficial for the linear solver. For a W-method
like LIMEX, we can achieve this by using an inexact Jacobian Jiequced- Jreduced
is constructed as follows: While assembling (11a), we use the assumption
q oq
— =0and — =0. 12
dp Ow (12)

Note that, formally, the previous condition would be sufficient for the decou-
pling. However (12) proved to be more stable experimentally. In the remain-
der, a superscript indicates, how the Jacobian is approximated. LIMEX™! refers
to an exact Jacobian, whereas LIMEX™dueed refers to an inexact Jacobian.

3.8. Solvers and software infrastructure

Multigrid framework UG4. All experiments were performed in the package
d3 f++ of the UG4 software framework [10, 11]. At the core of UG4 are
robust both parallel and adaptive multigrid methods as introduced in [12].
Note that multi-grid methods are optimal order solvers using only O(n) work
amount to solve the linear systems of the type (10).

8



The underlying PDEs represent a degenerate parabolic system. Although
the properties of linear discrete operators cannot be predicted exactly due
to the nonlinearities, it is reasonable to assume that the basic properties
carry over to the discrete case. Applicable smoothers used in the present
paper are Jacobi, (symmetric) Gauss-Seidel, and ILU iterations. For the
coupled systems, corresponding point-block versions have been devised by
locally grouping all unknowns belonging to the same node. It should be
emphasized that for LIMEX*dued  the arising linear system decouples and
could, in principle, be treated by a sequential iteration solving first for w and
second for p. However, this property has not been explicitly exploited in the
tests reported here.

SuperLU as alternative sparse matriz preconditioner. In some cases, we com-
pare the performance of the multigrid method with a SuperLU solver [13].

Solver tolerances. Solver tolerances are a relative reduction of the residual
by 1078 (absolute: 107?) for the Newton iteration, and a relative reduction
of the residual by 1071 (absolute: 5x 107!2) for the linear solver. In general,
linear systems were solved using preconditioned BiCGStab [14].

4. Numerical experiments

In this section, we will present comparative numerical results obtained
with the algorithms IMPEX and LIMEX. We first consider three problems
with homogeneous permeability coefficients, i.e. diffusion from a salt dome
in 2D, as well as the Elder benchmark [15] in slightly modified form, and
the saltpool benchmark [16, 17] in 3D. The underlying geometry is given
by rectangular quadrilateral and hexahedral grids respectively. These basic
tests, which are documented in Subsections 4.1 — 4.3, were performed on a
single cluster node of Intel® Xeon® Prozessor E5-2660 v2 @ 2200 MHz. As
a final step, we then consider a complicated field test with variable perme-
ability on unstructured grids in 2D. The simulations were performed on the
Hazel Hen supercomputer. For all problems, we explore reasonable combi-
nations of ¢ < ¢nqe. Consistent velocity approximation has been used in all
experiments.

4.1. Diffusion from salt dome (2D)
For this problem, the domain is given by €, := (0,600) x (0,150) C R2.
We employ the Dirichlet condition w(Z) = 1 for Z € IT'B° on the part of the

9



bottom boundary given by
TEQT = {(w1,25) € O : 150 < 2y < 450,25 = 0.}

The initial condition is w = 0. For this setup, we compare time-stepping
strategies and two different preconditioners. The geometry is given by 128 x
512 = 65, 536 square elements, corresponding to 132, 354 degrees of freedom.

SuperL U preconditioner. The time stepping history is provided in Fig. 1: The
methods IMPEX, LIMEX&! and LIMEXiduced suggest similar time step sizes
(Fig. 2a) and thus require almost identical number of time steps (Tab. 1a).
As can be expected, the SuperLU preconditioner is always convergent. Since
LIMEX avoids an additional linearization loop, its computational effort is re-
duced. The factor is slightly larger than the factor & 0.5 that can be deduced
from the number of iteration calls. This is due to additional assembly calls
for the Jacobian. LIMEX{! and LIMEX!! are efficient over the whole time
interval, which may be an indicator for the high regularity of the regular-
ity of the problem. The algorithms with reduced Jacobian perform slightly
worse: LIMEXEdueed takes slightly smaller time steps than LIMEXS™. Simi-
larly, LIMEX educed i5 almost on par with LIMEX{! initially. However, within
a few time steps after t = 10a, the order first degradates to ¢ = 3, and then
to ¢ = 2, even before the asymptotic order reduction phase (cf. Fig. 1c).

Multigrid preconditioner. Employing multigrid yields almost identical results
(Fig. 2). Only in two instances for LIMEX{! the multigrid solver does not
converge. We note that even for this small number of degrees of freedom, the
multigrid solver is 3 — 4 times faster than SuperLU w.r.t. wall clock timing
in our experiments.

4.2. Modified Elder (3D)

The next test is a variation of the Elder problem [15] in the three-
dimensional domain 3 := (0,600) x (0,600) x (0,150) C R3. The transient
solution is sensitive w.r.t. the grid and discretisation (see, e.g., [18]). Follow-
ing [19] we use modified boundary and initial conditions: Dirichlet boundary
conditions are provided on the upper part

FE20 = {(21,22,23)" € 02 150 < 1, 3 < 450, 75 = 0}

with values given by w(xy, 2, x3) := wop(x1)p(x2) where

9 1 x — 300
=2+~ cos (5 .
o(z) + — cos < 55 )

10
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Figure 1: Diffusion from salt dome (2D) with SuperLU preconditioner: Time step size
[yrs] vs. simulated time [yrs] for IMPEX, LIMEX!™! and LIMEX!®duced_ The reference line
is a continuous representation of IMPEX. It is 1dent1ca1 in all figures to provide a guide to
the eye. For LIMEX, the dashed lines represent steps with order ¢ = 2, whereas symbols
with different sizes indicate steps with order 2 < ¢ < ¢maz-
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Figure 2: Diffusion from salt dome (2D) with multigrid preconditioner: Time step size
[yrs] vs. simulated time [yrs] for IMPEX, LIMEX!™! and LIMEX!®duced_ The reference line
is a continuous representation of IMPEX. It is 1dent1ca1 in all figures to provide a guide to
the eye. For LIMEX, the dashed lines represent steps with order ¢ = 2, whereas symbols
with different sizes indicate steps with order 2 < ¢ < ¢maz-

12



Method Time steps Linear solver Timing

q=2 q=3 q=4 reject | success fail | CPU [s] Effort
IMPEX 322 — — 2 2094 0] 18977.11 1.00
LIMEXEQ! 311 — — 2 941 0| 8798.40 0.46
LIM EXg“H 0 68 — 4 434 0| 4009.62 0.21
LIMEX 0 0 33 5) 382 0| 3500.73 0.18
LIMEXy®eed [ 320 —  — 21 968 0 9275.06  0.49
LIM E)(geOluced 22 70 — 10 548 0| 5003.89 0.26
LIMEXzpduced | 68 2 24 7 528 0| 4888.33  0.26

(a) SuperLU

Method Time steps Linear solver Timing

q=2 q=3 q=4 reject | success fail | CPU [s| Effort
IMPEX 322 — 2 2094 0 | 4937.60 1
LIMEXE 311 — — 2 941 0| 2657.97 0.54
LIM E)(g“11 0 68 — 4 434 0| 1138.44 0.23
LIMEX ! 0 0 34 7 392 2| 1020.37 0.21
LIMEXiedueed | 399 — 2 968 0| 2649.58  0.54
LIM EXgeduced ) 80 — 8 545 0| 1416.93 0.29
LIMEXipduced | 55 3 27 5 505 0| 1323.16  0.27

(b) Multigrid
Table 1: Diffusion from salt dome (2D): Tteration counts (for time stepping and linear

solver), and CPU wall clock time when using (a) multigrid or (b) SuperLU as a precondi-
tioner.
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For the initial value w = 0, this provides an array of initially 25 fingers that
collapses rapidly. Due to this convection induced fingering the problem is
more challenging than the previous problem. This will be observed in the
convergence of the linear solver. The geometry is given by 64 x 64 x 16 =
65, 536 cubic elements, corresponding to 143,650 degrees of freedom.

SuperL U preconditioner. The time stepping history shown in Fig. 3 illus-
trates a very smooth behavior for LIMEXf™ ~An order reduction is only
observed in the very last steps of the highest order method LIMEX{". This
is also reflected by Tab. 2a. As in the previous results, LIMEX™ducedge]ects
smaller time steps and the order reduction is activated earlier. In this sense,
the results are similar to those from the previous section in Fig. 1. Note that
the SuperLLU preconditioner did not obtain a solution for IMPEX within 30
days. Hence, the computation was interrupted at this point. In all plots, we
use LIMEXS! as a reference to provide a guide to the eye.

Multigrid preconditioner. When switching to the multigrid preconditioner,
the methods using an exact Jacobian (IMPEX and LIMEX educed) guffer from
a severe drawback. As is illustrated in Figs. 4 and Tab.2b both methods
are now limited by lack of convergence convergence of the iterative method,
which leads to reduction time step. Although LIMEX*duedtends to select
smaller time steps, it essentially revocers the results obtained with the Su-
perLU solver. As a consequence, the method provides greater robustness in
particular towards the end of the simulation.

With respect to the total timings in Tab. 2b, the LIMEX-variants out-
perform IMPEX and are essentially on par with each other. Considering the
asymptotic behavior, however, LIMEX"ddghould be preferred.

14



Method Time steps Linear solver Timing

q=2 q=3 ¢=4 reject | success fail CPU s
IMPEX (Aborted after 1 month.)
LIMEXEQ! 408 — — 1 1230 0 | 1508625.38
LIMEXEH! 0 98 0 0 591 0| 732320.94
LIMEX 0 3 50 3 951 0| 680860.07
LIMEX®d [ 578 0 0 1| 1742 0| 2164447.66
L||\/|EX§ecluced 3 159 0 0 968 0 | 1212680.52
LIMEXzpduced | 35 2 63 4 785 0| 981973.82

(a) SuperLU

Method Time steps Linear solver Timing

q=2 q=3 q=4 reject | success fail | CPU [s] Effort
IMPEX 461 — — 37 3075 36 | 21228.19 1
LIMEXE 455 — — 130 1371 129 | 13564.55 0.64
LIMEXEu! 790 — 131 768 131 | 7984.37  0.38
LIMEX ! 81 7 40 136 708 134 | 7510.61 0.35
LIM Exgeduced 978 — — 1 1742 0| 14375.54 0.68
LlMExgeduced 3 159 — 0 968 0| 7464.05 0.35
LIMEXipduced | 35 2 63 4 785 0| 6115.75  0.29

(b) Multigrid
Table 2: Modified Elder (3D): Tteration counts (for time stepping and linear solver), and

CPU time when using (a) multigrid, or (b) SuperLU as preconditioner for the linear
problems.
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Figure 3: Modified Elder (3D) with SuperLU: Time step size [yrs] vs. simulated time [yrs]
for IMPEX, LIMEXfI‘j}LLI, and LIMEXflf;ifzced. The reference line is a continuous representa-
tion of LIMEX5!. Tt is identical in all figures to provide a guide to the eye. For LIMEX,
the dashed lines represent steps with order ¢ = 2, whereas symbols with different sizes
indicate steps with order 2 < ¢ < @maq-
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Figure 4: Modified Elder (3D) with multi-grid: Time step size [yrs] vs. simulated time
[yrs] for IMPEX, LIMEXfI‘j}LLI, and LIMEX;‘iS;;ed. The reference line is a continuous rep-
resentation of LIMEX{!. Tt is identical in all figures to provide a guide to the eye. For
LIMEX, the dashed lines represent steps with order ¢ = 2, whereas symbols with different
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sizes indicate steps with order 2 < ¢ < ¢maz-
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4.8. Saltpool Problem (3D)

The saltpool problem, suggested by Oswald and Kinzelbach [16], is an
experimental benchmark for an upconing process. In this laboratory scale
experiment, a cubic box conaining homogeneously shaped and distributed
glass beads is filled with water. A stable brine layer with a given salt mass
fraction is placed at the bottom. By injecting fresh water in one corner and
simultanaeously extracting fluid in the opposite corner, an upconing of the
brine is induced. Injection and extraction occur with a controlled rate and
the breakthrough curves, i.e., the salinity of the extracted brine at the outlet,
were monitored.

0.08

IMPEX ——
_ 0.07 | LIMEXL{I,H .-
= 0.06L LIMEXS" o _
8 LIMEX{"! o
£ 0.05| -
g LIMEXjeduced
&

2 0.041 LIMEX} o -
< axreduced
g 003 LIMEX o
&

0.02

0.01

0
20 10 60 30 100 120 140
Time [min]
(a) (b)

Figure 5: Saltpool problem (3D): Simulated results for (a) the solution at the end of
experiment; (b) breakthrough curve at outlet (for all simulations).

This problem imposes a challenge to time integration, as identified by
Johannsen and coworkers [17]. In this work, we focus in particular on the
low concentration case with only 1% salt mass fraction in the brine. In this
case, the salinity at the outlet first rises rapidly to a peak 20min, before the
system relaxes towards the end of the experiment. Of course, these dynamics
must be captured correctly. Figures 5a and 5b shows the salt distribution at

the end of the experiments as well as the breakthrough curves computed by
all methods.

Treatment of the dispersive terms. Unfortunately, the dispersion (3) leads
to undesired properties of the discrete linear systems. As a consequence
LIMEX™! is inefficient, as the multi-grid method is not converging properly

18



with the consequence that time steps must be reduced. The same holds for
LIMEXredueed 'when only the derivatives w.r.t. convection are neglected. How-
ever, disabling derivatives w.r.t. dispersion as well mitigates this problem.

[teration statistics and time-stepping history for a uniform refinement
with 2,097,152 hexahedral fine grid elements (4,293,378 degrees of freedom)
are shown in Tab. 3 and Fig. 6 respectively. Timings are for a parallel multi-
grid solver executed on 20 cores. Due to the problem size, the problem could
not be solved by SuperLU. The IMPEX scheme failed after 38 steps (cor-
responding to 30 min simulated), with a time step contracting to zero. For
LIMEX™! the time step is restricted by the linear solver. LIMEX 9 dpermits
larger time steps. In all cases the nuber of stages is rapidly reduced to ¢ = 2,
however.

Method Time steps Linear solver | Timing

q=2 q=3 ¢=4 reject | success fail | CPU 5]
IMPEX (Failed after 38 steps) —
L||\/|EX£un 157 0 0 318 478 316 | 39135.5
L||\/|EX1;llll 148 7 0 323 487 323 | 39924.5
LIMEX ! 146 3 4 320 497 320 | 39877.0
LIMEXzeduced 49 0 0 ) 163 0| 3674.7
LIMEXzpduced | 34 8 0 7 181 0| 4028.6
LIMEXgduced 35 2 2 7 169 0| 3757.5

Table 3: Saltpool problem (3D) with multigrid: Iteration counts (for time stepping and
linear solver), and CPU time.
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Figure 6: Saltpool problem (3D) with multi-grid: Time step size [yrs] vs. simulated time
[yrs] for LIMEXfI‘i{w and LIMEX;‘fC‘fed. IMPEX failed for non-obvious reasons. The dashed
lines represent steps with order ¢ = 2, whereas symbols with different sizes indicate steps
with order 2 < ¢ < ¢maz-
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4.4. Gorleben problem (2D)

The last problem is taken from a field test first suggested in [20]. The
task is to compute the ground water flow over a saltdome in the North
German Plain, close to the village of Gorleben. The computational domain
is a 2D cross section from geological data taken in north-south direction. It is
given by an elongated strip with physical dimensions 16, 370 m in horizontal
direction and 395 m in vertical direction. The domain including the coarse
grid triangulation is shown in Fig. 7. Mesh statistics are provided in Tab. 4.

Refinement | # Elements | # Degrees
level of freedom
Base 4,924 8,506
3 315,136 498,954
4 1, 260,544 | 1,982,866
5 5,042,176 | 7,905,570

Table 4: Gorleben problem (2D): Mesh statistics after uniform refinement.

Channel Saltdome

Figure 7: Gorleben problem (2D): Permeability distribution in the computational domain
indicated by colors (cyan: high permeability; magenta: medium permeability; yellow: low
permeability). For the ease of presentation, the domain is presented broken into sections
A (horizontal extension: Okm — 4.4km) B (4.4km — 9.3km), C (9.3km — 14.3km), and D
(14.3km — 19.8km). The saltdome is located under Section C as indicated.

For the sake of simplification, the illustration is broken into four sections
shown from top to bottom, that can be aligned from left to right. The shading
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of the elements indicates zones with three different permeabilities (cyan: high
permeability, £ = 10712 m?; magenta: medium permeability, £ = 107'* m?;
vellow: low permeability, x = 107! m?). The saltdome is in contact with
the domain in the middle of section C. In this region, a constant mass frac-
tion w = wpee = 0.26 is assumed as a boundary condition. The boundary
conditions on the upper part of the domain are given by the fresh water con-
dition w = 0. Moreover, the pressure is given as a piecewise linear function
derived from experiments. It starts from 173 kPa on the southernmost tip
(left) and decreases to 100 kPa in the northernmost tip (right). We use the
linear density function (4) (with py = 998.2kg/m3, p; = 1197.2kg/m?® and
Wiaz = 0.26), and the real viscosity model (5b) (with pg = x103kgm~ts71).
Diffusion and dispersion are characterized by porosity ¢ = 0.2, molecular
diffusion D,, = 107m?/s , dispersion lengths ay = 10m, and ar = 1m.
Initally, no salt is present in the domain (w = 0).

The scientific interest for the problem is in particular the long term evo-
lution. Based on the experience from the previous tests, in particular from
the saltpool benchmark, we limit the number of stages to ¢nee = 2. This
is consistent with the low regularity, e.g., since D(q) is not differentiable at
¢ = 0, and jumping permeability coefficients.

Performance of the different solvers. As a preliminary step, solver perfor-
mance is investigated in the small time interval of the first 10 years only on
the rather coarse mesh at refinement level 3. The linear system for the cor-
responding 498,954 degrees of freedom is still small enough for the (serial)
SuperLU solver. Results are provided in Fig. 8 and Tab. 5. After 12h of wall
clock time unfinished jobs were terminated by the scheduler.

For this problem, IMPEX showed unexpected behavior, since the the method
did not suceed to compute the solution at ¢ = 10h within the wall-clock time
limit of twelve hours. For large time steps, only linear convergence of the
Newton method was observed, and the desired tolerance was not achieved
within the prescribed maximum number of n = 10 iterations. As a result,
the time stap had to be recomputed with bisected step size. At the end, the
computational cost for this strategy turned out to be too high.

LIMEX™'succesfully computed a solution using the SuperLU precondi-

tioner. However, when switching to multigrid, linear solver turned out to
be the limiting factor. Again, this could be avoided using LIMEXreduced,
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Figure 8: Gorleben problem (2D) — initial phase: Time stepping history for the first 10
years with both preconditioners. Due to the interest in long term behavior, results are
provided for gq. = 2 stages only. Wall clock time was restricted to 12h. IMPEX (both
preconditioners) and LIMEXf!! (with multi-grid) did not finish within this limit. For these
instances, data is provided until termination.

23



Method Time steps Linear solver | Timing
q=2 q=3 q¢=4 reject | success fail | CPU [g]

IMPEX Did not terminate within 12h
LIMEX%ull 36 0 0 3 122 0| 2447.12
LIM EXgeOlUlced 60 0 0 0 185 0] 3766.70

(a) SuperLU

Method Time steps Linear solver | Timing
q=2 q=3 q=4 reject | success fail | CPU [s]

IMPEX Did not terminate within 12h

LIMEXSH! Did not terminate within 12h

LIMEXyded | 60 0 0 0] 185 0] 2250.10

(b) Multigrid

Table 5: Gorleben problem (2D) — initial phase: Iteration counts (for time stepping and
linear solver), and CPU time when using (a) multigrid, or (b) SuperLU as preconditioner
for the linear problems.

which generated identical time stepping histories indepdendent of the pre-
conditioner. In passing we note that even for this small problem size, using
multigrid resulted in smaller wall clock times.

Computational results. Results computed with LIMEX:dueed oyver 10.000 years
are shown in Fig. 9. The illustration is centered around region 3 above the
salt dome. The grid has been obtained by 4 uniform refined steps, which
is accurate enough for our purposes. The brine distribution far away from
the salt dome is almost independent of the grid size h (data not shown).
The pressure distribution at the top surface induces a flow from left to right,
which is observed in the highly conductive layers close to the surface. The
solution was obtained within &~ 12h wall clock time on HazelHen using 192
cores in 9885 time steps (and corresponding 29656 calls of a parallel multgrid
solver).

Mesh size dependent time stepping. In the deeper strata in proximity of the
saltdome a bidirectional flow pattern is observed: In the upper region of these
strata, fresh water flows towards the salt dome, while brine is transported
away from the saltdome at the bottom of the strata. Both regions are well
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(a) Refinement level 3 (b) Refinement level 4

c
000400 0.1 0.15 0.2 025 0.3 0.35 0.4 045 05 0.55 06 0.65 0.7 0.75 0.8 0.85 0.9  1.00+00

(c¢) Refinement level 5

Figure 10: Gorleben problem: Magnification of the bidirectional flow pattern in the channel
region in section 3 left of the salt dome (¢ =~ 1,000 years; refinement levels 3-5): Brine
with high density is removed from the saltdome on the bottom, whereas fluid with lower
density is transported towards the salt dome in the upper region of the channel. This
gives rise to convective cells. Their size depends on the mesh size.

separated by a region of small velocity, giving rise to transient convective
cells. This depends on the mesh size h is visualized in Fig. 10 for ¢ = 1,000
years in a magnified region at the southern (left) end of the aquifer above the
salt dome. The mesh size dependence is also reflected in the corresponding
LIMEX time stepping history in Fig 11.
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Figure 11: Gorleben problem (2D): Time step size [yrs] vs. time [yrs] for LIMEXieduced
(omitting derivatives w.r.t. convection and diffusion).

5. Conclusion

For density-driven flow problems LIMEX-methods have been demonstrated
as an attractive and efficient alternative to standard time-stepping strategy.
To that end, we devised two versions, differing in the approximation of the
Jacobian:

In principle, the basic version LIMEX®! with an exact Jacobian is the
method of choice. It is the most efficient method w.r.t. time stepping. In
some cases, however, convergence of the linear multi-grid solver may be poor,
and thus total efficiency is deterioriating.

When this happens, the version LIMEX™ud may be an attractive alter-
native. This is constructed based on an inexact Jacobian. As demonstrated
theoretically, neglecting certain terms of the Jacobian, leads to a linear sys-
tem, where the variables w and p decouple. This can be achieved by treating
the partial derivatives of Darcy velocity ¢ in the transport equation explic-
itly. Even though the time steps turn out to be smaller than with LIMEX™!
it was demonstrated that convergence problems of the linear solver can be
avoided. With LIMEXredueed " the field test for the Gorleben problem could be
solved robustly.
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