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Abstract

Consider a flow network, i.e., a directed graph where each arc has a
nonnegative capacity and an associated length, together with nonempty
supply-intervals for the sources and nonempty demand-intervals for the
sinks. The Maximum Minimum Cost Flow Problem (MMCF) is to find
fixed supply and demand values within these intervals such that the opti-
mal objective value of the induced Minimum Cost Flow Problem (MCF)
is maximized. In this paper, we show that MMCF is APX-hard and that
the problem remains NP-hard in the uncapacitated case.

Introduction

In the following, we consider a flow network, i.e., a directed graph G = (V,A)
with node set V and arc set A ⊆ V ×V where each arc a ∈ A has an associated
nonnegative capacity ca ∈ R≥0 and length `a ∈ R. By V + ⊆ V and V − ⊆ V
we denote the sources and the sinks of the flow network, respectively. W.l.o.g.
we assume that V + ∩ V − = ∅ and the remaining nodes V 0 := V \ (V + ∪ V −)
are called inner nodes.

Furthermore, for each source u ∈ V + we are given a nonempty supply in-
terval [bu, bu] ⊆ R≥0, where bu ∈ R≥0 is a lower and bu ∈ R≥0 is an upper
bound on u’s supply. Analogously, for each sink w ∈ V − a nonempty demand
interval [bw, bw] ⊆ R≤0 with lower and upper bound bw, bw ∈ R≤0 is given.
In other words, we consider a HOSE-model type demand polytope, which was
first introduced by Duffield et al. in the context of virtual private networks,
see [5]. Finally, a vector b ∈ R|V +∪V −| is called supply and demand vector if
bv ∈ [bv, bv] for each v ∈ V + ∪ V − and

∑
v∈V +∪V − bv = 0, i.e, if supplies and

demands respect the corresponding bounds and are balanced.
The Maximum Minimum Cost Flow Problem (MMCF) is to find a supply

and demand vector such that the objective value of the induced Minimum Cost
Flow Problem (MCF) is maximized, see Ahuja et al. [1] for a definition and
details on MCF. In the uncapacitated case, where all arc capacities are assumed
to be infinite, i.e., ca = ∞ for all a ∈ A, we call the problem Uncapacitated
Maximum Minimum Cost Flow Problem (UMMCF).

Similar to Ahuja et al. [1], we assume that G contains an uncapacitated
directed path from each source towards each sink, in order to ensure feasibility
for the induced MCF instances. We impose this condition, if necessary, by
adding direct arcs with large cost and infinite capacity. No such arc appears
in an optimal MCF solution unless there exists a supply and demand vector
inducing an infeasible MCF instance for the original flow network.
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A Bilevel Optimization Model for MMCF

MMCF can be modelled as a linear bilevel optimization program. For details
on bilevel optimization we refer to the book by Dempe et al. [4].

max
b

∑
a∈A

`afa (1)

s.t. bu ∈ [ bu, bu] ∀u ∈ V + (2)

bw ∈ [bw, bw] ∀w ∈ V − (3)

min
f

∑
a∈A

`afa (4)

s.t.
∑

a∈δ+(u)

fa −
∑

a∈δ−(u)

fa = bu ∀u ∈ V + (5)

∑
a∈δ+(w)

fa −
∑

a∈δ−(w)

fa = bw ∀w ∈ V − (6)

∑
a∈δ+(v)

fa −
∑

a∈δ−(v)

fa = 0 ∀v ∈ V 0 (7)

fa ∈ [0, ca] ∀a ∈ A. (8)

For each source u ∈ V + the variable bu represents its supply and for each sink
w ∈ V − the variable bw represents its demand. Their values are chosen by the
leader with respect to the corresponding bounds, see (2) and (3). Additionally,
the leader has to balance supply and demand, because otherwise the MCF
problem, which the follower solves subsequently, does not admit any feasible
solution. If supply and demand cannot be balanced, the MMCF instance is
itself infeasible. Thus, the b-variables form a supply and demand vector for the
corresponding MMCF instance.

In this model, we use the well-known arc flow formulation to model MCF,
see (4) - (8). The nonnegative fa variables describe the amounts of flow on
the corresponding arcs a ∈ A, which are bounded by their capacities ca (8).
Constraints (5) and (6) ensure that the supplies and demands of the sources
and sinks are satisfied while constraints (7) ensure that flow conservation holds
at all inner nodes. The follower routes the flow such that the cost

∑
a∈A `afa is

minimized, while it is the leaders goal to choose a vector maximizing it, see (4)
and (1), respectively.

In the remainder of this paper, we denote a solution for MMCF as a tuple

(b, f), where b is a supply and demand vector and f ∈ R|A|≥0 is a flow-vector, i.e.,
a vector containing the amounts of flow on the arcs. A solution is called feasible
if f is an optimal solution for the MCF instance induced by b, i.e, if (b, f) is a
feasible solution for the bilevel program above. We denote the cost of a solution
by c(b, f) :=

∑
a∈A `afa and a solution (b, f) is called optimal if it is feasible

and c(b, f) ≥ c(b′, f ′) for all feasible solutions (b′, f ′).
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Complexity of MMCF

In this section we prove the following theorem:

Theorem 1. MMCF is APX-hard.

We reduce from the Maximum Independent Set with Bounded Degree Prob-
lem. Its definition, as it is stated here, is adapted from Ausiello et al., see GT23
in [2]:

Definition 1. Let H = (W,E) be an undirected graph such that the degree
of each node is bounded by some constant B ≥ 3, i.e., we have ∆v ≤ B for
each v ∈W . The goal of the Maximum Independent Set with Bounded Degree
Problem (MIS) is to find a maximum subset W ′ ⊆W w.r.t. the cardinality such
that no two vertices in W ′ are joined by an edge e ∈ E.

Theorem 2. MIS is APX-complete.

Proof. A proof can be found in the papers of Berman and Fujito [3] or Papadim-
itriou and Yannakakis [7].

Given an undirected graph H = (W,E) as instance of MIS, we create a
corresponding MMCF instance IH = (V,A) as follows. Note that we assume
w.l.o.g. that H contains no isolated vertices, since those are trivially contained
in every maximum independent set.

First of all, for each vertex v ∈W we add a source node v+ ∈ V + as well as
two inner nodes v0, v1 ∈ V 0. Furthermore, for each edge e ∈ E we add a sink
node e− ∈ V −. For each source v+ ∈ V + we define bv+ := 0 as the lower supply
bound while the upper supply bound is set to bv+ := ∆v, i.e., the degree of the
corresponding vertex v ∈ W . Additionally, for each sink e− ∈ V − we define
be− := −1 and be− := 0.

Next, we add four different types of arcs to IH , i.e., A := A1 ∪A2 ∪A3 ∪A4.
First, for each vertex v ∈ W we add an arc from v+ ∈ V + to v0 ∈ V 0, i.e.,
A1 := {v+v0 | v ∈ W}. Second, for v ∈ W we add an arc from v0 ∈ V 0

to each sink e− ∈ V − whose corresponding edge e ∈ E is incident to v, i.e.,
A2 := {v0e− | v ∈ W, e ∈ δ(v)}. Third, for v ∈ W we add an arc from v+ ∈ V +

to v1 ∈ V 0, i.e., A3 := {v+v1 | v ∈ W}. And fourth, for each v ∈ W we add
an arc from v1 ∈ V + to each sink e− ∈ V − whose corresponding edge e ∈ E
is incident to v, i.e., A4 := {v1e− | v ∈ W, e ∈ δ(v)}. Additionally, we define
`a := 0 for each a ∈ A1 ∪ A2 ∪ A4 and `a := 1 for each a ∈ A3. Finally, we set
ca := ∆v − 1 for all a = v+v0 ∈ A1, and ca := 1 for all a ∈ A2 ∪A3 ∪A4. This
concludes the construction of IH .

The MMCF instance IH corresponding to MIS instance H in Figure 1 can
be found in Figure 2. Note that IH is of linear size w.r.t. H, since the number
of nodes is equal to |V | = 3|W | + |E| and the number of arcs is equal to
|A| = 2|W |+ 4|E|.

Before we continue with the proof of Theorem 1, we introduce some defini-
tions concerning solutions for instance IH .
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Figure 1: Example graph H = (W,E).

u+

bu+ ∈ [0, 2]

w+

bw+ ∈ [0, 3]

x+

bx+ ∈ [0, 2]

y+

by+ ∈ [0, 1]

u0 w0 x0 y0u1 w1 x1 y1

e−1

b
e−1
∈ [−1, 0]

e−2

b
e−2
∈ [−1, 0]

e−3

b
e−3
∈ [−1, 0]

e−4

b
e−4
∈ [−1, 0]

Figure 2: Instance IH of MMCF constructed for MIS instance H from Figure 1.
For a dashed arc a = (v+v0) ∈ A1 we have ca = ∆v − 1 and `a = 0, while
for a dotted arc a ∈ A3 we have ca = 1 and `a = 1. Finally, for a solid arc
a ∈ A2 ∪A4 we have ca = 1 and `a = 0.
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Consider a feasible solution (b, f) for instance IH . For each source v+ ∈ V +

the flow towards a sink e− ∈ V −, whose corresponding edge e ∈ E is incident
to the corresponding node v ∈W , can be uniquely partitioned into flows on two
paths: The short path v+ → v0 → e− having total length 0 and the long path
v+ → v1 → e− having length 1. The amount of flow on each of these paths can
directly be read from fv0e− and fv1e− , respectively.

Additionally, we call a solution (b, f) assigning if it is feasible and for each
sink e− ∈ V − corresponding to edge e = {x, y} ∈ E with be− < 0 we have that
either fx0e− + fx1e− > 0 or fy0e− + fy1e− > 0 but not both.

Lemma 1. Let (b, f) be a feasible solution for IH . There exists an assigning
solution (b̃, f̃), which can be determined in O(|E|), such that c(b̃, f̃) ≥ c(b, f).

Proof. Let (b, f) be a feasible solution and assume there exists a sink e− ∈ V −
corresponding to e = {x, y} ∈ E such that we have fex := fx0e− + fx1e− > 0
and fey := fy0e− + fy1e− > 0. W.l.o.g. we assume that bx+ − bx+ ≤ by+ − by+ .
The idea now is to shift the supply routed from y+ towards e− over to x+.
Therefore, let ω := cx+x0 − fx+x0 denote the remaining capacity on the short
path from x+ towards e−. We define

b̃v :=


bx+ + fey for v = x+ ∈ V +

by+ − fey for v = y+ ∈ V +

bv otherwise

and

f̃a :=



fx+x0 + min{ω, fey} if a = x+x0

fx0e− + min{ω, fey} if a = x0e−

fx+x1 + max{fey − ω, 0} if a = x+x1

fx1e− + max{fey − ω, 0} if a = x1e−

fy+y0 − fy0e− if a = y+y0

0 if a = y0e−

fy+y1 − fy1e− if a = y+y1

0 if a = y1e−

fa otherwise.

Since x+ can only supply those sinks, whose corresponding edges are incident
to x ∈W , we have

bx+ = fx+x0 + fx+x1 =
∑
ẽ∈δ(x)

fx0ẽ− +
∑
ẽ∈δ(x)

fx1ẽ− =
∑
ẽ∈δ(x)

(fx0ẽ− + fx1ẽ−)

≤ (
∑
ẽ∈δ(x)

|bẽ− |)− (fy0e− + fy1e−) ≤ ∆x− fey = bx − fey ,

showing that b̃x+ = bx+ + fey ≤ bx and therefore b̃ is a supply and demand
vector.
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Further, while the flows on the short and long path from y+ towards e− are
set to 0, we route up to ω units from x+ towards e− on the short path and the
remaining supply on the long path.

If there was flow on the short path from y+ towards e− in f and there is
still flow on some long paths starting at y+ in f̃ , we need to shift flow from long
onto short paths in order to make f̃ an optimal solution for the induced MCF.
This is ensured by the Algorithm 1.

Algorithm 1 Shift path flows to ensure that f̃ is optimal

for all e ∈ δ(y) do
r ← min{cy+y0 − f̃y+y0 , f̃y1e−}
f̃y+y0 ← f̃y+y0 + r

f̃y0e− ← f̃y0e− + r

f̃y+y1 ← f̃y+y1 − r
f̃y1e− ← f̃y1e− − r

end for

Finally, it remains to show that c(b̃, f̃) ≥ c(b, f). Recall that we assumed
that bx+ − bx+ ≤ by+ − by+ . There are two cases that we consider: First, if

by+ − by+ ≤ 1 then bx+ − bx+ ≤ 1 and all the shifted supply is routed along the

long path from x+ towards e−. Second, if we have by+ − by+ ≥ 1, all the supply
from y+ towards e− was routed along the short path in f . In both cases we do
not decrease the objective value and therefore c(b̃, f̃) ≥ c(b, f).

Iteratively applying the construction made above to all sinks e− results in
an assigining solution (b̃, f̃) such that c(b̃, f̃) ≥ c(b, f). Further, the procedure
can be adjusted such that it runs in linear time w.r.t. the number of edges, i.e.,
in O(|E|). This is because for each sink e− ∈ V − the construction of (b̃, f̃) can
be done in constant time and instead of applying Algorithm 1 after each sink
e− separately, it suffices to run it once for each node y ∈ V after all the supply
shifts.

Next, let us call a solution (b, f) bound-tight if it is feasible and bv+ = 0 or
bv+ = ∆v holds for all v+ ∈ V +.

Lemma 2. Let (b, f) be a feasible solution for IH . There exists a bound-tight
solution (b̃, f̃), which can be determined in O(|E|), such that c(b̃, f̃) ≥ c(b, f).

Proof. Let (b, f) be a feasible solution. Further, using Lemma 1, we assume
w.l.o.g. that (b, f) is assigning. We define

b̃v :=


bx+ for v = x+ ∈ V + with bx+ > ∆x− 1

−1 for v = e− ∈ V − with e = {x, y} if bx+ > ∆x− 1 or by+ > ∆y − 1

0 for v = x+ ∈ V + with bx+ ≤ ∆x− 1

0 for v = e− ∈ V − with e = {x, y} if bx+ ≤ ∆x− 1 and by+ ≤ ∆y − 1

and
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f̃a :=



∆x− 1 if a = x+x0 and bx+ > ∆x− 1

1 if a = x+x1 and bx+ > ∆x− 1

fa if a = x0e− and bx+ > ∆x− 1

fa + (1− be−) if a = x1e− and bx+ > ∆x− 1

0 otherwise.

First, the supply of each source x+ ∈ V + with bx+ > ∆x− 1 is increased up to
its upper bound, i.e., b̃x+ := bx+ = ∆x, and the demand of each sink e− with
e ∈ δ(x) up to −1, i.e., b̃e− := −1. The additional supply of 1− be− of each sink
is routed along the corresponding long path.

Second, the supply of all sources x+ with bx+ ≤ ∆x − 1, the demands of
their assigned sinks, as well as the flows on the corresponding short paths are
set to 0. Since bx+ ≤ ∆x− 1, there is no flow on any of the corresponding long
paths.

In both cases, the objective value does not decrease and we determined a
bound-tight solution (b̃, f̃) with c(b̃, f̃) ≥ c(b, f) in O(|E|).

Lemma 3. Let (b, f) be a bound-tight solution for the MMCF instance IH .
Then W ′ := {v ∈ W | bv+ = bv+} is an independent set in H. Furthermore, we
have that c(b, f) = |W ′|.

Proof. Assume that W ′ is not independent. Then there exist x, y ∈ W ′ such
that bx+ = bx+ , by+ = by+ , and {x, y} = e ∈ E. Since only sinks whose
corresponding edges are contained in δ(x)∪ δ(y) can be supplied by x+ and y+

and because e ∈ δ(x) ∩ δ(y), we have

bx+ + by+ =
∑

e∈δ(x)∪δ(y)

|be− | ≤ |δ(x) ∪ δ(y)| ≤ ∆x+ ∆y − 1 < bx+ + by+

which is a contradiction. Thus, W ′ is an independent set and

c(b, f) =
∑
a∈A1

`afa +
∑
a∈A2

`afa +
∑
a∈A3

`afa +
∑
a∈A4

`afa

=
∑
v∈W

0 · fv+v0 + 0 ·
∑
e∈δ(v)

fv0e− + 1 · fv+v1 + 0 ·
∑
e∈δ(v)

fv1e−


=
∑
v∈W

(0 · fv+v0 + 0 · fv+v0 + 1 · fv+v1 + 0 · fv+v1)

=
∑
v∈W ′

(0 · (∆v − 1) + 0 · (∆v − 1) + 1 · 1 + 0 · 1)

=
∑
v∈W ′

1

= |W ′|.
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Lemma 4. Let W ′ be an independent set in H. Then there exists a bound-tight
solution (b, f) for IH with |W ′| = c(b, f).

Proof. Consider (b, f) defined as

bv :=


∆x if v = x+ ∈ V + and x ∈W ′

−1 if v = e− ∈ V − and e ∈ δ(W ′)
0 otherwise

and

fa :=



∆x− 1 if a = x+x0 and x ∈W ′
∆x−1

∆x if a = x0e− and x ∈W ′

1 if a = x+x1 and x ∈W ′
1

∆x if a = x1e− and x ∈W ′

0 otherwise.

By construction, (b, f) is feasible, bound-tight and we have c(b, f) = |W ′|.

Lemma 5. There exists an independent set W ′ of H with size |W ′| = k if and
only if there exists a bound-tight solution (b, f) for IH with c(b, f) = k.

Proof. Given a feasible and bound-tight solution (b, f) for IH with c(b, f) = k,
the induced independent set W ′ from Lemma 3 has size |W ′| = k.

Conversely, if there exists an independent set W ′ of H with size k, by
Lemma 4 there exists a bound-tight solution (b, f) for IH with c(b, f) = k.

Corollary 1. The size of a maximum independent set W ′ of H is |W ′| = k if
and only if an optimal solution (b, f) for IH has objective value c(b, f) = k.

Using the previous results, we can now prove Theorem 1.

Theorem 1. MMCF is APX-hard.

Proof. Suppose there exists a PTAS for MMCF yielding a (1 − ε)-factor ap-
proximate solution. Let IH = (V,A) be the corresponding MMCF instance for
MIS instance H = (W,E) and let k denote the optimal objective value of IH ,
which is equal to the size of a maximum independent set in H by Corollary 1.
Such a PTAS would give us a feasible solution (b, f) for IH with solution value
c(b, f) ≥ (1 − ε)k. Using Lemma 1 and Lemma 2, we can determine a bound-
tight feasible solution (b̃, f̃) in O(|E|) with c(b̃, f̃) ≥ c(b, f). Next, by Lemma 3
we can extract an independent set in O(|W |), which has size at least (1− ε)k.
Hence, a (1 − ε)-factor PTAS for MMCF together with the algorithms from
Lemma 1, Lemma 2, and Lemma 3 would yield a (1− ε)-factor PTAS for MIS.
Thus, no PTAS for MMCF can exist unless P=NP.
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Complexity of UMMCF

In this section we consider the special case of MMCF, where all arcs have infinite
(or sufficiently high) capacity, i.e., we assume ca =∞ for all a ∈ A. We call this
variant the Uncapacitated Maximum Minimum Cost Flow Problem (UMMCF).
The goal of this section is to show that UMMCF is NP-hard

Theorem 3. UMMCF is NP-hard.

Before we prove Theorem 3, we need the following definition and a related
result. We call a supply and demand vector b bound-close if all values are equal
to one of their bounds except for at most one, i.e., bv ∈ (bv, bv) for at most one
node v ∈ V + ∪ V −. For UMMCF we can show that there exists an optimal
solution with a bound-close supply and demand vector.

Lemma 6. For UMMCF there exists an optimal solution with a bound-close
supply and demand vector.

Proof. Let (b, f) be an optimal solution for UMMCF. If b it is not bound-close,
there exist two nodes x, y ∈ V + ∪ V − whose demand or supply values are both
not equal to one of their bounds, i.e., we have bx ∈ (bx, bx) and by ∈ (by, by).

The idea of the proof is to derive two new optimal solutions by increasing
and decreasing the inflow and outflow in the case that x ∈ V + and y ∈ V −

(or vice versa), or by shifting inflow or outflow in the case that x, y ∈ V + or
x, y ∈ V −, respectively. Both solutions are constructed in such a way that either
bx or by is set to one of its bounds.

Let Ω1 := min{bx − bx, by − by} > 0 and Ω2 := min{bx − bx, by − by} > 0.

Consider the supply and demand vectors b̃ and b̂ defined as

b̃v :=


bx − Ω1 if v = x

by + Ω1 if v = y

bv otherwise

and b̂v :=


bx + Ω2 if v = x

by − Ω2 if v = y

bv otherwise.

RR

By construction, b̃ and b̂ are supply and demand vectors. Additionally, for b̃ it
holds that b̃x = bx or b̃y = by and analogously for b̂ we have that b̂x = bx or

b̂y = by. An example is visualized in Figure 3.

Next, let f̃ and f̂ be optimal solutions for the uncapacitated MCF problem
induced by b̃ and b̂, respectively. By construction (b̃, f̃) and (b̂, f̂) are feasible

solutions and c(b, f) ≥ c(b̃, f̃) and c(b, f) ≥ c(b̂, f̂) hold because (b, f) is optimal.
This observation we denote by (∗) in the following.
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bx
bx

bx

by

by

by

Ω2

Ω1

bx

bx

b̃x

b̃y

by

by

bx

bx b̂x

b̂y
by

by

Figure 3: Supply and demand vector b with x ∈ V +, y ∈ V −, bx ∈ (bx, bx),
and by ∈ (by, by) (left). For b̃ (middle) the in- and outflows have been decreased,

while in b̂ (right) both have been increased. In both of the latter supply and
demand vectors one of the values equals one of its bounds.

Next, for λ := Ω2

Ω1+Ω2
∈ (0, 1) we have that λb̃ + (1 − λ)b̂ = b. This is

obviously correct for all nodes v ∈ (V + ∪ V −) \ {x, y}. For x it holds that

λ b̃x + (1− λ) b̂x =
Ω2

Ω1 + Ω2
(bx − Ω1) +

(
1− Ω2

Ω1 + Ω2

)
(bx + Ω2)

=
Ω2

Ω1 + Ω2
(bx − Ω1) +

Ω1

Ω1 + Ω2
(bx + Ω2)

=
bxΩ2 − Ω1Ω2 + bxΩ1 + Ω1Ω2

Ω1 + Ω2
=

bv(Ω1 + Ω2)

Ω1 + Ω2
= bx,

and for y an analogous argument can be made. Because we have λ ∈ (0, 1), it

holds that λf̃ + (1− λ)f̂ is a feasible flow for the MCF instance induced by b,
because

(b, λf̃ + (1− λ)f̂) = (λb̃+ (1− λ)b̂, λf̃ + (1− λ)f̂) = λ(b̃, f̃) + (1− λ)(b̂, f̂),

but it may not be optimal. It follows that c(b, f) = c(b̃, f̃) = c(b̂, f̂), because

c(b, f) ≤ c(b, λf̃ + (1− λ)f̂)

=
∑
a∈A

`a(λf̃a + (1− λ)f̂a)

= λ
∑
a∈A

`af̃a + (1− λ)
∑
a∈A

`af̂a

= λ c(b̃, f̃) + (1− λ) c(b̂, f̂)

(∗)
≤ λ c(b, f) + (1− λ) c(b, f) = c(b, f).
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u

bu ∈ [0, 2]

w

bw ∈ [−2, 0]

cuw = 1

Figure 4: Counterexample showing that Lemma 6 does not hold for MMCF in
general. The unique optimal solution here is bu = 1, bw = −1, and fuw = 1.

Therefore, (b̃, f̃) and (b̂, f̂) are optimal solutions with the supply or demand
value of either x or y being equal to one of their bounds. By iteratively applying
this algorithmic procedure to node pairs x, y ∈ V + ∪ V −, whose demand or
supply values are not at their bounds, we derive an optimal solution with a
bound-close supply and demand vector after at most |V | − 1 iterations.

Lemma 6 does not hold for MMCF in general, as the simple counterexample
in Figure 4 demonstrates. Next, we are going to prove that UMMCF is NP-hard.
To do this, we reduce from PARTITION. The following definition is adapted
from SP12 in [6]:

Definition 2. Given a finite set Z := {z1, . . . , zn} and a size s(z) ∈ Z+ for
each z ∈ Z. Is there a feasible partition of Z, i.e., a set Z ′ ⊆ Z such that∑
z∈Z′ s(z) =

∑
z∈Z\Z′ s(z).

Given an instance Z of PARTITION, we construct an instance IZ = (V,A)
of UMMCF as follows:

For each zi ∈ Z we add a source ui ∈ V + and a sink wi ∈ V −. For each
source ui ∈ V + we define bui

:= 0 and bui
:= s(zi), while for each sink wi ∈ V −

we set bwi
= −s(zi) and bwi := 0. Finally, we add a single inner node v ∈ V 0.

The arc set A consists of three different types, i.e., A := A1 ∪ A2 ∪ A3.
First, for each source ui ∈ V + an arc towards the corresponding sink wi ∈ V −
is added, i.e., A1 := {uiwi | i ∈ {1, . . . , n}}, and we define `uiwi

:= 0 for each
a ∈ A1. Further, an arc between each source ui ∈ V + and the inner node v is
added, i.e., A2 := {uiv | i ∈ {1, . . . , n}} and we define `uiv := 1 for each a ∈ A2.
Finally, an arc between the inner node v and each sink wi ∈ V − is added, i.e.,
A3 := {vwi | i ∈ {1, . . . , n}} and we define `vwi

:= 1 for each a ∈ A3. This
concludes the construction of IZ = (V,A) with |V | = 2|Z| + 1 and |A| = 3|Z|.
Figure 5 shows the UMMCF instance IZ for the example PARTITION instance
Z in its caption.

Next, a supply and demand vector b for IZ with the property that either
bui

= 0 or bwi
= 0 for all i ∈ {1, . . . , n} is called complementary.

Lemma 7. For each feasible solution (b, f) of IZ there exists a feasible solution
(b̃, f̃) with c(b, f) = c(b̃, f̃) and b̃ being complementary.
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u1

[0, 1]

u2

[0, 1]

u3

[0, 3]

u4

[0, 4]

u5

[0, 5]

u6

[0, 6]

u7

[0, 6]

u8

[0, 8]

w1

[−1, 0]

w2

[−1, 0]

w3

[−3, 0]

w4

[−4, 0]

w5

[−5, 0]

w6

[−6, 0]

w7

[−6, 0]

w8

[−8, 0]

v

Figure 5: Instance IZ corresponding to PARTITION instance Z := {z1, . . . z8}
with s(z1) = 1, s(z2) = 1, s(z3) = 3, s(z4) = 4, s(z5) = 5, s(z6) = 6, s(z7) = 6,
s(z8) = 8. The dotted arcs represent arc set A1 and have length `a = 0, while
the solid arcs represent the sets A2 and A3 with length `a = 1. The intervals at
the nodes describe the range of feasible supplies and demands.

Proof. For each i ∈ {1, . . . , n} let xi := min{bvi , |bwi |} ≥ 0. Since f is an
optimal solution for the MCF instance induced by b, we have fuiwi

= xi. Thus,

b̃v :=


bu0

if v = u0 ∈ V +

bui − xi if v = ui ∈ V +

bwi + xi if v = wi ∈ V −
f̃a :=

{
fuiwi − xi if a = uiwi ∈ A1

fa otherwise

is a feasible solution and b̃ is complementary. Additionally, since `a = 0 for all
a ∈ A1, we have that c(b, f) = c(b̃, f̃).

Corollary 2. There exists an optimal solution (b, f) for IZ with complementary
supply and demand vector b.

Lemma 8. There exists a feasible partition Z ′ of Z if and only if there exists
a feasible solution (b, f) for IZ such that c(b, f) =

∑
z∈Z s(z).

Proof. Let Z ′ ⊆ Z be a feasible partition, i.e.,
∑
z∈Z′ s(z) =

∑
z∈Z

s(z)
2 =∑

z∈Z\Z′ s(z). Consider solution (b, f) given as:

bv :=


s(zi) if v = ui, zi ∈ Z ′

−s(zi) if v = wi, zi ∈ Z \ Z ′

0 otherwise

and fa :=


zi if a = uiv, zi ∈ Z ′

zi if a = vwi, zi ∈ Z \ Z ′

0 otherwise.

By construction, b is a supply and demand vector and complementary. Addi-
tionally, f is an optimal solution for the induced uncapacitated MCF. Finally,
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we have

c(b, f) =
∑

uiv∈A2

fuiv +
∑

vwi∈A3

fvwi
=
∑
zi∈Z′

fuiv +
∑

zi∈Z\Z′
fvwi

=
∑
zi∈Z′

bui
+

∑
zi∈Z\Z′

|bwi
| =

∑
zi∈Z′

s(zi) +
∑

zi∈Z\Z′
s(zi)

=
∑
zi∈Z

s(zi).

Conversely, by Lemma 7 there exists a feasible and complementary solution
(b, f) for IZ such that c(b, f) =

∑
z∈Z s(z). Due to the complementarity of b,

we have that fa = 0 for all a ∈ A1. Now, let Z ′ := {zi ∈ Z | bui
> 0} ⊆ Z. It

follows that∑
z∈Z

s(z) = c(b, f) =
∑

uiv∈A2

fuiv +
∑

vwi∈A3

fvwi

=
∑

uiv∈A2

bui +
∑

vwi∈A3

|bwi |

=
∑
zi∈Z′

bui +
∑

zi∈Z\Z′
|bwi |

≤
∑
zi∈Z′

s(zi) +
∑

zi∈Z\Z′
s(zi) =

∑
z∈Z

s(z)

Hence, both
∑
zi∈Z′ bui =

∑
zi∈Z′ s(zi) and

∑
zi∈Z\Z′ |bwi | =

∑
zi∈Z\Z′ s(zi)

hold. Furthermore, as b must be balanced, because otherwise no feasible solution
f can exist, it follows that∑

zi∈Z′
bui

=
∑
zi∈Z′

s(zi) =
∑
z∈Z

s(z)

2

and therefore Z ′ is a feasible partition.

Deciding whether or not there exists a feasible partition is an NP-complete
problem, see for example SP12 in [6]. Therefore, UMMCF is NP-hard, since any
polynomial-time algorithm applied to IZ deciding whether or not IZ admits a
solution (b, f) with c(b, f) =

∑
z∈Z s(z) could decide whether or not I contains

a feasible partition by Lemma 8.
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