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Abstract. Using the perturbational-variational Rayleigh-Ritz matrix for
malism, the 1/Z-expansion for the ground state of the isoelectronic H2 se
quence in the range of the intemuclear distance 0.2 < R < 9.0 is calculated. 
Also lower bounds of the radius of convergence, based on Kato's theory of lin
ear operators, are given. The numerical results of the 1/Z-expansion can be 
compared with the exact results and do not converge in the whole R-range. 
This behavior is in qualitative agreement with the lower bounds for the ra
dius of convergence and enlights some still open properties of 1/Z-expansions 
for this sequence in the literature. 
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1. Introduction 
In [1] we described how the members of a sequence of isoelectronic diatomic 
molecules can be treated simultaneously in a numerically efficient way. But 
from the theoretical point of view it would be preferable to get electronic 
energies and wave functions of all molecules of an isoelectronic sequence as 
common functions of the continuous parameter Z. This would reflect (and 
perhaps give new insights into) the similar structure of the problems due to 
their relationship under the 1/Z-transformation. This was first suggested 
for atoms in 1930 by E. Hylleraas [12], who treated the isoelectronic Helium 
atom sequence. Such expansions of the electronic ground state energy of 
the He-atöm, as well as studies of their radius of convergence and analytical 
behavior have reached up to now a sophisticated level. An excellent review 
can be found in [3]. Less good efforts, as we shall later substantiate, can 
be seen for the 1/Z-expansions for diatomic molecules. First of all such 
treatments for molecules are more cumbersome and inaccurate, and secondly 
problems are also introduced by the methods used and evidently by the 
finite radius of convergence. We focus this work on the 1/Z-expansion of the 
ground state energy of H2. For this molecule a number of 1/Z-expansions 
and very accurate results can be found in the literature. 

To get the 1/Z-expansion the Hylleraas-Knight-Sherr (HKS) method [12, 
17] most commonly has been used. By a HKS-expansion to third order, 
B. Kirtmann et al. [15] got the energy -1.888104 for H2 at R= 1.4. This is 
surprising because the difference of this value to the exact result of W. Kolos 
et al. [18, 19, 20] is only 0.66 mH(artree). Later work of R.L. Matcha et 
al. [21], B. Kirtman et al. [16] and J. Goodisman [9] extend this result 
to higher precision. But although Matcha et al. used the most accurate 
basis, they got in third order an energy which lies above the corresponding 
energies of the other mentioned works. See therefore Table 1.1. Matcha et 
al. also showed that the expansion coeffients en for even n do not decrease 
uniformly by enlarging their James-Coolidge basis. This is in contradiction 
to the variational principle [12] on which the HKS-method is based. Even 
the odd order expansion of the energy can swing below the exact energy (see 
for example [16]), despite the fact that the exact Rayleigh-Schrödinger (RS) 
perturbation expansion of the energy to odd order must give upper bounds 
to the exact energy [26, 23]. 

The explanation for this behavior is well-known: The variational principle 
for ?2n and 4>n involves the knowledge of the exact <po,<f>i,... ,<f>n-i and 
eo,ei,. . . ,e2 n- i . This may play a minor role for the expansion of atomic 
sequences, where very accurate treatments are possible, but for molecular 
systems, especially if the exact results are not known a priori, this is a crucial 
point. 
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Table 1.1: 1/Z-expansion for the H2 at R = 1.4 

Ref. [15] Ref. [16] Ref. [9] Ref. [21] PVRR(°> 

eo -2.568489 -2.568538 -2.56854 -2.568538 -2.568520 
ei 0.780874 0.780883 0.78099 0.780883 0.780827 
h -0.110260 -0.11023 -0.1108 -0.110968 -0.108939 
h 0.009771 0.00975 0.0108 0.009771 0.009003 

s3 -1.888104 -1.88813 -1.88854 -1.88769 -1.887629 

e4 -0.00094 -0.000199 
h -0.00011 -0.000251 

S5 -1.88872 -1.88808 

h -0.000066 0.000013 
h 0.000092 -0.000001 

S7 -1.888694 -1.888067 
£99 -1.888071 

a this calculation 

SN = En=o ?n 
Exact values: e0 = -2.568538, ei = 0.780883, electronic energy = -1.888760 

To avoid such problems it is possible to compute the RS-expansion in a fixed 
(and truncated) basis space. This corresponds to a perturbation expansion of 
the exact solution projected in this finite basis space. Because the variational 
principle is also valid in a finite space, a perturbation expansion of this form 
lead to odd order energy sums, which again are upper bounds to the exact 
energy as well as upper bounds to the Rayleigh-Ritz upper bounds [10]. This 
can be done especially for high order expansions by using the perturbational-
variational Rayleigh-Ritz (PVRR) method [24, 25]. More details are given 
in Section 2. Instead of James-Coolidge functions, like Matcha et ai., we use 
large gaussian basis sets. For the H2 molecule this is not the best choice, but 
in this way the method can be applied without modifications to arbitrary 
molecules.1 

1We have done similar work for the ground states of HeJ, HeH+ and HeH. These results 
will not be presented here. 



By expansion to high orders (up to 99th order in the finite basis space) we 
can also study the influence of higher orders and can compare the results with 
the energies derived from direct diagonalisation of the parameter depending 
matrix families, i.e. the Rayleigh-Ritz upper bounds (see [1]). The remaining 
problems occur due to the finite convergence radius. We will discuss this in 
detail in Section 3. 
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2. The 1/Z-Expansion 

We treat the Schrödinger equation for the electronic motion (without inclu
sion of the internuclear repulsion) for a homonuclear diatomic molecule with 
two electrons and nuclear charge Z 

HeiWi,r2,Si,S2,R) = e(R)V(fur2,s1,s2,R). (2.1) 

The Hamiltonian Hej is given by 

A"-UH^+^- (2-2) 
We now apply the scaling transformation 

r'i = ßfi (electrons); RK = HRK (nuclei) (2.3) 

with the resulting relations 
R1 = fiR (2.4) 

eel(R) = (j? 4 ( # ) (2.5) 

m,si;R) = fJ.3iP'(r'i}si;R'). (2.6) 

If the operator &el is split into its one- and two-electron-parts, we obtain: 

H'ei = H0 + l//x Hi (2.7) 

with 

H0 = £h'(z); (2.8) 
»=i 

fr(i) = - ^ _ —J. J. (2.9) 
2 n\R>a-r\\ ßlRi-rü 

Ö; = 1 ^ . (2.10) 

By choosing \i— Z we take H2 as our reference molecule and starting point 
for the perturbation expansion. H0 and H^ are now independent of /x, Z and 
we get the parameter-dependent Schrödinger equation 

(HJ, + \/Z H'x) 0 = 4 (Z) ^ (2.11) 

for fixed values of i?'. The parameter independent operators HQ and Hx can 
be approximated in a Rayleigh-Ritz basis of orthogonal Slater-determinants 
by large non-diagonal matrices Ho and Hj. We choose the Multireference 



Single and Double Excitations Configuration Interaction program by Buenker 
and Peyerimhoff (MRD-CI) [5, 6, 7, 8] and have to modify it in order to split 
the final CI-matrix H, respectively, into its one- and two-electron parts 
Ho and Hx. We apply the program to the reference molecule at a sufficient 
number of intemuclear distances R! and obtain (for each value of R') a special 
matrix eigenvalue problem 

(Ho + \/Z Hx) C = t{Z) C with ? ( £ ) > < , ( £ ) . (2.12) 

To solve the parameter-dependent matrix eigenvalue problem (2.12), we 
are able to make use of the perturbation-variation-Rayleigh-Ritz procedure 
(PVRR) developed by Silverman et ai [24, 25]. This expansion gives the 
energy as a function of the parameter \/Z in high order. 



3. Radius of Convergence 

Here we want to get a lower bound for the convergence radius of the per
turbation expansion in \/Z . Therefore the theory of linear operators (see 
for example [14]) as well as some well-known properties of the molecular 
Schrödinger operator will be used. We consider the operator 

A, 
H(K)=H< )+«H /=-X; T + E 

i = l 
2 fctl^-n 

+ K—T 
ri-r2 

(3.1) 

for fixed Ri, R2 and « = \/Z. The basis space is L2(TZ6) where H(re) is a 
self-adjoint operator. H(K) is also bound from below for any real K. TO give 
a lower bound for the convergence radius p we look for lower bounds of 

^'-tfr^iibrH'-'* A! + A2 | ß 

n-r2 

(3.2) 
with 0 < a < 1 and 0 < ß. The eigenvalues of the second part in (3.2) are 
restricted from below by —/32/(4(l — a)) [14, chapter VII, eq. 4.66] and the 
first term by the united atom limit —A/a. This leads to 

( ( H o - ^ H / K u ) ^ ß7 

4(1 — a) a 
+ -) (u,u) (3.3) 

Thus Hj is bounded with respect to Ho, and H(K) forms an operator family 
of type (B0) as well as of type (A) in the sense of Kato [14]. Inequality (3.3) 
can be written in the form 

(H/tt, u) < fe(Hoti, u) + a(u, u) 

with 
- 1 ( P i\ 

a ß\A(l-a) + a) 
A lower bound for the convergence radius is given by [13, eq. 5.5] s 

(3.4) 

(3.5) 

Pib= < 

- l 

inf 
«er 

L /i€£(Ho) 

a + bp 

M-e 
(3.6) 

where E(H0) is the spectrum of Ho and V a curve (in the complex plane) 
enclosing only the eigenvalue of Ho we are interested in. The spectrum of Ho 
(S(HQ)) is well-known. The basis space of L2(Tl*) of HQ can be regarded to 
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Figure 3.1: °The spectrum of the undisturbed operator (Ro « 2.3). 6The 
convergence radius (Ri « 1 . 7 and Ri «2 .9) . 

be the tensor product L2(7£3) ® L?(1l3) (separation with regard to particles) 
and Ho has the form H0 = Hoi^® 1 + 1 ® Ho2; H0i and H02 axe copies of the 
operator h = - A / 2 - 1 / | r-R* \ - 1 / | r-k\ |. The spectrum of h includes 
R-depending discrete eigenvalues of finite multiplicity. By taking the Pauli 
principle into account and additionally the separation of the basis space due 
to space symmetry, the discrete spectrum of H 0 can easily be derived from 
the spectrum of h. After optimizing the constants a, ß and the curve T 
according to [13, pages 170-172] for the ground state, we conclude with 

Pib = 
EQ2 — EQI 

1 + A/1 + 
EQI + -5b: 

8 
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(3.9) 

where EQI and £02 are the first and second eigenvalues (from below) of H0. 
In the united atom limit (R\ = R\ = 0 ) we get with EQI = —4.0 and 
E02 = -2.5 

Thus the perturbation expansion in /c = 1/Z converges in the united atom 
limit at least for Z > 3.82. This is identical to the result of Kato for the 
He-atom Zu.a. = 2Z> 7.64 [14]. 

For completeness we should also note that for the operator family 

H(K)=H 0 + «H / = - f ; ( ! + £ * _ ) + Ä l £ £ — J — , 

this procedure for ground states leads to the more general result 

Plb={ E02-E01 [1 + f+N(C1 + C^)j • ( 3-10) 

The eigenvalue equation for h separates in spheroidal coordinates. We com
puted the R-dependent spectrum of h according to [11]. By the spectrum 
of h the eigenvalues E0i and E02 of H0 are available. ü?oi is characterized by 
the configuration (lsag)

2] E02 for R < 2.3 by (lsag, 2sag) and for R > 2.3 by 
(2pau)

2 ( see Figure 3.1a). The convergence radius according to (3.7) (see p 
in Figure 3.1b) drops to zero with increasing R, because £02 and EQI become 
nearly degenerate. 

In the case of the united atom, much better lower bounds for the convergence 
radius are available. Kato [13, page 413] treats an expansion not in 1/Z but 
in l/(Z — a), where a is a screening constant with Z — a > 0. Using the 
relationship between the expansion in l/(Z—a) and in 1/Z, he can enlarge the 
lower bound for the convergence radius to ZUja. > 4.1. Further R. Ahlrichs [2] 
proved the convergence for Zu.a. > 1.98 employing the lower energy bounds 
of N.W. Bazley [4]. On the basis of their numerical results, Baker et ai. 
conclude convergence for Zu,a, > 0.92. 
A more realistic estimation for the exact convergence radius is given by 
Pextr. = Pib * 8.386 (see p' in Figure lb), because p^tr. goes to the corre
sponding atomic value of Baker et ai. [3] for R —• 0 and the R-dependency 
of the convergence radius is mainly determined by the spectrum of Ho. To 
derive inequality (3.3) we must use the (poor) lower bound of Ho in the united 
atom limit and cannot consider the R-dependency of this lower bound, which 
would improve the convergence radius for R> 0. By this, we assume conver
gence at least for Z > l/pextr.- Therefore an 1/Z-expansion is assumed to 
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be possible for Z = 1 at least in the range 0 < B! < 1.7 and for Z = 2 at 
least in the range 0 < R' < 2.9. But it is clear that convergency can not be 
reached far beyond these ranges. 

Another point, which must be mentioned here, is that we must distinguish 
between the convergence radius for the expansion of eigenvalues and eigen-
states of an operator in L2 and the convergence radius for the expansion of 
eigenvalues and eigenstates of the projection of this operator in a finite basis 
space. Even if we could derive the exact convergence radius in a mathemat
ically strict way, we could not infer the same for our PVRR-expansion *. 
This is a general problem in quantum chemistry where analytical treatments 
are normally not possible. The algebraic singularities introduced through the 
restriction to a finite basis may reduce the radius of convergence in a way 
that analytical properties, like considerations of the variation principle, will 
be destroyed. But in the case of the 1/Z-expansion for the H2 ground state 
it is clear that for R—• oo there is no chance for convergence of the PVRR-
expansion (or any other) at all. Knowing this, we carefully compare the 
results of our 1/Z-expansions for different Z with the corresponding eigen
values of the Z-depending matrix families (for which the variation principle 
is valid). 

1Whereas (3.3) holds also in a finite basis space, in (3.6) the spectrum £(Ho) must be 
replaced by the spectrum of the projection of Ho into the finite basis space (see discussion 
in [2]). 
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4. Results of the PVRR—Expansion 

For the Rayleigh-Schrödinger expansion of ^ ' and e7 (see (2.11)) in power 
series in K = \/Z 

00 00 

*' = £«"<&„ , ^ = £*% (4.1) 
i/=0 i/=0 

$o, eo = ($0 I H'o | $o) and t\ = ($o | H'i | $0) can be computed exactly 
(see Section 3). Using only eo and ei we get total energies (see Figure 4.1a-
c) for the first three molecules of the isoelectronic H2 sequence (H2, He2

+ 

and Li2
+) which qualitatively agree with their completely different nature 

regarding chemical bonding: H2 is bound, He2
+ is semi-stable with regard 

to dissociation and Li2
+ is repulsive. These results are very promising, but 

misleading also, because an extension of expansion (4.1) to higher orders will 
not converge for the whole R-range. Thus expansions to finite order may 
lead to acceptable results for the potential curve, whereas the expansion 
coefficients en have no physical meaning at all. In general arbitrary results 
can be obtained by such non-convergent expansions. 

This is also illustrated by the behavior of ei for R —• 00. Due to the Hg sym
metry of the wave function, e\(R —• 00) is the mean value of the correspond
ing ei values of the atomic systems H + H and H~ + H+ . Whereas the 1/Z-
expansion for the separated atoms is exactly given by Z26Q (CQ = —1.0), the 
1/Z-expansion for the molecular system leads to ey(R —• 00) = 0.3125 7̂  0. 
This "wrong" e\(R —* 00) value must be compensated by higher order cor
rections, which is not possible for arbitrary Z. 

Nevertheless we approximate the expansion (4.1) by an PVRR-expansion to 
99th order in the range 0.2 < R' < 9.0 (AR! = 0.2). To map (2.11) onto 
the finite dimensional matrix equation (2.12) we use a (9s7p2d / 4s4p2d) 
gaussian basis set (see Table 4.1). Using the Slater exponents of McLean et 
al. [22] (optimalized for the H2 ground state at various R-values) we multiply 
the exponents of the s- and (p,d)-functions of this basis by the factors 0.8638 
and 0.22932, respectively. Such a scaled basis improves the CI-energies in 
the range R' > 2.6. The same is true for R' < 0.8 with factors 1.0658 and 
1.1358 for the s- and (p,d)-sector, respectively. In all cases we present the 
results derived with the basis which leads to the lowest CI-energy. 

By choosing the MRD-CI selection threshold T = 0, all single and double 
excitations of the ground state configuration were taken into account. For a 
two-electron system this corresponds to a full CI treatment. The dimensions 
of the resulting hamilton matrices are 300. 

In Table 4.2 the coefficients e„ of the PVRR-expansion up to N < 9 for se
lected R-values are given. The perturbational energies for H2 SN = ]>2»=o ^ + 

10 



- 1 ' ' • ' • • •» 

(b) 

, I * - ,1 • * . . 

(c) 
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Figure 4.1: Sum of 0. and 1. order energies for the H2-molecule °, the He^+-
moleculeb and the Li^-molecule c. 

1/R' for odd N must be upper bounds for the total energy of H2, as well as 
upper bounds for lowest eigenvalue of the matrix Ho + «Hi + 1/R' for K = 1, 
denoted by E«=i. For the exact energies of H2 [18,19, 20] see Eexact in Table 
4.2. 
For low R' the PVRR-expansion converges rapidly. SN is at least for N > 11 
up to 7 significant digits identical to Ŝ g and E^i. This is valid in the range 
R' < 2.4. But the inequality 

SN > EK=i for odd N (4.2) 

holds only in the range R' < 1.2. For Rl = 1.4 S5 lies below E^i (but still 
above Eexact). This is inconsistent with the variational principle (in a finite 
basis space). The difference E^i — S5 grows with increasing R', and for 
R' = 2.8 £5 for the first time lies below the exact energy. The perturbational 
energy to 99th order differs from EK-I and at Rf — 3.6 S99 has the astronomic 
value 5.1 • 107. This behavior grows stronger with increasing R1. 
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Table 4.2: Results of the PVRR—expansion at selected points 

# = 0.2 # = 0.8 # = 1.4 # = 2.0 # = 2.8 # = 3.6 

eo -3.856013 -3.108913 -2.568520 -2.205231 -1.882868 -1.670534 
ex 1.202149 0.956888 0.780827 0.661494 0.554065 0.482969 
e2 -0.149048 -0.122148 -0.108939 -0.107723 -0.126848 -0.184893 
e3 0.002712 0.005140 0.009003 0.014986 0.031234 0.073006 
£3 2.199800 -1.019033 -1.173343 -1.136474 -1.067275 -1.021675 

e4 0.000166 -0.000036 -0.000199 -0.000423 0.000063 0.024085 
e5 -0.000157 -0.000166 -0.000251 -0.000604 -0.003801 -0.045264 

s5 2.199810 -1.019236 -1.173794 -1.137500 -1.071013 -1.042854 

h -0.000037 -0.000008 0.000013 0.000081 0.000817 -0.003633 
h -0.000007 -0.000002 -0.000001 0.000032 0.000634 0.042787 

s7 2.199765 -1.019246 -1.137388 -1.137388 -1.069561 -1.037000 

e8 -0.000003 -0.000004 -0.000004 -0.000011 -0.000378 -0.014184 
e9 -0.000001 -0.000002 -0.000000 -0.000001 -0.000061 -0.040428 

S9 2.199761 -1.019252 -1.173785 -1.137400 -1.085051 -1.058313 

S11 2.199760 -1.019252 -1.173785 -1.137399 -1.069895 -0.991378 
S 9 9 2.199760 -1.019252 -1.173785 -1.137399 -1.069911 5.1 -107 

£*=i 2.199760 -1.019252 -1.173785 -1.137398 -1.070100 -1.027706 

Eexact — -1.020056 -1.174474 -1.138132 -1.070681 -1.028045 
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5. Conclusion 

First of all, it is clear that the 1/Z-expansion for the H2 ground state does 
not converge for R—• 00. This is substantiated by the radius of convergence 
given in Section 3 and illustrated by the results of the PVRR-expansion. The 
behavior of the e,i for large n is strongly affected by the used basis space. 
Nevertheless the analytical behavior of the PVRR-expansions at different R'-
values corresponds quite well to the extrapolated convergence radius pextr.-
Convergence of the PVRR-expansion to the 99th order can be achieved for 
small R-values (R < 2.4). But already at R! > 1.4 the behavior of pertur
bations! energy-sums to small orders shows that inferences of the variational 
principle are not longer valid. This indicates that algebraic singularities of 
t{Z) (see eq. (12)) reduce the radius of convergence. By pextr. we assume 
convergency at least for R' < 1.7. 

Following this, the basic condition that 1/Z-expansions (as in the atomic 
He-atom case) converge for all Z-values of physical interest does not hold. 
Furthermore the used basis affects the radius of convergence. Only in case 
convergence can be proved in a mathematically strict way and error bounds 
for the en can be given to exclude basis effects, a protection from misleading 
results is given. Because this is seldom possible, we would recommend at 
least to check the results in a way we do. 
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