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Abstract

Many real-world processes can naturally be modeled as systems of interacting agents. However,
the long-term simulation of such agent-based models is often intractable when the system be-
comes too large. In this paper, starting from a stochastic spatio-temporal agent-based model
(ABM), we present a reduced model in terms of stochastic PDEs that describes the evolution
of agent number densities for large populations. We discuss the algorithmic details of both
approaches; regarding the SPDE model, we apply Finite Element discretization in space which
not only ensures efficient simulation but also serves as a regularization of the SPDE. Illustrative
examples for the spreading of an innovation among agents are given and used for comparing
ABM and SPDE models.

Keywords Agent-based modeling, Model reduction, Dean-Kawasaki model, SPDEs, Finite Ele-
ment method

1 Introduction

Modeling real-world dynamics is of great importance for the understanding, prediction and ma-
nipulation of the dynamical process of interest. Mathematically, one is therefore interested in the
model analysis, inference of its parameters, as well as the accurate simulation and control of the
dynamics. The modeling of realistic processes is nowadays often based on formulations in terms
of discrete and autonomous entities (e.g. humans, institutions, companies), so-called agents, that
move in a given environment and interact with each other according to a set of rules. Agent-based
models (ABMs) are very flexible in their description, often they just consist of a set of behavioural
rules for agents encoded in computer programs [5, 41]. Due to their versatility, ABMs are very
attractive for modelers of various complex applications and disciplines (e.g. social sciences [2, 41],
ecology [28, 27], archaeology [25, 24, 44]) and for including data into models. However, the dif-
ferent existing formulations of ABMs appear to be quite inconsistent and lack rigorous theoretical
foundation, which motivates to develop standardized formats for these models [26, 2, 21].

In [7, 8], a mathematical formulation of an ABM is presented for systems of spatially distributed
agents that move randomly in space and interact whenever they are close-by. The local interactions
among agents trigger them to change their type, e.g. their opinion, or their infection status. The
model is formulated as a system of equations coupling the diffusion dynamics for the spatial agent
movement with Markov jump processes for the type changes of each agent. Agent-based models of
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this class can for instance be found as models for infection spreading [6, 45], innovation spreading
[7, 8] and chemical reactions [13].
In general, these ABMs cannot be solved analytically, but require numerical methods for simulating
realizations of the modeled dynamics. In [7], a joint algorithm for the simulation of the spatial diffu-
sion and the event-based interaction process is presented, building on the Euler-Maruyama scheme
[31] and the Temporal Gillespie algorithm [49]. As the model formulation is stochastic, many
Monte-Carlo (MC) simulations are required in order to make adequate predictions for observables
of the system. However, for most real-world dynamics, such MC simulations are intractable due to
an explosion of the costs for increasing agent numbers. Model reductions with a small approxima-
tion error are therefore necessary.

For spatial systems of many interacting agents, one can reduce the model complexity by replacing
the micro-scale model of individual agents by a meso-scale model of stochastic agent densities,
leading to a system of coupled stochastic partial differential equations (SPDEs) [11, 34, 4, 36].
Classically, in the limit of infinitely many agents, stochastic effects become negligible and the dy-
namics can be described by a macro-scale model of deterministic reaction-diffusion PDEs [46, 20].
In a real-world system, however, the number of agents is typically finite, such that the dynamics are
still intrinsically random and stochastic modeling approaches are more appropriate e.g. in order to
reflect the uncertainty and cover the emerging phenomena of the underlying ABM.

In this paper, after reviewing and slightly generalizing the stochastic ABM from [7, 8], we will
formulate a system of SPDEs as a meso-scale approximation to the ABM, compare [30]. The
model is an extension of the Dean-Kawasaki model [11, 34] that describes the transport in space of
the stochastic agent densities and includes interactions between the agent densities for the differ-
ent types [36, 4]. The derived distribution-valued equations belong to the class of Dean-Kawasaki
type problems, for which well-posedness is still unresolved due to several mathematical difficulties
[9, 38, 18]. Since in the end we are interested in the discretization of the model, we will, in order
to deal with these issues, interpret the system of SPDEs in its weak form and consider “a regular-
ization by discretization”.
Henceforth, we propose an algorithm for the efficient sampling of trajectories of the coupled SPDE
system by first discretizing in space using the Finite Element (FE) method, thereby approximating
the unknown distributions by piece-wise polynomial functions. The resulting system of SDEs is
well-posed and can be further discretized in time using the Euler-Maruyama method. As a meso-
scale approach, simulation of the system of SPDEs is much faster than of the corresponding ABM,
since the number of coupled equations is drastically reduced from scaling with the number of agents
to scaling with the number of different agent types.
Last, we will study the ABM and the reduced SPDE model numerically on a toy example by com-
paring the computational effort and investigating the approximation quality of the reduced SPDE
model with respect to the ABM.

2 Agent-based Model

Agent-based models are micro-scale computational models describing the system of interest in terms
of discrete entities, called agents. An agent represents an autonomous entity such as a chemical
particle, a person, a group of people or an organization. The individual behaviour of each agent
is traced in space and time, including its interactions with other agents and the environment. The
hope is that from the interplay of the local behaviour of agents on the microscopic scale, global
patterns emerge on a larger system scale [29, 41, 28]. Emergence is likewise often stated as “the
whole is more than the sum of its parts” due to the interactions among the parts (i.e. the agents)
resulting in global structures [5].
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In this section, we will review and slightly generalize the agent-based model from [7, 8], which
is formulated as a system of stochastic processes describing the position dynamics and the inter-
action rules for agents. The position dynamics of agents are described by Brownian motion with
a drift term pushing them towards suitable parts of their local surroundings. This is a useful de-
scription in the case that agents move randomly and slightly jittery in space whilst following some
(hidden) energy landscape, e.g. when describing the mobility of humans in the ancient world [44],
the movement of animals, or the diffusion of chemical particles [13].
Further, agents can interact according to a set of predefined rules whenever they are close in space.
These interactions cause agents to change their type influenced by the state of other near-by agents
(e.g. their infection status [35, 45], their current opinion [33], whether they use an innovation
[8, 7], whether they have a certain information). The type changes are commonly written as
T1 +T3 → T2 +T3 (inspired by the notation for chemical reactions), where T1, T2, T3 denote different
agent types.
Even though the model formulation is very simple, it generates a vast range of different and com-
plex outcomes on a larger system scale, e.g. exhibiting noise-induced tipping [8, 7, 47, 1].

The presented ABM is based on the Doi model [13] for reacting and locally diffusing chemical
particles. It has similarities to the SIR model for infection spreading [35, 45] and to Brownian
agents [48] and builds on the ABM for innovation spreading in the ancient world as introduced in
[8, 7].

We will give a detailed description of the agent-based model in Section 2.1, and explain a method
for its simulation in Section 2.2.

2.1 Model Formulation

We consider a system of N agents, where each agent i = 1, . . . ,N is characterized by its type Yi(t)
and its position Xi(t) at time t ∈ [0, T ]. The agents’ positions can be continuous values in a given
domain D ⊆ Rd, whereas the type of an agent is a discrete feature denoted by values in {1, . . . ,NT }.
Thus the state of the ith agent at time t is given by (Xi(t), Yi(t)) ∈D × {1, . . . ,NT }. We write the
state of the whole system of N agents as (X(t), Y (t)) = (Xi(t), Yi(t))Ni=1.

In the model, we are following every agent i = 1, . . . ,N individually and track the evolution in
time of its position state and type. The position dynamics and the interactions between agents
leading to type changes are described in the following sections.

2.1.1 Position Dynamics of Agents

We assume that agents are able to move and change their position in the domain D ⊆ Rd. Thereby
agents are taking their local surroundings into account, in such a way, that they are attracted to
near-by regions that are suitable for them and refrain from unsuitable parts of the domain.
We can straightforwardly model this by letting the agents follow the gradient of a potential land-
scape, the so-called suitability landscape. The suitability landscape V indicates the attractivity of
the environment and gives an incentive for agents to prefer or avoid certain near-by parts of the
domain. Valleys of the suitability landscape correspond to attractive regions and peaks and divides
correspond to unsuitable areas that are moreover difficult to overcome. The suitability landscape
can be constructed on the basis of data and expert knowledge, see e.g. [7, 8, 44].
Additionally, we include randomness in the agents’ motion to account for other unknown incentives
for positional changes and to allow agents to be exploratory or make mistakes in their evaluation
of the environment.

Thus, the change of the position Xi(t) ∈ D ⊆ Rd of every agent i = 1, . . . ,N is governed by the
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Itô diffusion process
dXi(t) = −∇V (Xi(t))dt + σdBi(t), (1)

with gradient operator ∇ = ( ∂
∂x1

, . . . , ∂
∂xd

)
T
, suitability landscape V ∶ D ⊆ Rd → R, diffusion con-

stant σ ∈ R and Bi(t) denoting independent standard Brownian motions in Rd. We impose reflecting
boundary conditions in the case where D is bounded and thereby ensure that the agents’ positions
are within D for all times.

Remark. The position dynamics of agents in many modeling scenarios are interdependent such that
agents tend to group together in space and form clusters, while also keeping some distance from
each other in order to avoid spatial overlap and crowding [8, 7]. To account for this, another drift
term has to be added to the position SDE (1), s.t. the dynamics are governed by

dXi(t) = −(∇V (Xi(t)) + ∇Ui(X(t)))dt + σdBi(t). (2)

Thereby each agent i experiences an additional force derived from the attraction-repulsion potential
Ui

Ui ∶DN ⊆ Rd×N → R, X(t) ↦∑
j≠i
u (∥Xi(t) −Xj(t)∥) , (3)

where we sum over all pair-wise attraction-repulsion potentials u ∶ R≥0 → R between agent i and
j ≠ i. The pair-wise potentials u are inspired by interatomic potentials from Physics (e.g. Lennard-
Jones potential, Buckingham potential). Attraction between pairs of agents occurs whenever agents
at long distances are driven towards another, and repulsion appears when agents are forced apart
at short distances. Agents are thus searching for an optimal balance between forming clusters of
agents on the one hand and distributing in space on the other hand.

2.1.2 Interaction Rules

Agents can change their type according to a set of NR interaction rules {Rr}, r = 1, . . . ,NR. The
type changes happen at a certain rate and whenever an agent is in proximity of specific other agents
that can influence the agents’ type. We consider rules {Rr} that can be written as the type change1

Rr ∶ Ts + Ts′′ → Ts′ + Ts′′ with s, s′, s′′ ∈ {1, . . . ,NT } (4)

happening at the fixed influence rate γrABM and triggered by a close-by agent of type Ts′′ .

For example when modeling the spreading of an innovation among humans [7, 8], we can assume
that every agent takes one of the two discrete innovation states: T1 for a non-adopter or T2 for
an adopter of the innovation. By defining one simple interaction rule R1: T1 + T2 → 2 T2, we can
model that adopters pass on the innovation to non-adopters at a fixed rate whenever they are in
contact.

Pairs of agents are in contact if they are within a distance dint of each other. Given the chang-
ing positions of agents (1), we construct a time-evolving network between agents (represented by
the set of nodes) that are in contact (given by the edges) at time t. The network is fully de-
termined by a time-dependent adjacency matrix A(t) = (Aij(t))Ni,j=1 with entries Aij(t) = 1 if
i ≠ j, ∥Xi(t) −Xj(t)∥ ≤ dint, and 0 else.

As a next step, we are interested in describing the type change process {Yi(t)}t∈[0,T ] of each agent
i. If agent i at time t is of type Ts, s ∈ {1, . . . ,NT }, we denote this by Yi(t) = s. Type changes

1In principle, the interaction rules could be of a more complicated form, e.g. by including the death and birth of
agents such as Ts → ∅ and Ts + Ts′′ → Ts′ or by allowing both agents to change their type Ts + Ts′′ → Ts′ + Ts′′′ .
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for agent i are modeled as Markov jump processes on {1, . . . ,NT } with time-dependent transition
rates. The transition rates are changing in time since they depend both on the proximity of other
agents and their types. The transition rate function λri (t) gives the accumulated rate for agent i
of type Ts to change its type according to interaction rule Rr and is proportional to the constant
influence rate γrABM and to the number of neighbors of agent i that trigger interaction Rr, i.e. the
number of agents of type Ts′′ in rule (4).
Consequently, we write the transition rate function for agent i at time t following interaction rule
Rr ∶ Ts + Ts′′ → Ts′ + Ts′′ as

λri (t) = λri (A(t), Y (t)) = γrABM

N

∑
j=1
Aij(t) 1{s′′}(Yj(t)) 1{s}(Yi(t)), (5)

where 1B is the indicator function defined as 1B(x) = 1 if x ∈ B and 0 else.

Finally, the type change process {Yi(t)}t∈[0,T ] of agent i can be expressed as

Yi(t) = Yi(0) +
NR

∑
r=1
Pri (∫

t

0
λri (t′)dt′) vr, (6)

where Yi(0) denotes the initial type of agent i, Pri denote i.i.d. unit-rate Poisson processes and the

type change vector is denoted by v = (vr)NR
r=1 (vr = s′ − s for Rr as given in (4) above).

2.1.3 Formulation of the Agent System Dynamics

Putting together Equations (1) and (6), we can describe the evolution in time of the agent states
by the following coupled equations

Xi(t) =Xi(0) − ∫
t

0
∇V (Xi(t′))dt′ + σ∫

t

0
dBi(t′)

Yi(t) = Yi(0) +
NR

∑
r=1
Pri (∫

t

0
λri (t′)dt′) vr (7)

for agents i = 1, . . . ,N .

Since we cannot solve the coupled equations (7) analytically, we will in the following explain how
to accurately discretize and efficiently simulate trajectories of the dynamics.

2.2 Simulation

For each agent i, the type change process depends on the positions and on the types of all other
agents via the time-dependent transition rate functions λri (t). If we additionally include attraction-
repulsion forces between agents, then further the motion of all agents is intrinsically intertwined.
For the design of the simulation algorithm we have to take this into account and therefore propose
to simulate both the position and type changes (7) in parallel.

The most straightforward approach is to discretize time [0, T ] with sufficiently small ∆t time
steps. The Euler-Maruyama method can be employed to accurately and efficiently discretize the
SDE [37, 7], whereas when discretizing the Markov jump processes we replace rates by probabilities
in each time step [8, 7]. The resulting simulation approach can be summarized as follows.

For each time step tk = k∆t, k = 0, . . . ,K − 1:

1. For each agent i = 1, . . . ,N : the positions are advanced according to

Xi(tk+1) =Xi(tk) − ∇V (Xi(tk))∆t + σ
√

∆t ζi,k

with i.i.d. ζi,k ∼ N(0,1).
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2. For each i = 1, . . . ,N , r = 1, . . . ,NR: agent i changes its type according to rule Rr with
probability

pri (tk) = 1 − exp(−λri (tk)∆t).

We could simulate the type changes more accurately [19] by simulating them continuously in time
using a stochastic simulation algorithm [49], for the simulation approach in this case we refer the
reader to [7].

In addition to the fact that the algorithm scales linearly with the number of agents N , there
are some hidden costs. In each time step, we need to compute the contact network A(tk), i.e. the
pair-wise distances between agents. The brute-force approach of computing all pair-wise distances
scales like O(N2) for N agents. These distances are also required when including attraction-
repulsion forces, since the pair-wise attraction-repulsion potential u (∥Xi(t) −Xj(t)∥) depends on
the pair-wise distances between agents.

The proposed simulation algorithm produces a single trajectory of the joint stochastic process
{X(t), Y (t)}t∈[0,T ]. In order to obtain reliable statistics of the dynamics and to estimate the pro-
cess’ distribution and its moments, several thousand repeated simulations are required. In case
of a system with large numbers of agents this causes problems since the simulation cost scales
badly with increasing agent numbers N . Parameter studies are numerically not tractable in this
case. Many real-world systems actually contain very large numbers of agents, which motivates to
consider a less complex modeling approach in terms of stochastic PDEs, and thereby offers a cheap
method for simulating trajectories.

3 Model Reduction to a System of Stochastic PDEs

Instead of studying the evolution of every individual agent, in the following we study the transport
in space and the interactions between agents in terms of number densities for each type, such that
the model complexity and simulation costs are drastically reduced. This reduced model, given
in the form of a system of stochastic PDEs, is a combination of the model for position changes
proposed by Dean and Kawasaki [11, 34] (also termed Dean-Kawasaki model), and added terms
for the interactions between agent densities [4, 36]. It approximates the ABM for systems of many,
but finitely many agents. Stochasticity still emerges from the systems’ inherent randomness due
to the finite number of agents. But agents become indistinguishable among their type and we lose
the individual agent labels, see Figure 1.

Figure 1: Model reduction from the agent-based formulation in terms of N discrete agents to the
SPDE description in terms of agent number densities ρs(x, t) for types s = 1, . . . ,NT .
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Applications of similar SPDE models include chemical pattern formation [4, 36] and models for
bacterial populations [23], but to our knowledge they have not yet been applied for modeling sys-
tems of humans.

We will start by proposing and explaining the features of the reduced SPDE model in Section
3.1. In Section 3.2, we will tackle its efficient numerical discretization by means of the Finite
Element method.

3.1 Model Formulation

We are considering a model describing the stochastic evolution of agent number densities (or number
concentrations) for each agent type s = 1, . . . ,NT . The (stochastic) agent number density

ρs ∶D × [0, T ] ↦ R≥0,

is defined on the domain D ⊆ Rd, the time interval [0, T ] and with probability space (Ω,F ,P)2.
Integrating the number density ρs over the domain yields the number of agents of type Ts, which
we denote by Ns.

The densities (ρ1(x, t), . . . , ρNT
(x, t)) evolve due to diffusion and drift in the suitability landscape

and because of the set of interaction rules. The temporal changes of ρs(x, t) for s = 1, . . . ,NT are
given by the following stochastic partial differential equation (SPDE) interpreted in the Itô sense

∂ρs(x, t)
∂t

= Dρs(x, t) + Iρs(x, t) (8)

with stochastic diffusion operator D (see Section 3.1.1) and stochastic interaction operator I (Sec-
tion 3.1.2). For a fixed sample ω ∈ Ω, the agent density is a realization of a stochastic process
solving the SPDE.

3.1.1 Diffusion of the Agent Densities

The diffusion operator in Equation (8) is given by [11, 34, 36, 4]

Dρs(x, t) ∶=
σ2

2
∆ρs(x, t) + ∇ ⋅ (∇V (x)ρs(x, t)) + σ∇ ⋅ (

√
ρs(x, t)ZDs (x, t)) (9)

with diffusion constant σ ∈ R, Laplace operator ∆ = ∑dl=1
∂2

∂x2
l

and suitability landscape V ∶ D ⊆
Rd ↦ R. ZDs (x, t) = (ZDs,1(x, t), . . . , ZDs,d(x, t)) denotes a d-dimensional vector of space-time white
noise (STWN) for the diffusion, i.e. a mean zero process that is uncorrelated in space and time

E (ZDs,j(x, t)ZDs′,j′(x′, t′)) = δjj′δss′δ(x − x′)δ(t − t′),

where δij denotes the Kronecker Delta and δ(x − y) denotes the Dirac Delta distribution. The
diffusive part of the SPDE evolves a number density of many agents and is responsible for the
diffusive transport in space with drift in the suitability landscape V (x). Its deterministic part

∂tρs = σ2

2 ∆ρs +∇ ⋅ (∇V ρs) reminds of the Fokker-Planck equation that describes the evolution of a
density of infinitely many non-interacting particles that are diffusing with drift in a potential.
In our case, we consider a large but finite number of diffusing particles, as such the system is still
intrinsically random and the derivation leads to an additional noise term fluctuating around zero.

2Actually the number density should be ρs(ω,x, t) but we do not write the explicit dependence on ω ∈ Ω. The
agent number density is random since it solves a stochastic PDE.
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The derivation [11, 34] of ∂ρs
∂t = Dρs from the position SDE (1) is based on the following idea: We

define the empirical agent density for a single agent i as

ρi(x, t) = δ(x −Xi(t)), (10)

where δ(x −Xi(t)) denotes a Dirac Delta distribution placed at position Xi(t). Then, using Itô’s
Formula, the SDE (1) for agent i is transformed into an SPDE describing the temporal evolution
of ρi(x, t). We sum the SPDEs over i = 1, . . . ,Ns to get an equation for the density of all agents
of type Ts, i.e. for ρs(x, t) = ∑Ns

i=1 ρ
i(x, t). Aiming at a closed-form equation for ρs(x, t), we then

replace the noise term by a different noise term of the same mean and covariance that just depends
on ρs(x, t).

This multiplicative noise term σ∇ ⋅ (√ρsZDs ) is non-linear and comes with several mathemati-
cal problems, making the question of existence and uniqueness of the solution still an open problem
[9, 38]. First, the noise term is given in a divergence form. In order to interpret this term, we will
consider the weak formulation and use partial integration to transfer the divergence operator to
the test functions. Second, the meaning of the term

√
ρs remains undefined. Namely, the unknown

ρs is defined as a sum of Dirac Delta distributions, hence the meaning of its square root is unclear.
We will deal with this problem by approximating the distribution ρs by a function from a Finite
Element space, for which the square root is well defined.
Different notions of solutions to (9) that would be natural to consider exist, such as a martingale
solution [38] or a path-wise kinetic solution [18]. In order to apply the Finite Element method and
to reformulate the divergence of the noise term, in our setting it is more appropriate to consider
the weak formulation (in the PDE sense) that will be derived in 3.1.4.

Remark. We can extend the diffusion operator to include attraction forces between pairs of agents
at long ranges and repulsion forces at short ranges, similar as in Equation (2). Denoting the pair-
wise attraction-repulsion potential between two agents at positions x and y by u(∥x−y∥), the SPDE
is extended by one term (the derivation can be found in [11])

Dρs(x, t) =
σ2

2
∆ρs(x, t) + ∇ ⋅ (∇V (x)ρs(x, t)) + ∇ ⋅

⎛
⎝
ρs(x, t)∫

D

⎛
⎝

NT

∑
s′=1

ρs′(y, t)
⎞
⎠
∇u(∥x − y∥)dy

⎞
⎠

+ σ∇ ⋅ (
√
ρs(x, t)ZDs (x, t)) . (11)

The additional term models the diffusion of the agent density ρs(x, t) in the aggregated attraction-
repulsion potential of the density of all agents ∑s′ ρs′(x, t). Including this term, the diffusing
densities are all coupled to each other.
For analytical simplicity, we won’t further consider attraction and repulsion forces in the remaining
paper. But it should be possible to extend the discretization of the SPDE straightforwardly.

3.1.2 Interactions between Agent Densities

The interaction operator of the system of SPDEs (8) accounts for the local transport of some density
between the different agent densities ρs(x, t), s = 1, . . . ,NT according to the set of interaction rules
Rr, r = 1, . . . ,NR [36, 4]

Iρs(x, t) ∶=
NR

∑
r=1

νrs (ar(ρ(x, t)) +
√
ar(ρ(x, t))ZIr (x, t)) . (12)

The coefficient νrs describes the discrete number change of the type Ts agents involved in the
rth interaction rule3, ar(ρ(x, t)) is the transition rate function for densities according to rule Rr.

3In the chemistry literature, νrs is called the stoichiometric coefficient of type Ts due to the rth reaction. Further,
for rules Rr of the form (4), νrs and vr (the type change coefficient from the ABM) are related via vr = ∑s ν

r
ss.
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Similar as in the ABM, the rate function depends on the local amount of the two types of agents
taking part in the interaction. The more agents of each of the two types, the more interactions are
happening. Also for a larger constant influence rate γrSPDE (units of γrSPDE are volume × inverse
time), more interactions are happening per time. Thus for interaction rule Rr ∶ Ts+Ts′′ → Ts′ +Ts′′
with s, s′, s′′ ∈ {1, . . . ,NT }, the transition rate function at time t reads

ar(ρ(x, t)) = γrSPDE ρs(x, t)ρs′′(x, t). (13)

To get a better understanding of these coefficients and functions, let us return to our innovation
spreading example: agents of type T1 and T2 are interacting according to the rule R1 ∶ T1+T2 → 2 T2.
Since for each interaction the number of type T1 agents decreases by one agent and the number of
type T2 agents increases by one agent, we have ν11 = −1, ν12 = 1. The transition rate function for the
interaction between two agent densities is proportional to the density of each and the meso-scale
rate γ1SPDE such that a1(ρ(x, t)) = γ1SPDE ρ1(x, t)ρ2(x, t) in this example.
Space-time white noise for the rth interaction is denoted by ZIr (x, t) with covariance

E (ZIr (x, t)ZIr′(x′, t′)) = δrr′δ(x − x′)δ(t − t′).

In order to derive the interaction operator of the SPDE (12), the Poisson random variable for
interactions in the agent-based description (6) has been replaced by a Gaussian random variable
with the same mean and variance [36]. Further, the interaction parameters dint and γrABM are ag-
gregated to the meso-scale influence rate γrSPDE [15, 17]. This approximation is only valid for large
ar(ρ(x, t)), and is closely related to the approximation that has been done for well-mixed systems
of interacting species leading to the Chemical Langevin equation (CLE) [22] in the context of the
so-called large population limit. Equation (12) includes spatial information and can be viewed as
a spatial extension of the CLE.

Remark. In [36], in the context of numerical simulation of the model, the Gaussian noise is again
replaced by Poisson noise in each grid cell. The reason for this is that the Gaussian approximation
is only valid in the large population limit, i.e., for large numbers of agents in each grid cell.
Switching back to Poisson noise helps decreasing the resulting lack of accuracy and preventing
negative values for densities in numerical simulations; however, the procedure is rather ad-hoc and
no precise understanding of its effect is available.

3.1.3 Complete Dynamics

For the system of SPDEs to be fully determined, boundary and initial conditions have to be
specified. The domain boundary should be Lipschitz continuous. Since in our model agents cannot
leave the domain, we require no-flux boundary conditions on δD. The initial data ρs,0(x) has to
be non-negative and such that ∫D ρs,0(x)dx = Ns. Then, for agent types s = 1, . . . ,NT the system
of SPDEs reads

∂ρs(x, t)
∂t

= Dρs(x, t) + Iρs(x, t) on D × [0, T ]

∇ρs(x, t) ⋅ û(x) = 0 on δD × [0, T ]
ρs(x,0) = ρs,0(x) on D × {0}. (14)

As we have now described the system of SPDEs, there are some further points worth noting. We
can observe that the diffusion operator D (9) conserves the number of agents of each type because
of the divergence operator form and assuming no-flux boundary conditions. It is solely respon-
sible for the transport of the density in space. The interaction part (12) of the SPDE shifts the
agent number density locally between the different agent types, but conserves the overall number
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of agents of all types, i.e. ∑NT
s=1 ∫D ρs(x, t)dx = N is conserved since ∑s νrs = 0 for each interaction

rule of the form (4). In the case of more complicated interaction rules (e.g. the birth and death of
agents), this is usually not the case.

We can also have a closer look at how the random forcings scale for increasing agent numbers,
i.e. larger values of the density ρs(x, t). The noise terms are scaled by a square-root factor of
the agent density, whereas all the other (deterministic) terms are scaled by the density. Thus for
the number of agents approaching zero, the noise dominates the SPDE. For the number of agents
going to infinity, the noise terms become unimportant and could be neglected. Then, the SPDE
could be replaced by a PDE model. Our numerical examples in Section 4 will display this behaviour.

The analysis of the well-posedness and existence of solutions to this SPDE system is not inves-
tigated enough [18, 38, 9]. In this paper though, we are concerned with a discretization of the
SPDE system. We will in the following show how to formally derive the weak formulation of
the system of SPDEs (Section 3.1.4) forming the basis for discretizing the SPDEs with the Finite
Element method (Section 3.2).

3.1.4 Weak Formulation

The SPDE (14) is properly interpreted as an integral equation in time. For this, we will introduce
the Cylindrical Wiener process {W (⋅, t)}t∈[0,T ] [40, 10] as

W (x, t) =
∞
∑
m=1

χm(x)Bm(t), (15)

where {χm(x)}m∈N is any orthonormal basis of L2(D) and Bm(t) are i.i.d. Brownian motions in
R. The Cylindrical Wiener process is a stochastic process that is Brownian in time and white
(i.e. uncorrelated) in space, such that its time derivative turns out to be space-time white noise
Z(x, t) = ∂tW (x, t). By introducing the Cylindrical Wiener process expansion (15) into the SPDE
(14), we can use the integral theory for stochastic processes in space and time [40, 10]. Addition-
ally, this offers a straightforward possibility for simulating realizations of Z(x, t) by truncating the
expansion (15) to a finite number of terms, numerically differentiating in time, and sampling i.i.d.
Brownian motions Bm(t).

In order to find solutions of the system of SPDEs, we will consider the weak solution framework
(in the PDE sense). For the derivation of the weak form, we interpret (14) with the introduction
of (15) in the time integral sense, multiply it by test functions w(x), integrate over the domain D,
and use partial integration. As usual, by making use of partial integration in deriving the weak
form, we reduce the regularity requirements of the solution ρs(x, t). Moreover, utilizing the no-flux
boundary conditions ∇ρs(x, t) ⋅ û(x) = 0 on δD, we get

⟨∆ρs(⋅, t),w⟩ = −∫
D
∇ρs(x, t) ⋅ ∇w(x) dx + ∫

δD
(∇ρs(x, t) ⋅ û(x))w(x) dx = −⟨∇ρs(⋅, t),∇w⟩.

Here and in the following, we use the inner product notation ⟨u, v⟩ = ∫D u(x)v(x) dx.
Further, we shift the divergence operator from the space-time white noise onto the test functions.
By using partial integration, we find

⟨∇ ⋅ (
√
ρs(⋅, t)dWD

s (⋅, t)) ,w⟩ = − ⟨
√
ρs(⋅, t)dWD

s (⋅, t),∇w⟩+∫
δD

(
√
ρs(x, t)dWD

s (x, t) ⋅ û(x)) w(x) dx.
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With that, the weak formulation of (14) consists of finding ρs(x, t) for all agent types s = 1, . . . ,NT ,
such that

⟨ρs(⋅, t),w⟩ = ⟨ρs,0,w⟩ + ∫
t

0
(−σ

2

2
⟨∇ρs(⋅, t′),∇w⟩ + ⟨∇ ⋅ (∇V ρs(⋅, t′)) ,w⟩)dt′

+
NR

∑
r=1

νrs ∫
t

0
⟨ar(ρ(⋅, t′)),w⟩dt′ − σ∫

t

0
⟨
√
ρs(⋅, t′)dWD

s (⋅, t′),∇w⟩

+ σ∫
t

0
(∫

δD
(
√
ρs(x, t′)dWD

s (x, t′) ⋅ û(x))w(x) dx) +
NR

∑
r=1

νrs ∫
t

0
⟨
√
ar(ρ(⋅, t′))dW I

r (⋅, t′),w⟩ (16)

holds for all w(x) and for all t ∈ [0, T ].
The integrals with respect to the Cylindrical Wiener process have to be understood as follows

∫
t

0
⟨
√
ρs(⋅, t′)dWD

s (⋅, t′),∇w⟩ =
d

∑
l=1

∞
∑
m=1
∫

t

0
⟨
√
ρs(⋅, t′)χm,

∂w

∂xl
⟩dBDs,m,l(t

′)

∫
t

0
∫
δD

(
√
ρs(x, t′)dWD

s (x, t′) ⋅ û(x))w(x) dx =
d

∑
l=1

∞
∑
m=1
∫

t

0
(∫

δD

√
ρs(x, t′)χm(x)ûl(x)w(x)dx)dBDs,m,l(t

′)

∫
t

0
⟨
√
ar(ρ(⋅, t′))dW I

r (⋅, t′),w⟩ =
∞
∑
m=1
∫

t

0
⟨ar(ρ(⋅, t′))χm,w⟩dBIr,m(t′).

This formal derivation of the weak form (16) is the foundation for discretizing the system of SPDEs
in the following section.

3.2 Discretization of the System of SPDEs

Previously, we introduced a model (14) for the evolution of stochastic agent densities ρs ∶D×[0, T ] →
R≥0 that are being transported in space and interacting with each other. The existence and unique-
ness of solutions to the SPDE are still an open question, especially in the last few years much
research has been focused on this [18, 38, 9].
Here we instead propose a Finite Element discretization of the weak formulation of the system of
SPDEs (16) via a finite spatial ansatz space and truncation of the noise expansion. The result of
this Galerkin discretization will be the (finite) system of SDEs (28). For such SDEs rigorous state-
ments concerning the existence and uniqueness of solutions exist: if the drift and noise intensity
terms satisfy appropriate conditions regarding Lipschitz continuity and growth at infinity, then the
solution exists and is unique [42, Chapter 2] and moreover stable with respect to perturbations of
drift and noise intensity [42, Chapter 4].
The resulting system of SDEs can be further discretized in time, s.t. we arrive at (a sequence of)
matrix equations that have to be solved at each time step.

The general steps of the spatial discretization are as follows [40]:

1. We project the solutions onto the finite-dimensional space Ṽ (Section 3.2.1).

2. We truncate the expansion of the Cylindrical Wiener process WM(x, t) = ∑Mm=1 χm(x)Bm(t)
to M terms (Section 3.2.2).

In order to arrive at a fully discrete system we will perform a third step at last:

3. We discretize in time using the Euler-Maruyama scheme (Section 3.2.3).
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The discretization of the system of SPDEs will allow us to very efficiently simulate trajectories that
approximate the dynamics of the agent-based model.
Instead of discretizing the SPDE model with a Finite Element approach, one can also employ
the Finite Volume method [36, 14, 12]. Here, we use the Finite Element method since it has the
advantage that one can in principle treat very complicated domains which is needed for many real-
world models. Further, due to the weak form interpretation, we can make sense of the divergence
operator acting on the space-time white noise.

3.2.1 Space Discretization

We consider a simplicial discretization (e.g. by triangles, rectangles) D̃ = D̃(h) of the (possibly
curvilinear) computational domain D ⊆ Rd. Here h is defined as h ∶= maxE∈T hE , where hE is
the diameter of the simplex E and T is the union of all simplices. We let Ṽ = Ṽ (h) be a finite-
dimensional element space consisting of continuous piece-wise linear functions defined on D̃ and
spanned by its nodal basis (e.g. hat functions) {φi ∶ D̃ → R}ni=0. In the following, the inner product
on the discretized domain D̃ is given by ⟨u, v⟩h = ∫D̃ u(x)v(x) dx.

The Finite Element method then reduces the problem (16) to finding ρ̃s(⋅, t) ∈ Ṽ for each agent
type s = 1, . . . ,NT such that

⟨ρ̃s(⋅, t), φi⟩h = ⟨ρ̃s,0, φi⟩h + ∫
t

0
(−σ

2

2
⟨∇ρ̃s(⋅, t′),∇φi⟩h + ⟨∇ ⋅ (∇V ρ̃s(⋅, t′)) , φi⟩h)dt

′

+
NR

∑
r=1

νrs ∫
t

0
⟨ar(ρ̃(⋅, t′)), φi⟩h dt

′ − σ∫
t

0
⟨
√
ρ̃s(⋅, t′)dWD

s (⋅, t′),∇φi(x)⟩
h

+ σ∫
t

0
(∫

δD̃
(
√
ρ̃s(x, t′)dWD

s (x, t′) ⋅ û(x))φi(x) dx) +
NR

∑
r=1

νrs ∫
t

0
⟨
√
ar(ρ̃(⋅, t′))dW I

r (⋅, t′), φi⟩
h

∀t ∈ [0, T ] and for all test functions φi ∈ Ṽ , i = 0, . . . , n. (17)

To get the initial data of the discretization, we have to project the given ρs,0(x) onto Ṽ , i.e.

ρ̃s,0(x) =
n

∑
j=0

⟨ρs,0, φj⟩φj(x).

With {ρ̃s(⋅, t)}t∈[0,T ] being a Ṽ -valued stochastic process, we can next expand a realization of
{ρ̃s(⋅, t)}t∈[0,T ] as a linear combination of the basis functions {φj}nj=0 with time-dependent (and
random) coefficients βs,j(t), i.e.

ρ̃s(x, t) =
n

∑
j=0

βs,j(t)φj(x). (18)

We define matrices
C ∶= (Cij)ni,j=0 = (⟨φj , φi⟩h)ni,j=0 , (19)

A ∶= (Aij)ni,j=0 = (σ
2

2
⟨∇φj ,∇φi⟩h − ⟨∇ ⋅ (∇V φj) , φi⟩h)

n

i,j=0
, (20)

the coefficient vector
βs(t) ∶= (βs,j(t))nj=0, (21)

and the vector of the deterministic (non-linear) interaction term coupling the densities via ar(ρ̃(x, t))

Fs(t) = (Fs,i(t))ni=0 ∶= (
Nr

∑
r=1

νrs ⟨ar(ρ̃(⋅, t)), φi⟩h)
n

i=0
. (22)
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Inserting the expansion (18) into (17) and using the defined quantities (19) - (22), we finally arrive
at

n

∑
j=0

Cijdβs,j(t) = −
n

∑
j=0

Aijβs,j(t) dt + Fs,i(t) dt − σ ⟨
√
ρ̃s(⋅, t)dWD

s (⋅, t),∇φi⟩
h

+ σ∫
δD̃

(
√
ρ̃s(x, t)dWD

s (x, t) ⋅ û(x))φi(x) dx +
NR

∑
r=1

νrs ⟨
√
ar(ρ̃(⋅, t))dW I

r (⋅, t), φi⟩
h
,

∀t ∈ [0, T ], ∀i = 0, . . . , n, (23)

which is still understood as a time integral equation in the sense of (17).

3.2.2 Truncation of the Noise Expansion

By truncating the noise expansion (15) to M dimensions, we project the Cylindrical Wiener pro-
cesses onto the finite-dimensional space spanned by {χm}Mm=1. The choice of the truncation thresh-
old M remains an open question (e.g. [40, Theorem 10.41]). In our numerical experiments we will
choose M = n.

The truncated expansion for the interaction noise reads

W I,M
r (x, t) ∶=

M

∑
m=1

χm(x)BIr,m(t), (24)

where BIr,m(t) denote i.i.d. Brownian motions in R. Analogously for the diffusion noise, we replace

WD
s (x, t) by the truncated noise expansion4

WD,M
s (x, t) ∶=

M

∑
m=1

χm(x)BDs,m(t), (25)

where BDs,m(t) = (BDs,m,l(t))l=1,...,d denote i.i.d. Brownian motions in Rd.

Then by defining the vectors
BI,Mr (t) ∶= (BIr,m(t))Mm=1

BD,Ms,l (t) ∶= (BDs,m,l(t))
M

m=1

and matrices

GDs,l(t)im ∶= −σ ⟨
√
ρ̃s(⋅, t)χm,

∂φi
∂xl

⟩
h

+ σ∫
δD̃

(
√
ρ̃s(x, t)χm(x) ûl(x))φi(x) dx for l = 1, . . . , d (26)

and
GIs,r(t)im ∶= νrs ⟨

√
ar(ρ̃(⋅, t))χm, φi⟩

h
, where i = 0, . . . , n, m = 1, . . . ,M, (27)

our Galerkin approximation finally reads

Cdβs(t) = (−Aβs(t) + Fs(t)) dt +
d

∑
l=1
GDs,l(t) dB

D,M
s,l (t) +

NR

∑
r=1

GIs,r(t) dBI,Mr (t). (28)

Next, we will discretize this system of SDEs (28) in time using the (backward or semi-implicit)
Euler-Maruyama method.

4The choice of the threshold M could in general be different for (24) and (25).
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3.2.3 Time Discretization

The last step is to discretize in time, we divide the time interval [0, T ] into K intervals of sufficiently
small size ∆t. Denoting functions at time tk = k∆t by a subscript k, e.g. βs(tk) = βs,k, the semi-
implicit Euler-Maruyama time-discretization (implicit in the linear terms, explicit in the non-linear
coupling term) of (28) is the recursion for k = 0, . . . ,K − 1

βs,k+1 = (C +A∆t)−1
⎛
⎝
Cβs,k + Fs,k∆t +

d

∑
l=1
GDs,l,k∆B

D
s,l,k +

NR

∑
r=1

GIs,r,k∆B
I
r,k

⎞
⎠
. (29)

The Brownian increments

∆Bk = (∫
tk+1

tk
dBm(t))

M

m=1
= (Bm(tk+1) −Bm(tk))Mm=1 = (

√
∆tζm,k)

M

m=1

have to be sampled for each time step tk and for each s = 1, . . . ,NT , l = 1, . . . , d and r = 1, . . . ,NR

by drawing i.i.d. ζm,k ∼ N(0,1).

It is known that this time discretization converges globally [32] with convergence order 1/2 for
∆t→ 0.

Remark. One numerical problem is that the agent density can become negative in the simulations
[36]. This is only due to the discretization and vanishes for ∆t→ 0. When modeling the interactions
between different densities and for a not too small time step ∆t, it can happen that too much density
is subtracted from one type. One possibility for tackling this problem in the implementation is to
work with max{0, βs,j,k} instead of βs,j,k and thereby to ensure its non-negativity.

4 Numerical Studies

Many models of real-world dynamics pose challenges regarding their simulation due to a complex
model formulation. The agent-based model as introduced in Section 2.1 can be considered as the
ground-truth model for a system of diffusing and interacting agents. However due to its high model
complexity for large numbers of agents, simulations are often too expensive. The ABM is valid
on all population scales but we expect its computational feasibility only on the smallest popula-
tion scale. Reduced model descriptions are therefore needed, these reduced models should have a
small approximation error as well as being computationally much more efficient. In Section 3.1, we
presented a reduced model in terms of stochastic PDEs approximating the original ground-truth
system with full spatial resolution and for large populations, whilst still including stochasticity.

In this section, we will illustrate both modeling approaches on a toy example of innovation spread-
ing among humans that has real-world applications [8, 7, 44]. After studying each of the dynamics
in some detail for a fixed number of agents in Section 4.1 and 4.2, we will in Section 4.3 compare
the two modeling approaches for different population sizes regarding their computational cost and
the approximation quality of the system of SPDEs to the ABM.

4.1 Illustrative Example: Modeling with Agents

We study N = 3000 agents diffusing with diffusion constant σ = 0.25 in the double well landscape
V (x) = (3.6(x−0.5)2−0.1)2 on D = [0,1], see Figure 2. The suitability landscape V is characterized
by two minima centered at x = 1

3 and x = 2
3 , corresponding to the most suitable areas for agents

and a barrier between the two wells. Thus the agents will spend most of their time near the centers
of the two wells while rarely transitioning between them.
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Figure 2: Suitability landscape V and the corresponding unique equilibrium distribution for the
position of one agent pequ(x) = Z−1 exp (−2σ−2V (x)), the distribution is normalized by Z.

On top of the position dynamics, agents are interacting whenever they are close-by. We consider the
spreading of an innovation given by the rule R1 ∶ T1 + T2 → 2 T2 at fixed influence rate γ1ABM = 0.5
whenever two agents of type T1 (non-adopter of the innovation) and T2 (adopter of the innovation)
are within radius dint = 0.001 of each other.

We will describe the dynamics by the coupled ABM equations (7) and simulate approximate real-
izations of the process with step size ∆t = 0.001 as explained in Section 2.2. We assume that at
t = 0, the positions of the initially 2800 agents of type T1 are normally distributed with mean 0.5
and standard deviation 0.2. Similarly, for the 200 agents of type T2, we draw the initial positions
from the normal distribution N(0.7,0.05).
Some snapshots of one simulation of the spreading process are given in Figure 3.

We observe the following dynamics: At time t = 0, the innovation starts spreading in the well
centered at x = 2

3 . The agents quickly distribute near the attractive centers of the two wells. It
takes some time until the innovation reaches the other well centered at x = 1

3 . But as soon as
an adopter agent crosses the barrier for the first time, the innovation quickly gets adopted by all
agents in the other well. At the final time t = 2, all agents are of type T2 and distributed according
to the equilibrium distribution of the landscape V (see Figure 2).

Figure 3: A single realization of the spreading process in a double well landscape on D = [0,1] with
3000 agents and modeled by the ABM. The empirical density of the positions of T1 agents at time
t is given by the blue histogram while the positions of the type T2 agents are plotted using the red
histogram.
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4.2 Illustrative Example: Modeling with Agent Densities

As in the previous section, we consider two types of agents in a double well landscape that are
spreading an innovation. But this time, we will model the dynamics using the system of SPDEs that
evolves the two agent densities ρ1(x, t) (density of non-adopters) and ρ2(x, t) (density of adopters).

To get the initial conditions, two approaches are possible. Either we know the initial densities,
or in the case that the positions and types of the N agents at time t = 0 are given, we can construct
the initial densities ρs,0(x) by summing unit masses (e.g. Dirac Deltas, narrow Gaussian functions,
normalized hat functions) placed at the position of each agent of type Ts. In this example, we will
take the first approach by using (similar as in the previous model setting) that the agent positions
are normally distributed, i.e. ρ1,0(x) and ρ2,0(x) are Gaussian functions integrating to the number
of agents of each type (N1 = 2800 and N2 = 200 respectively) at time t = 0.

Most parameter values of the SPDE model can be chosen equally to the ABM. It is only the
micro-scale spreading rate γrABM in combination with the interaction radius dint which has to be
converted into an effective spreading rate γrSPDE on the meso-scale. In general, this is still an open
problem [15, 17]. To derive the effective meso-scale rate for type Ts agents at x ∈D due to rule Rr,
we have to take the neighbouring agents of type Ts′′ inside a closed ball Bint(x) of radius dint into
account, s.t. the transition rate function (13) becomes

ar(ρ(x, t)) = ρs(x, t)γrABM∫
Bint(x)

ρs′′(x′, t)dx′.

Assuming that the agent densities are approximately constant inside Bint(x) of volume Vint, we
arrive at

ar(ρ(x, t)) ≈ VintγrABMρs(x, t)ρs′′(x, t). (30)

Thus we converted the meso-scale rate by γrSPDE = VintγrABM [17]. In 1D, this simply reduces to
γrSPDE = 2 dintγ

r
ABM.

Given the model setting, we can turn to the specification of the discretization. Numerically sam-
pling trajectories of the SPDE system can be done by iteratively solving (29) in parallel for both
agent types s = 1,2.
For the space discretization, we split the domain D = [0,1] into equidistant grid cells of size h = 1

n

(s.t. D̃(h) =D), supporting the hat functions φi(x), i = 0, . . . , n, defined as

φi(x) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 x < xi−1 or x ≥ xi+1
x−xi−1
h xi−1 ≤ x < xi

1 − x−xi
h xi ≤ x < xi+1,

where xi = ih. The hat functions are spanning our Finite Element space Ṽ .
For the expansion of the cylindrical Wiener process, we choose the trigonometric system as an
orthonormal basis for L2(D).
The matrices (19), (20), (26), (27) can be assembled by analytical or numerical integration, or by
defining a reference element and transforming from any grid cell to the reference grid cell in order
to do the computations on the reference cell before transforming back [39]. Since each hat function
is mostly zero throughout D̃, the resulting matrices will be sparse.

Snapshots of one realization of the agent dynamics are shown in Figure 4, where as discretiza-
tion parameters we choose n = M = 256 and time steps of size ∆t = 0.001. We plot the time
evolution of the densities ρ1(x, t) and ρ2(x, t).
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The emerging dynamics agree with the ABM dynamics in Figure 3. Again the agent densities
are clustered around the two wells. The spreading of the innovation among agents inside the same
well is fast, but the spreading of the innovation from one well to another takes much longer. We
observe that the stochasticity inherent in the model is still visible on the global scale, the agent
densities are seemingly noisy. The noisiness as well as the overall dynamics resemble the snapshots
of the dynamics when modeled by the ABM.
In the next part, we will investigate this question further and study a larger sample of simulations
as well as different population sizes N .
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Figure 4: Realization of a spreading process in a double well landscape on D = [0,1] with 3000
agents (SPDE approach). We plot the density of non-adopters ρ1(x, t) (in blue) and the density of
adopters ρ2(x, t) (in red) at a few time instances.

4.3 Comparison of the Models

Considering the ABM as the ground-truth model, we compare the innovation spreading dynamics
(as introduced in the previous Sections 4.1 and 4.2) for different population sizes using the ABM
and the reduced SPDE model. In particular, we are studying how the agent-based and SPDE
model compare in computation time and at which agent numbers N the SPDE model starts to be
a good approximation to the ABM.

We simulate both models for varying population sizes N ∈ [300,5000]. For each N , we consider
an ensemble of sim = 5000 realizations in order to compute meaningful ensemble averages. The
simulation schemes are implemented in Matlab and run on a computer with an Opteron 8384 CPU.

The Computational Effort: For both models and varying N , we fix the step size in time to ∆t = 0.01
and measure the time it takes to simulate one time step. Since both simulation approaches make
use of an Euler-Maruyama time discretization, comparing the effort per time step is sensible. But
space is treated differently. In the ABM, we use an Euler-Maruyama discretization for the position
dynamics of each agent, whereas in the SPDE approach, we use the scheme for each hat function.
Moreover, for the simulation of the ABM, we have to compute pair-wise distances between agents,
which becomes very expensive for increasing agent numbers N . Thus we expect the computational
effort for the ABM to depend on the number of agents, whereas for the SPDE model it should be
independent of N and thus constant for increasing N .

Approximation Quality: We compute observables of the simulated dynamics for both models and
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increasing agent numbers. Based on these measured observables, we can compare how well they
agree and deduce the approximation quality of the SPDE description to the ABM5. Possible ob-
servables are e.g. the time it takes until the agent system has reached a certain state for the first
time or the state of the system at a fixed time point. Here, we study innovation spreading dynamics
in a double well landscape with the parameters chosen as in Sections 4.1, 4.2. The observables we
consider are (i) the time until 90% of agents are of type T2, and (ii) the spatial distribution of type
Ts (s = 1,2) agents at a fixed model time point, which we choose to be the mean of the first time
that 90 % of agents in the ABM are of type T2.

(a) Computational effort of both models. (b) The first time that 90% of agents are adopters.

Figure 5: The computational effort and the approximation quality of the SPDE model to the ABM,
where the mean and standard deviation are taken for an ensemble of sim=5000 realizations.

Figure 6: Spatial distribution on [0,1] of the number densities for a fixed time point, here taken
as the mean first time of 90% adopters in the ABM as given by the black curve in Figure 5b. The
outcome (mean and standard deviation) of the ABM is shown in black, the outcome of the SPDE
model is depicted in yellow.

In the following we come to a discussion of the results. The results of the computational complex-

5Computing these observables we also make numerical and statistical errors.
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ity studies are shown in Figure 5a. As expected, the computational effort for the ABM increases
strongly, more precisely exponentially, with the number of agents, whereas the effort for the simu-
lation of the density-based model remains cheap. The cost of simulating realizations of the SPDE
is independent of N and several magnitudes below the cost of simulating the ABM.

Further, we compared observables of the density-based model with observables of the ABM in
order to study the approximation quality, see Figures 5b and 6.
First of all, we remark that for increasing numbers of agents, the stochasticity in both models
decreases as can be seen from the reducing standard deviation. The more agents in the ABM, the
less the individual behaviour sticks out (due to the law of large numbers). For the SPDE model
this was also expected (see the comment in Section 3.1.3), since the noise scaling of the SPDE is
such that the noise dominates for small population sizes and has less influence for large population
sizes.
Next for systems of very few agents (in our example around N < 1000), both observables agree
roughly in mean between the two models. But for observable (i), the standard deviation of the
SPDE model is much larger than the one of the ABM, whereas for observable (ii), it is the other
way around, the noisiness of the ABM is larger than the one of the SPDE model.
For systems with a larger number of agents N > 1000, the global observable (i) in Figure 5b agrees
well in mean and standard deviation, even though we notice that the spatial observable in Figure
6 indicates that the interactions in the SPDE take place slightly faster than the interactions in the
ABM. Two points can explain this: First, replacing the Poisson process in the ABM by a Gaussian
process in the SPDE model is only a valid approximation for large agent numbers in each grid cell.
This issue was already mentioned in [4] and commented upon above in Remark 3.1.2. In [36] it is
proposed to use Poisson noise in each grid cell after spatial discretization. However, we stick to the
approximation by a normal distribution, since the approach in [36] is rather ad-hoc and cannot be
extended to the continuous SPDE. Second, we converted the interaction rates in (30) by assuming
that the density of agents is approximately constant inside a ball of radius dint, but the densities
are very noisy and rough and thus not at all constant inside small neighbourhoods.
Whether these two explanations might be valid or not is largely unclear, since a rigorous approach
to understanding the joint convergence of the different models in the limit of large population, or
in similar limits, is still missing and therefore, there also is a lack of understanding regarding the
source of approximation errors.

5 Conclusion and Future Outlook

ABMs are the most natural approach to construct models for real-world systems containing discrete
interacting entities such as humans, since one can simply model the actions of each individual.
Based on [8, 7], we have described a general agent-based model that is formulated in terms of
coupled diffusion and Markov jump processes for each agent.
Some further research regarding the construction of the ABM could be directed at the following
questions:

– Is it reasonable to model human or agent mobility by Brownian motion with drift? One could
also model the diffusion of agents on an infrastructure network or by a different stochastic
process [3].

– Can we extend the ABM to include feedback loops, such that e.g. the type changes also
influence the position dynamics?

– How can we quantify and analyse the resulting dynamics, e.g. by making use of transition
path theory [16, 43]?
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Simulating agent-based models for real-world dynamics quickly becomes costly due to an explosion
in the computational complexity for increasing agent numbers and the need for repeated simula-
tions due to its stochastic description. For instance, when modeling the spreading of innovations
in ancient times such as in [8, 7], many Monte-Carlo simulation are required to capture the full
spectrum of the diverse dynamics. But this becomes computationally very expensive. A thorough
sensitivity analysis of the parameters demands many simulations for each parameter set and is as
such not tractable.
Based on an extension of the Dean-Kawasaki model [36, 11, 34, 4, 30], we therefore considered a
meso-scale approximation to the ABM for systems of many agents. The reduced model is given by
a system of coupled stochastic PDEs propagating agent densities for the different agent types.
For both models, the ABM and the reduced density-based model, we constructed and explained
simulation schemes. The Finite Element discretization of the system of SPDEs serves as an in-
terpretation and regularization of the ill-defined SPDE for which solutions not necessarily exist
[18, 9, 38].
There are however several questions that still remain unanswered and should be investigated fur-
ther:

– The notion of the solution to the SPDE and its existence and uniqueness is still unclear due
to several mathematical difficulties [9, 38, 18].

– Can we find quantitative statements for the approximation and discretization quality?

– Numerical experiments for higher spatial dimensions and more complex domains as well as
studies on the applicability to real-world systems containing humans need to be investigated
further.

Finally, we compared the simulation effort and studied the approximation quality of the reduced
density-based model to the ABM computationally on a toy example of innovation spreading. From
these computational experiments we can conclude the following. For systems of few agents, the
ABM is not too costly. We consider the ABM as the ground-truth model and thus as the most
accurate description of the agent system. The dynamics have to be described in terms of individual
agents, since there are only very few.
But for systems of many agents, we can instead use the approximation by the SPDE to study the
agent system dynamics much more efficiently. In the case of our toy example, this approximation is
reasonably accurate in mean and standard deviation already for systems of 1000 agents. Thus, the
presented reduced model is a very promising tool for modeling and especially simulating real-world
systems with large agent populations. The SPDE model offers the possibility to carry out a more
thorough model analysis such as parameter studies and inference, or model control, whilst staying
numerically tractable.
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