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1 Introduction

Packing constraints are one of the most common problem characteristics in
combinatorial optimization. They come up in problems of vehicle and crew
scheduling, VLSI and network design, and frequency assignment, see [39, 16]
for surveys. The pure form is the set packing or stable set problem (SPP) in
a graph G = (V, E) with node weights w; it asks for a maximum weight set
of mutually non-adjacent nodes. This problem has been studied extensively,
and deep structural and algorithmic results have been achieved in areas such as
anti-blocking theory, the theory of perfect graphs, perfect and balanced matrix
theory, and semidefinite programming, see [7, 20, 35, 8] for surveys. There is, in
particular, a substantial structural and algorithmic knowledge of the set packing
polytope, with many classes of strong and polynomial time separable inequalities
such as odd hole, odd antihole, orthonormal representation constraints and other
classes [36, 34, 45, 38, 20].

Several research directions try to translate some of these results to broader
settings. A first line investigates generalizations of set packing such as node
packing in hypergraphs [42], independence systems [34, 37, 13, 26], transitive
packing, [30, 31, 32, 41], and mixed integer packing [2, 3]. This work aims at
a unified polyhedral theory. A second direction is the theory of matrix cuts
[27], which generalizes the semidefinite separation machinery that had been
developed for the solution of the stable set problem in perfect graphs [20] to
arbitrary 0/1 programs. A third approach is the construction of discrete set
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packing relaxations [9, 10], see also [40]. This technique allows to transfer set
packing inequalities and separation algorithms to other combinatorial problems.

Our aim in this paper is to continue in this general direction. We con-
sider a class of combinatorial optimization problems of packing type where
a Dantzig-Wolfe decomposition gives rise to a canonical, yet exponential, set
packing formulation, namely, the formulation that one would use in a column
generation approach. This alternative formulation allows, at least in princi-
ple, to understand combinatorial packing problems completely in terms of set
packing theory. We show that such Dantzig-Wolfe set packing formulations of
combinatorial packing problems have structural properties that relate them to
the original formulation and make them interesting sources of cutting planes.

The article consists of two parts. In Section 2 we introduce the concept
of combinatorial packing. We give two examples of such problems, namely,
on packings of two stable sets in bipartite graphs and independent sets in any
number of matroids, which are naturally integral. Dantzig-Wolfe set packing
formulations of combinatorial packing problems are discussed in Section 3. It is
shown that such formulations give rise to cutting planes and that the intersection
graphs associated with Dantzig-Wolfe formulations of combinatorial 2-packing
problems are perfect.

2 Combinatorial Packing

We introduce in this section the notion of combinatorial packing. This concept
subsumes a variety of combinatorial optimization problems, among them the
Steiner tree packing problem, the multicommodity flow problem with unit ca-
pacities, the multiple knapsack problem, and the coloring problem. It will turn
out that for some problems of this type, namely, the 2-coloring problem in bipar-
tite graphs and the matroid packing problem, the integrality of the individual
subproblems carries over to the packing composition.

Consider a family of some number & of combinatorial optimization problems

() max ¢'z!, Miz' <V, 0<2' <1, 2 €2  i=1,....k (1)

on the same ground set E. These are the individual problems. Associated with
each of them is an individual polytope Pl = conv{z’ € {0,1}" | Mz’ < b'}
and its fractional relaxation Pp: = {0 < 2" < 1 | M*z* < b'}. An individual
problem with the property PIIPi = Pp: is called integral.

A packing is a collection of individual solutions z',... 2% of TP! .. TP,
respectively, such that each element of the ground set is contained in at most
one solution. The problem to find a maximum weight packing is the combi-
natorial packing problem (CPP) associated with the individual problems IP?,

i=1,...,k. A CPP with k individual problems is a (combinatorial) k-packing



problem. The IP formulation of a CPP reads

(CPP) max Zf 1 ¢l
() Migt <b, i=1,...,k
(ii) >0, i=1,...,k (2)
(iii) Y ri<a
(iv) eZf i=1,... .,k

We call CPP (iii) the packing constraints. It will be convenient to use the
notation zT = (z'7,...,2*") and ¢T = (¢!",...,c*"). Likewise, we shall view
the ground set of a combinatorial k-packing problem as a disjoint union ) E* =
E' U ... U E* of copies of the ground sets of the individual problems, where
E' is the copy of the ground set of problem IP?. Associated with the CPP are
finally the combinatorial packing polytope and its fractional relaxation

Plop = conv{z € {0,1}YF" | SF Lt <1, Migt <V i=1,..., k).

i . L ) 3
Pepp ={z € [OJI]UE ZfZI:L"S]]_, Miz" <b',i=1,...,k}. ©

A CPP is integral if Plpp = Pepp. If all individual problems as well as CPP
itself are integral, we say that CPP is naturally integral.

2.1 Examples of combinatorial packing problems

The Multicommodity Flow Problem with Unit Capacities involves a
supply digraph Ds = (V, As) and a demand digraph Dp = (V, Ap), both on the
same node set V. We denote an arc from a node s to a node ¢ in these digraphs
by st. There are non-negative weights w € Qﬁs on the arcs Ag of the supply
digraph. A multiflow is a collection of pairwise arc disjoint directed st-paths in
Dg, one for each arc st € Ap of the demand digraph. The multicommodity flow
problem with unit capacities (MCFP) asks for a multiflow of minimum weight
[1, 16, 12).

The MCFP is a combinatorial path packing problem. The individual prob-
lems are shortest path problems, one for each demand arc st € Ap:

sz
(6 (v)) — 24 (6 (v)) = es — ey, YveV 4
0<z<1 (4)

z%t € 7A4s

min wlzs

Combining the shortest path problems in a CPP adds the packing constraints
Y ostc As 2% < 1 that model the edge disjointness of the paths.

The Steiner Tree Packing Problem involves a graph G = (V, E), some
number k of sets of terminal nodes T',...,T*¥ C V, and non-negative edge
weights w',..., wk € Qf. The Steiner tree packing problem (PST) is to find a



collection of Steiner trees S, ..., S* spanning the terminals T, ..., T*, respec-

tively, such that no two Steiner trees have an edge in common [29, 23, 21, 22, 24].
Note that terminal sets of two nodes will be joined by paths such that the PST
subsumes the MCFP.

The PST is a combinatorial packing problem. The individual problems, one

for each terminal set T%, i = 1,...,k, are Steiner tree problems
min wiTxi
(W) > 1, VW CV: WNT #£D#£(V\W)NT? (5)
0<az<1
zie 7.

Combining the problems in a CPP forces the Steiner trees to be edge disjoint.

The Generalized Assignment Problem deals with a set of jobs J to be
processed by a set of machines I with capacities a?. There are resource demands
aj. and profits w; for the assignment of job j to machine i. The generalized as-
signment problem (GAP) is to find a maximum profit assignment of jobs to
machines [28, 18]. The special case where the resource demands and availabil-
ities do not depend on the machines, i.e., when a’ = a* and o = oF for all
i,k € I, is known as the multiple knapsack problem (MKP) [28, 14, 15].

The GAP models combinatorial packings of job-machine assignments. There
is an individual knapsack problem for each of the machines ¢ € T

T . T . . . .
max w' 2, a2 <af, 0<2' <1, 2°e€2’. (6)
The packing constraints forbid assignments of jobs to more than one machine.

The k-Coloring Problem involves a graph G = (V, E) with node weights
w € QK and some number k£ € N of colors. The k-coloring problem (k-COL)
asks for a collection of ¥ mutually disjoint stable sets (color classes) of maximum
weight [44].

A combinatorial packing formulation of the k-coloring problem is based on
k individual stable set problems

max wiz!, =zl 42l <1 VweE, 0<z'<1, 27", (7

one for each color 1 < ¢ < k. The packing constraints Zle z' < 1 guarantee
that each node can take at most one color.

We finish our list of examples here and remark that, in the same way, graph
decomposition problems, constrained path packing problems that arise, e.g., in
vehicle routing and duty scheduling, and a variety of other problems are also
combinatorial packing problems.



2.2 Natural integrality

The example of the multicommodity flow problem shows that combinatorial
packing problems can be hard even if all of the individual subproblems are easy
and, in particular, even if complete descriptions of the individual polyhedra
are explicitly known. There are, however, cases where the integrality of the
individual problems carries over to the entire combinatorial packing problem.
We give now two examples of combinatorial packing problems that have this
natural integrality property.

The Bipartite 2-Coloring Problem (BIP-2-COL) is the special case of the
2-coloring problem where G = (V, E) is a bipartite graph G. The individual
problems are two set packing problems in this graph G. Their IP formulations
can be stated as

max w'zt, Az <1,z'>0, 2t eZ", (i=1,2) (8)
where A = A(G) denotes the edge-node incidence matrix of G. It is well known
(see, e.g., [35, IIL1., Corollary 2.9]) that the edge-node incidence matrices of
bipartite graphs are totally unimodular. Hence, the individual coloring problems
are integral.

The IP formulation of the entire bipartite 2-coloring problem reads

(BIP-2-COL) max w'z! + w'z?
(i) zL+zl<1 VYuv € E
(i) z2+22<1 Vuv € E )
(iii) zi+22<1 Yo eV
(iv) zlz2>0 YveV
(v) =b,22€{0,1}V WweVW

2.1 Proposition The bipartite 2-coloring problem is naturally integral.

Proof (empty). We show that the constraint matrix of the bipartite 2-coloring
problem is totally unimodular. This is easily done be noting that BIP-2-COL
can again be seen as a set packing problem in a larger bipartite graph H. Using
the convention to view the ground set of a combinatorial packing problem as
a disjoint union of the ground sets of the individual problems, this graph H
has as its node set the ground set V! 1 V2 of the bipartite 2-coloring problem,
where V! is a copy of the node set of the first individual coloring problem, and
V2 a copy of the second node set. For every constraint BIP-2-COL (i), there is
an edge u'v! between the first copies 4! and v' of nodes u and v; this edge is
a copy of the respective edge uv in the first individual problem. Analogously,
there is an edge u2v? between the second copies u? and v? of nodes u and v
for every constraint BIP-2-COL (ii); this edge is a copy of the respective edge
uv in the second individual problem. The graph H contains thus two disjoint
copies G and G? of G, one on the nodes V1, the other one the nodes V2. The



only additional edges between these copies come from the constraints BIP-2-
COL (iii). There is an edge v'v? that joins the two copies of each original node
for every packing constraint.

Figure 1: Bipartite 2-Coloring.

Let X U Y be a bipartition of the nodes of G. The nodes of H can be
partitioned into corresponding copies X', Y!, X2, and Y2. Edges run between
X' and V! (first copy G! of G), X2 and Y2 (second copy G2 of G), X! and X2
(packing constraints on the copies of X), and Y! and Y? (packing constraints
on the copies of Y), see Figure 1. It follows that (X' UY?) U (X2UY!) isa
bipartition of H. O

The Matroid Packing Problem involves some number k of not necessarily
identical matroids on the same ground set E with not necessarily identical non-
negative weights w',...,w* € Qf. The matroid packing problem (MPP) is to
find a maximum weight collection of independent sets, one from each matroid,
such that no two independent sets intersect on a common element.

The matroid packing problem can be stated as the following integer program:

(MPP) max Y w' z*
(i) #(F)Y<ri(F) VYFCE, i=1,...,k
(ii) i >0 i=1,...,k (10)
(iii) Yai<1
(iv) zt € {0,1}F i=1,...,k

Here, r! denotes the rank function of matroid i. It is known (see, e.g., [35,
Theorem 3.5]) that the individual matroid problems are integral.

2.2 Proposition The matroid packing problem is naturally integer.

Proof (empty). The reason for the natural integrality of the matroid packing
problem is that this problem can be reinterpreted as a matroid intersection



problem involving two matroids. Both of these matroids have E' U ... U E*
as their ground set. The first matroid is simply the disjoint union of the k
individual matroids. The second matroid is also a disjoint union of k matroids,
namely, the |E| uniform matroids that are induced by the packing constraints
MPP (iii). Consider the packing constraint Zle zi < 1 for element e. The
matroid that is associated with this constraint has as its ground set the set
{e!, ..., e*} of copies of the element e. The non-trivial independent sets of this
matroid are precisely the one-element sets {e!},...,{e*}. The disjoint union of
these | E| uniform matroids forms the second matroid.

By definition, MPP (i) and (ii) are a complete polyhedral description for
the first matroid. Trivially, MPP (iii) and (ii) are also a complete polyhedral
description of the second matroid. It is, however, well known (see, e.g., [35,
IT1.3., Theorem 5.9]) that the union of two such systems is a complete description
of the polytope that is associated with the intersection of two matroids. O

Having seen two examples of naturally integral CPPs, a “converse” question
that comes up is whether the integrality of the individual problems is a necessary
condition for the natural integrality of a CPP. This is true if the individual
problems are down monotone. The following example shows, however, that this
is not true in general.

2.3 Example Consider the combinatorial 2-packing problem

max zl + 22 + z3 4+ x4

zl + 22 >1
2z1 + 222 <3
z3 + 24 >1

203 4+ 224 <3 (11)
zl, 22, 3, x4 >0
zl + z3 <1
z2 + 24 <1

zl, 2, 23, z4 € Z.

=Nl

t1Y .
1103 )=

1,2, which have fractional vertices. The entire CPP is, however, integral; its

The individual problems produce the polytopes Pp: = conv (0

) . T
associated polytope is Pcpp = conv (9 § 6 ) = Plpp.

3 Dantzig-Wolfe Set Packing Formulations

Combinatorial packing problems give rise to a natural alternative set packing
formulation via Dantzig-Wolfe decomposition. This connection creates a possi-
bility to study combinatorial packing problems in terms of set packing theory.
We show in this section that such Dantzig-Wolfe set packing formulations have
interesting structural properties that make them potentially useful sources of
cutting planes for combinatorial packing problems.



Consider a combinatorial packing problem (2). Let M? € {0,1}7*%" be
a matrix whose columns are the incidence vectors of the 0/1 solutions of the
individual problem IP?, i = 1,..., k. Let us identify the index v € B! of such
a column M with the set associated with that column, i.e., we view b as a
subset of the ground set E? whose incidence vector is M (i.e., x° = M%).

A Dantzig-Wolfe decomposition subject to the substitutions

oh= M, 1IN =1, X >0, M e{0,1}T, i=1,...,k, (12)

transforms (2) into the form

T

(XPP) max Y&  w' M)
6) 1T =1, i=1,...,k
(ii) Y o MiN <1 (13)
(iii) A >0, i=1,...,k
(iv) Xoe{0,1}%, i=1,... k.

We call XPP the Dantzig- Wolfe formulation associated with CPP. Constraints
XPP (i) are the convezity constraints, and XPP (ii) are the packing constraints.
Using the notation AT = (AL,...,\¥), M = (M1,...,M*), C' = diag(1"),

wT = (', ..., w*"), and B = B' U ... B*, XPP becomes

(XPP) max w'MX, CA=1, MA<1, A>0, X €{0,1}%. (14)
XPP is closely related to the set packing problem
(SPP) max w™M)X, CA<1, MA<1, A>0, Xe{0,1}7. (15)

In fact, XPP arises from SPP by forcing the relaxed convexity constraints
CX < 1 to equality. This is, however, not an essential change. XPP can,
e.g., be transformed into the form SPP by adding a suitably large constant
M - 1 to the objective. As a (modified) packing problem, XPP can be restated
in graph theoretical language in terms of the intersection graph & = (U, €)

that is associated with the constraint matrix A = (§;). This graph & has a

node v € ¥ = V' U ... U B* for each individual 0/1 solution. There is an
edge uv for any two individual solutions u and v that can not simultaneously be
contained in a packing. This is the case when either u and v are both solutions
of the same individual problem such that the columns 4., and A., intersect on
a convexity row, or when u and v contain both the same element e € E, i.e., A,
and A., intersect on the packing row associated with the element e. In terms of
&, XPP is the problem to find a maximum weight packing in & such that each
“convexity clique” is covered exactly once. This connection to set packing has
polyhedral consequences. Consider the polytopes

Plop ={A € {0,1}Y: CA=1,MA < 1}

(16)
Php={)2€{0,1}7: AN <1}



associated with XPP and SPP and their respective fractional relaxations Pxpp
and Pspp. The polytope Plpp is the set packing polytope associated with & and
Plop is a face of P{op. The combinatorial packing polytope can be obtained
from Pfpp by projection.

3.1 Proposition Plpp is the projection of the “extended set packing polytope”
{z | z = diag(M*)X, X € Pxpp} (17)

on the space of the z-variables.

Proposition 3.1 states that all facets of the combinatorial packing polytope
are projections of set packing inequalities in some high dimensional space. This
means that it is, at least in principle, possible to study combinatorial packing
problems in terms of set packing theory. We remark that such a study is neces-
sary because a Dantzig-Wolfe formulation per se does only contain information
on the individual problems, but not on packings. Namely, Proposition 3.1 im-
plies the following relationship between CPP and XPP (see, e.g., [43, Section 2.3]
for essentially the same result):

3.2 Corollary Let CPP be a combinatorial packing problem with integral in-
dividual problems and let XPP be its Dantzig-Wolfe formulation. Then:

The value of the LP relaxation of CPP is equal to the value of the LP
relaxation of XPP.

For combinatorial packing problems with integral individual problems such as
the multicommodity flow problem, one can therefore not gain much from just
restating the problem in column generation form.

The natural way to exploit Proposition 3.1 algorithmically is by using lift-
and-project techniques [4, 5]. Suppose we want to check some point Z for mem-
bership in Plpp. Suppose also for the moment that we have a complete descrip-
tion DX < d of Pfpp at hand. Then, by the Farkas lemma,

T ¢ Plpp
< {\| D) <d,diag(MHX =7} =10 (18)
<= 3a,b:aTD + bTdiag(M?) >0, a >0, aTd+ b™Z < 0.

However, as 0 < aTDX + bTdiag(M¥)A < a’d + bz is valid for any z € Plpp,
the inequality

a’d+b"x >0 (19)

is a valid inequality for PApp that is violated by Z; such a cut can be determined
by solving an appropriate LP (involving an additional normalization constraint
to bound the recession cone).

Ignoring the technical difficulty of this projection process for the moment,
the success of the procedure clearly depends on the quality of the description
D) < d for Pipp. Knowledge of a complete description of Pipp is surely
an elusive goal in general. There are, however, significant cases where such a
complete description is, in some sense, in fact available.



3.3 Proposition The intersection graph associated with the Dantzig-Wolfe
formulation of a combinatorial 2-packing problem is perfect.

Figure 2: Intersection Graph of a Combinatorial 2-Packing Problem.

Proof (empty). We show that & is the complement of a bipartite graph.
The nodes of & consist of the two sets ¥ = B! U B? that correspond to the
solutions of the first and the second individual problem, respectively. As there
can be only one solution of each individual problem in a packing, the nodes of
B! and B? form two cliques in &. These cliques are joined by the remaining
edges, connecting solutions that have elements from the ground set in common,
see Figure 2. In the complement graph &, the sets ' and B? form two stable
sets. Therefore, they induce a bipartition in &, and hence & is perfect. O

Proposition 3.3 shows that all facets of combinatorial 2-packing polytopes
are projections of cligue inequalities [36]. The clique inequalities are subsumed
by the larger class of orthonormal representation constraints which can be sep-
arated in polynomial time [20]. Proposition 3.3 suggests that such separation
techniques, combined with lift-and-project methods, are potentially useful tools
for the solution of combinatorial 2-packing problems. We remark that such
techniques can, however, not lead to polynomial time algorithms for general
combinatorial 2-packing problems, because this class contains A/P-hard prob-
lems such as the 2-commodity flow problem with unit capacities [17, Problem
ND38].

A practical use of lift-and-project cutting planes from Dantzig-Wolfe formu-
lations can not be that one builds up a larger and larger description of Pipp in
the exponential space RZ, adding more and more cutting planes and columns.
Doing so would be equivalent to a combined column generation and cutting
plane approach to combinatorial packing problems with its well-known difficul-
ties. Instead, we propose to accumulate cutting planes only in the compact
original space [RUEi, and to use the Dantzig-Wolfe formulation solely as a sep-
aration tool.

The straightforward way to do that is as follows. Suppose we are given a

10



point T to be tested for membership in Pépp. The first step is to express T as a
convex combination of individual solutions in the form Z¢ = M)\, i =1,... k.
By Caratheodory’s theorem, this can be done in such a way that the resulting
multipliers A? have at most |E| + 1 nonzero components each. We then set up
a subproblem of XPP that consists of the columns that appear in these convex
combinations, apply whatever separation algorithms we have at hand, and add
the resulting cuts. Projecting back, we have to be careful that our cut is dual
feasible for the global XPP, i.e., we potentially have to lift a number of additional
variables (this can happen because there may be more than one way to express
T as a convex combination of 0/1 solutions). When this process results in a
violated cutting plane for Plpp, we add it to our current description of Plpp,
resolve, and iterate. The procedure that we have just sketched is admittedly
expensive, but it points into a direction of a possible future algorithmic use of
structural results such as Proposition 3.3.

We close this paper with an example that is supposed to avoid a possible
misunderstanding. Proposition 3.3 does not make a statement that would re-
late perfection of the constraint matrix A of a Dantzig-Wolfe formulation or
its intersection graph & with natural integrality of the original formulation.
The obstacle that prevents us from establishing such a connection is that the
LP relaxation of a Dantzig-Wolfe formulation can have fractional vertices that
correspond to integral packings.

3.4 Example Consider the following combinatorial packing problem with two
uniform matroids of rank 2.

max r1 + z3 + zi + 27 + 23 + 2%

i + x + 2} <2
2 + 23 + 23 <2

T + 3 <1 (20)
T3 + =3 <1
3 + 25 <1
xt  xy, oz, L2, i, 2% >0
xi s, oz, 2}, 23, 23 €.

By Proposition 2.2, the problem is naturally integral. The Dantzig-Wolfe for-
mulation is

max (0,1,1,1,2,2,2)A1 + (0,1,1,1,2,2, 2) A2

1111111 =1
1111111 yy =1

1 11 1 11 (/\2>g1 (21)
1 1 1 1 1 <1
1 11 1 11 <1
ALAZ >0
A2 e 77,

11



The constraint matrix A of this formulation is not perfect. The perfect clique
matrix associated with the intersection graph of the Dantzig-Wolfe formulation
is

1111111
1111111
1 11 1 11
1 1 1 1 1 1
1 11 1 11
1 11111
1 1 1111
11 1111
1 11 111
1 1 1 111 (22)
11 1 111
111 111
1111 11
1 111 1 1
11111 1
1 111 11
1 1111 1
11 111 1

This matrix adds 13 missing cliques to A. The clique in the last row contains
the highlighted columns of A.

Similarly, one can verify that the 3-packing problem associated with three
uniform matroids of rank 2 has an imperfect intersection graph.
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