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Introduction

The term ‘mesh independence’ characterizes the observation that finite dimen-
sional Newton methods, when applied to a nonlinear PDE on successively finer
discretizations with comparable initial guesses, show roughly the same conver-
gence behavior on all sufficiently fine discretizations. The ‘mesh independence
principle’ has been stated and even exploited for mesh design in papers by
Allgower and Böhmer [1] and McCormick [14]. Further theoretical inves-
tigations of the phenomenon have been given in the paper [2] by Allgower,
Böhmer, Potra, and Rheinboldt. Those papers, however, lacked certain
important features in the theoretical characterization that actually prohibited
their application to discretized PDEs. This drawback has been avoided in the
affine invariant theoretical study by Deuflhard and Potra in [9]; from that
analysis, the modified term ‘asymptotic mesh independence’ naturally emerged.
The present paper suggests a different approach, which is also affine invariant,
but much simpler and more natural from the algorithmic point of view.

The paper is organized as follows. In Section 1 we first revisit the theoretical
approaches given up to now to treat mesh independence for operator equations.
In Section 2 we compare discrete versus continuous Newton methods, again in
affine invariant terms; in contrast to the earlier treatment in [9], we only use
terminology that naturally arises from the algorithmic point of view, such as
Newton sequences and approximation errors. The new theory is then exemplified
at collocation methods for ODE boundary value problems and at finite element
methods for elliptic PDEs (Section 3).

1 Preliminary Considerations

Let a nonlinear operator equation be denoted by

F (x) = 0 ,

where F : D → Y is defined on a convex domain D ⊂ X of a Banach space X
with values in a Banach space Y . Throughout the paper we assume the existence
of a unique solution x∗ of this operator equation. The corresponding ordinary
Newton method in Banach space may be written as

F ′(xk)∆xk = −F (xk) , xk+1 = xk + ∆xk , k = 0, 1, . . . , (1)

assuming, of course, that the derivatives are invertible. In each Newton step,
the linearized operator equation must be solved, which is why this approach is
often also called quasilinearization. For F , we assume that Theorem 1 from [8]
holds, an affine invariant version of the classical Newton-Mysovskikh theorem,
whose essence we recall here for the purpose of later reference.

Theorem 1.1. Let F : D → Y be a continuously differentiable mapping with
D ⊂ X convex. Let ‖ · ‖ denote the norm in the domain space X. Suppose that
F ′(x) is invertible for each x ∈ D. Assume that, for collinear x, y, z ∈ D, the
following affine invariant Lipschitz condition holds:∥∥F ′(z)−1

(
F ′(y)− F ′(x)

)
v
∥∥ ≤ ω‖y − x‖ ‖v‖ . (2)
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For the initial guess x0 ∈ D assume that

h0 = ω‖∆x0‖ < 2

and that S̄(x0, ρ) ⊂ D for ρ =
‖∆x0‖

1− h0/2
.

Then the sequence {xk} of ordinary Newton iterates remains in S(x0, ρ)
and converges to a unique solution x∗ ∈ S̄(x0, ρ). Its convergence speed can be
estimated as

‖xk+1 − xk‖ ≤ 1
2ω‖xk − xk−1‖2 .

In actual computation, we can only solve discretized nonlinear equations of
finite dimension, at best on a sequence of successively finer mesh levels, say

Fj(xj) = 0 , j = 0, 1, . . . , (3)

where Fj : Dj → Yj denotes a nonlinear mapping defined on a convex domain
Dj ⊂ Xj of a finite-dimensional subspace Xj ⊂ X with values in a finite dimen-
sional space Yj . The corresponding finite dimensional ordinary Newton method
reads

F ′j(x
k
j )∆xk

j = −Fj(xk
j ) , xk+1

j = xk
j + ∆xk

j , k = 0, 1, . . . .

In each Newton step, a system of linear equations must be solved. This system
can equally well be interpreted either as a discretization of the linearized opera-
tor equation (1) or as a linearization of the discrete nonlinear system (3). Again
we assume that Theorem 1.1 holds, this time for the finite dimensional mapping
Fj . Let ωj denote the corresponding affine invariant Lipschitz constant. Then
the quadratic convergence of this Newton method is governed by the relation

‖xk+1
j − xk

j ‖ ≤ 1
2ωj‖xk

j − xk−1
j ‖2 .

Under the assumptions of Theorem 1.1 there exist unique discrete solutions x∗j
on each level j. Of course, we want to choose appropriate discretization schemes
such that

lim
j→∞

x∗j = x∗ . (4)

From the synopsis of discrete and continuous Newton method, we immediately
see that any comparison of the convergence behavior on different discretization
levels j will direct us toward a comparison of the affine covariant Lipschitz
constants ωj . Of particular interest is the connection with the Lipschitz constant
ω of the underlying operator equation.

In the earlier papers [1, 2] on mesh independence two assumptions of the
kind

‖F ′j(xj)−1‖ ≤ βj , ‖F ′j(xj + vj)− F ′j(xj)‖ ≤ γj‖vj‖

have been made in combination with the uniformity requirements

βj ≤ β , γj ≤ γ . (5)

Obviously, these assumptions lack affine invariance. More important, however,
and as a consequence of the noninvariance, these conditions are phrased in terms
of operator norms, which, in turn, depend on the relation of norms in the domain
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and the image space of the mappings Fj and F , respectively. For typical PDEs
we would obtain

lim
j→∞

βj →∞ ,

which clearly contradicts the uniformity assumption (5). Consequently, an anal-
ysis in terms of βj and γj would not be applicable to this important case.

The situation is different with the affine invariant Lipschitz constants ωj :
they only depend on the choice of norms in the domain space. It is easy to
verify that

ωj ≤ βjγj .

In Section 2 below we will show that the ωj remain bounded in the limit j →∞,
as long as ω is bounded – even if either βj or γj blow up. Moreover, even when the
product βjγj remains bounded, the Lipschitz constant ωj may be considerably
lower, i.e.

ωj � βjγj .

A prerequisite for the asymptotic property (4) to hold is that the elements
of the infinite dimensional space X can be well approximated by elements of the
finite dimensional subspaces Xj . In general, however, the solution x∗ has “bet-
ter smoothness properties” than the generic elements of the space X. For this
reason, the earlier papers [2, 9] had restricted their analysis to some smoother
subset W ∗ ⊂ X and explicitly assumed that

x∗, xk,∆xk, xk − x∗ ∈ W ∗ , k = 0, 1, . . . .

However, such an assumption is hard to confirm in the concrete case. That is
why we will drop it for our analysis to be presented.

Next, we revisit the paper [9] in some necessary detail. In that paper a family
of linear projections

πj : X → Xj , j = 0, 1, . . .

had been introduced, assumed to satisfy the stability condition

qj = sup
x∈W∗,x 6=0

‖πjx‖
‖x‖

≤ q < ∞ , j = 0, 1, . . . . (6)

The projection property π2
j = πj immediately gives rise to the lower bound

qj ≥ 1 . (7)

As a measure of the approximation quality that paper had defined

δj = sup
x∈W∗,x 6=0

‖x− πjx‖
‖x‖

, j = 0, 1, . . . . (8)

The rather natural idea that a refinement of the discretization improves the
approximation quality had been expressed by the asymptotic assumption

lim
j→∞

δj = 0 . (9)

The triangle inequality and (6) had supplied the upper bound

qj ≤ 1 + δj . (10)
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By combination of (7), (9), and (10), asymptotic stability had arisen as

lim
j→∞

qj = 1 . (11)

However, as has been pointed out by Braess [5], the above theory has
some weak point. In fact, from (6) we conclude that x = 0 implies πjx = 0.
The reverse, however, will not be true in general. Hence, one must be aware of
pathological elements x 6= 0 with corresponding approximations πjx = 0. On
a uniform one-dimensional grid, such a pathological element might look just as
x(t) represented graphically in Fig. 1. Insertion of such elements into (8) would
yield

δj ≥ 1

on each level j, on which such pathological elements exist. If one were to accept
such an occurrence on all levels, then this would be in clear contradiction to the
desired asymptotic property (9) and its consequence (11).

x

t

Figure 1: Pathological element x 6= 0 with πjx = 0 (•: mesh nodes).

In order to close this gap of that theory, one would have to relate the subset
W ∗ and the projections πj such that the occurrence of pathological elements
would be asymptotically excluded. As an example, assume we have nested sub-
spaces Xj , e.g. constructed by uniform mesh refinement. Suppose we begin with
a ’sufficiently good’ initial projection π0 on a ’sufficiently’ fine mesh, which al-
ready captures the main qualitative behavior of the solution x∗ correctly. Then
’pathological’ elements would no longer be expected to occur on finer meshes in
actual computation. Thus, upon carefully choosing appropriate subsets of W ∗,
the theory from [9] could, in principle, be repaired. However, the technicalities
of such a theory tend to obscure the underlying simple idea.

For this reason, we here abandon that approach and turn to a different one,
which seems to us both simpler and more intuitive from the algorithmic point
of view: we will avoid the (anyway computationally unavailable) projections
πj and define the approximation quality δj differently, just exploiting usual
approximation results for discretization schemes.

2 Discrete versus Continuous Newton Sequences

In this section, we study the comparative behavior of discrete versus continuous
Newton sequences. If not explicitly stated otherwise, the notation is taken from
the previous section.
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We will consider the phenomenon of mesh independence of Newton’s method
in two steps. First, we will show that the discrete Newton sequence tracks the
continuous Newton sequence closely, with a maximal distance bounded in terms
of the mesh size; both of the Newton sequences behave nearly identically until,
eventually, a small neighborhood of the solution is reached. Second, we prove the
existence of affine invariant Lipschitz constants ωj for the discretized problems,
which approach the Lipschitz constant ω of the continuous problem in the limit
j → ∞; again, the distance can be bounded in terms of the mesh size. Upon
combining these two lines, we finally establish the existence of locally unique
discrete solutions x∗j in a vicinity of the continuous solution x∗.

To begin with, we prove the following nonlinear perturbation lemma.

Lemma 2.1. Consider two Newton sequences {xk}, {yk} starting at initial
guesses x0, y0 and continuing as

xk+1 = xk + ∆xk , yk+1 = yk + ∆yk ,

where ∆xk,∆yk are the corresponding ordinary Newton corrections. Assume the
affine invariant Lipschitz condition (2) is satisfied. Then the following contrac-
tion result holds:

‖xk+1 − yk+1‖ ≤ ω
(

1
2‖x

k − yk‖+ ‖∆xk‖
)
‖xk − yk‖ (12)

Proof. Dropping the iteration index k we start with

x + ∆x− y −∆y

= x− F ′(x)−1F (x)− y + F ′(y)−1F (y)

= x− F ′(x)−1F (x) + F ′(x)−1F (y)− F ′(x)−1F (y)− y + F ′(y)−1F (y)

= x− y − F ′(x)−1
(
F (x)− F (y)

)
+ F ′(x)−1

(
F ′(y)− F ′(x)

)
F ′(y)−1F (y)

= F ′(x)−1
(
F ′(x)(x− y)−

∫ 1

t=0

F ′(y + t(x− y))(x− y) dt
)

+ F ′(x)−1(F ′(y)− F ′(x))∆y.

Upon using assumption (2), we conclude that

‖xk+1 − yk+1‖ ≤
∫ 1

t=0

‖F ′(xk)−1
(
F ′(xk)− F ′(yk + t(xk − yk))

)
(xk − yk)‖ dt

+ ‖F ′(xk)−1(F ′(yk)− F ′(xk))∆yk‖

≤ ω

2
‖xk − yk‖2 + ω‖xk − yk‖ ‖∆yk‖,

which confirms (12).

With the above auxiliary result, we are now ready to study the relative
behavior of discrete versus continuous Newton sequences.

Theorem 2.2. In addition to the notation as already introduced, let x0 = x0
j ∈

Xj denote a given starting value such that the assumptions of Theorem 1.1 hold
for the continuous Newton iteration, including

h0 = ω‖∆x0‖ < 2 .
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For the discrete mapping Fj and all arguments xj ∈ Dj = S(x0, ρ + 2/ω) ∩Xj

define
F ′j(xj)∆xj = −Fj(xj) , F ′(xj)∆x = −F (xj) . (13)

Assume that the discretization is fine enough such that

‖∆xj −∆x‖ ≤ δj ≤
1
2ω

(14)

uniformly for xj ∈ Dj. Then the following cases occur:

I. If h0 ≤ 1−
√

1− 2ωδj, then

‖xk
j − xk‖ < 2δj ≤

1
ω

, k = 0, 1, . . . .

II. If 1−
√

1− 2ωδj < h0 < 1 +
√

1− 2ωδj, then

‖xk
j − xk‖ ≤ 1

ω

(
1 +

√
1− 2ωδj

)
<

2
ω

, k = 0, 1, . . . .

In both cases I and II, the asymptotic result

lim sup
k→∞

‖xk
j − xk‖ ≤ 1

ω

(
1−

√
1− 2ωδj

)
< 2δj ≤

1
ω

holds.

Proof. In [13, pp. 99, 160], Wanner and Hairer introduced “Lady Winder-
mere’s fan” as a tool to prove discretization error results for evolution problems
based on some linear perturbation lemma. We may copy this idea and exploit
our nonlinear perturbation Lemma 2.1 in the present case. The situation is
represented graphically in Figure 2.

x2,0

x1,0

x3,0

δj δj δj

x0
j = x0,0 x1

j = x1,1 x2
j = x2,2 x3

j = x3,3

x∗

x2,1 x3,2

Figure 2: “Lady Windermere’s fan” for continuous and discrete Newton method.

The discrete Newton sequence starting at the given initial point x0
j = x0,0

is written as {xk,k}. The continuous Newton sequence, written as {xk,0}, starts
at the same initial point x0 = x0,0 and runs toward the solution point x∗. In
between we define further continuous Newton sequences, written as {xi,k}, k =
i, i + 1, . . ., which start at the discrete Newton iterates xi

j = xi,i and also run

7



toward x∗. Note that the existence or even uniqueness of a discrete solution
point x∗j is not implied by the assumptions of the theorem.

For the purpose of repeated induction, we assume that

‖xk−1
j − x0‖ < ρ +

2
ω

,

which certainly holds for k = 1. In order to characterize the deviation between
discrete and continuous Newton sequences, we introduce the two majorants

ω‖∆xk‖ ≤ hk , ‖xk
j − xk‖ ≤ εk .

Recall from Theorem 1.1 that

hk+1 = 1
2h2

k . (15)

For the derivation of a second majorant recursion, we apply the triangle inequal-
ity in the form

‖xk+1,k+1 − xk+1,0‖ ≤ ‖xk+1,k+1 − xk+1,k‖+ ‖xk+1,k − xk+1,0‖.

The first term can be treated using assumption (14) so that

‖xk+1,k+1 − xk+1,k‖ = ‖xk
j + ∆xk

j −
(
xk,k + ∆xk,k

)
‖ = ‖∆xk

j −∆xk,k‖ (16)

≤ δj .

For the second term, we may apply our nonlinear perturbation Lemma 2.1 (see
the shaded regions in Fig. 2) to obtain

‖xk+1,k − xk+1,0‖ ≤ ω
(1

2
‖xk,k − xk,0‖+ ‖∆xk,0‖

)
‖xk,k − xk,0‖

Combining these results then leads to

‖xk+1,k+1 − xk+1,0‖ ≤ δj +
ω

2
ε2k + hkεk .

The above right side may be defined to be εk+1. Hence, together with (15), we
arrive at the following set of majorant equations

hk+1 = 1
2h2

k , εk+1 = δj + 1
2ωε2k + hkεk .

If we introduce the quantities αk = ωεk + hk and δ = ωδj , we may obtain the
decoupled recursion

αk+1 = δ + 1
2α2

k , (17)

which can be started with α0 = h0, since ε0 = 0. Upon solving (17), we get the
two equilibrium points

α̂1 = 1−
√

1− 2δ < 1 , α̂2 = 1 +
√

1− 2δ > 1 .

Insertion into the recursion (17) then leads to the form

αk+1 − α̂ = 1
2 (αk − α̂)(αk + α̂) . (18)
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For αk < α̂2 we see that

1
2 (αk + α̂1) < 1

2 (α̂2 + α̂1) = 1 ,

which implies that
|αk+1 − α̂1| < |αk − α̂1| .

Hence, the fixed point α̂1 is attractive, whereas α̂2 is repelling. Moreover, since
αk + α̂1,2 > 0, we immediately obtain the result

sign(αk+1 − α̂) = sign(αk − α̂) .

Therefore, we have the following cases:

I. α0 ≤ α̂1 =⇒ αk ≤ α̂1 ,

II. α̂1 < α0 < α̂2 =⇒ α̂1 ≤ αk < α̂2 .

Insertion of the expressions for the used quantities then shows that cases I,II
directly correspond to cases I,II of the theorem. Its last asymptotic result is
now an immediate consequence of (18). Finally, with application of the triangle
inequality

‖xk+1
j − x0‖ ≤ εk+1 + ‖xk+1 − x0‖ <

2
ω

+ ρ ,

the induction and therefore the whole proof is completed.

We are interested in the question whether a discrete solution point x∗j exists.
The above tracking theorem, however, only supplies the following result.

Corollary 2.3. Under the assumptions of Theorem 2.2, there exists at least
one accumulation point

x̂j ∈ S̄ (x∗, 2δj) ∩Xj ⊂ S

(
x∗,

1
ω

)
∩Xj ,

which need not be a solution point of the discrete equations Fj(xj) = 0.

In order to prove more, Theorem 1.1 directs us to study whether a Lipschitz
condition of the kind (2) additionally holds.

Lemma 2.4. Let Theorem 1.1 hold for the mapping F : X → Y . For collinear
xj , yj , yj + vj ∈ Xj, define quantitites wj ∈ Xj and w ∈ X according to

F ′(xj)w = (F ′(yj + vj)− F ′(yj)) vj , (19)

F ′j(xj)wj =
(
F ′j(yj + vj)− F ′j(yj)

)
vj . (20)

Assume that the discretization method satisfies

‖w − wj‖ ≤ σj‖vj‖2 . (21)

Then there exist constants

ωj ≤ ω + σj , (22)

such that the affine invariant Lipschitz condition

‖wj‖ ≤ ωj‖vj‖2

holds for the discrete Newton process.
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Proof. The proof is a simple application of the triangle inequality

‖wj‖ ≤ ‖w‖+ ‖wj − w‖ ≤ ω‖vj‖2 + σj‖vj‖2 = (ω + σj) ‖vj‖2.

Finally, the existence of a unique solution x∗j is a direct consequence.

Corollary 2.5. Under the assumptions of Theorem 2.2 and Lemma 2.4 the
discrete Newton sequence {xk

j }, k = 0, 1, . . . converges q-quadratically to a unique
discrete solution point

x∗j ∈ S̄ (x∗, 2δj) ∩Xj ⊂ S

(
x∗,

1
ω

)
∩Xj .

Proof. We just need to apply Theorem 1.1 to the finite dimensional mapping
Fj with the starting value x0

j = x0, and the affine invariant Lipschitz constant
ωj from (22).

Summarizing, we come to the following conclusion, at least in terms of the
analyzed upper bounds: If the asymptotic properties

lim
j→∞

δj = 0 , lim
j→∞

σj = 0 ,

can be shown to hold, then the convergence speed of the discrete ordinary New-
ton method is asymptotically just the one for the continuous ordinary Newton
method. Moreover, if related initial guesses x0 and x0

j and a common termina-
tion criterion are chosen, then even the number of iterations will be nearly the
same.

3 Application to discretization schemes

In order to apply the abstract mesh independence principles of Section 2 to
discretization schemes for differential equations, we have to show two features.
First,

‖∆x−∆xj‖ ≤ δj , lim
j→∞

δj = 0, (23)

where ∆x is the exact and ∆xj is the approximate solution of the Newton
equations (13).

Second,
‖w − wj‖ ≤ σj‖vj‖2, lim

j→∞
σj = 0, (24)

where w and wj are the solutions of the Lipschitz equations (19) and (20)
respectively.

The structure of the argumentation will be straightforward. The first step is
to apply classical error estimates for the numerical method under consideration.
These estimates usually depend on the regularity of the exact solution y of the
linear equations. The second step is then to show appropriate regularity results
for y.
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ODE collocation methods. First we turn to nonlinear boundary value prob-
lems for ordinary differential equations. Assume f : Rm → Rm is s times con-
tinuously differentiable and A ∈ Rl−m,m, B ∈ Rl,m are such that the BVP

ẋ(t)− f(x(t)) = 0 for t ∈]a, b[
Ax(a) + Bx(b)− r = 0

is well-defined.
On meshes ∆j = {a = tj,0 < tj,1 < . . . < tj,nj = b} with mesh size

τj = max τj,i the discretizations Fj are defined by Gauss and Gauss-Lobatto
collocation of order s, such that the finite dimensional spaces Xj are given by
the corresponding spline spaces, i.e. spaces of piecewise polynomials of order s,
together with a continuity requirement at the mesh-points.

The spaces are defined as

Xj := (Ps[t0, t1]× . . .× Ps[tnj−1, tnj
]) ∩ C0[a, b] ⊂ W 1,∞[a, b],

for Gauss collocation and

Xj := (Ps[t0, t1]× . . .× Ps[tnj−1, tnj
]) ∩ C1[a, b] ⊂ W 1,∞[a, b],

for Gauss-Lobatto collocation.
It turns out, that W 1,∞ is the appropriate space to study the convergence of

Newton’s method applied to Gauss and Gauss-Lobatto collocation for first order
systems. Additionally, in the following we will also use the piecewise L∞-norm:

‖v‖ := max
0≤i≤nj

{
‖v‖L∞(ti,ti+1)

}
for piecewise smooth functions and their piecewise defined derivatives. These
may not be defined at the gridpoints, but the norm ‖·‖ is then still well defined.

To derive (23) and (24) for collocation methods, we use classical error es-
timates for linear, non-autonomous problems, as established in Russell and
Shampine [16] for Gauss-Lobatto collocation and extended in de Boor and
Swartz [6] for Gauss collocation. The estimates we make use of here are not
sharp, but sufficient for our purpose.

Lemma 3.1. Let the linear boundary value problem

u̇(t)−G(t)u(t) = g(t) (25)
Au(a) + Bu(b) = 0 (26)

be uniquely solvable with condition number ρ̄[a, b] < ∞ (cf. [7]). Let w be the
exact solution of (25),(26) and wj the approximate solution obtained by Gauss
or Gauss-Lobatto collocation of order s. Then for p ≤ s the following error
estimates hold for sufficiently small τj:

‖u− uj‖ ≤ C(ρ̄[a, b])τp
j ‖u

(p+1)‖, (27)

‖u̇− u̇j‖ ≤ C(ρ̄[a, b])τp
j ‖u

(p+1)‖. (28)

Proof. The error bounds for Gauss-Lobatto collocation are presented in Theo-
rem 2 in [16] which states that u̇j − u̇ and uj − u are bounded by a multiple of
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the error of the best polynomial approximation to u̇ with respect to the norm
‖ · ‖∞. A careful inspection of the proof shows that for sufficiently small τj only
the condition number ρ̄[a, b] of the problem and the stability constant of the
interpolation formula determine the corresponding constant C(ρ̄). In particu-
lar, C(ρ̄) is independent of ‖u(p+1)‖, τj , and g. The error bounds (27) and (28)
are now a consequence of Jackson’s Theorem (see e.g. [15]) on the best uniform
approximation of smooth functions by polynomials.

For Gauss collocation this result can be obtained by careful analysis of the
proof of Theorem 3.1 in [6]. This theorem states in (d) that for a fixed u ∈ Cp+1

the errors u̇j − u̇ and uj − u are bounded by Cτp
j , which is not sufficient for

our purpose, as C is not specified accurately enough. However, Theorem 3.1 is
proven via the abstract Lemma 3.1 in [6], which again relates the collocation
error to the best polynomial approximation to u̇ (cf. part (d) of the conclusion).
The corresponding constant is specified at the end of the proof of this lemma
and obviously does not depend on ‖u(p+1)‖, τj , and g by the assumptions of
the lemma, verified in the proof of Theorem 3.1. Now Jackson’s Theorem again
yields (27) and (28).

Lemma 3.1 provides us with a whole spectrum of error estimates. In classical
convergence considerations, the strongest possible regularity assumption p = s
is chosen to obtain the highest possible order of convergence for a fixed, smooth
solution u. A refined analysis based on these results yields even higher orders of
uniform convergence uj → u together with superconvergence at the coarse grid
points.

Here, without restricting the Newton iterates a priori to some smoother
subset W ∗ as has been done in [2, 9], we need to establish upper bounds for
the approximation errors uniformly for all right hand sides in a bounded set in
W 1,∞ the low regularity of which impedes higher order approximation results.
Therefore we will use the weakest possible regularity assumption p = 1 in the
following and obtain estimates of order O(τ) for δj and σj .

Theorem 3.2. Assume there is a bounded set D ⊂ W 1,∞ and a twice conti-
nously differentiable function f , such that the linear boundary value problem

u̇(t)− f ′(x(t))u(t) = g(t)
Au(a) + Bu(b) = 0

is uniquely solvable and uniformly well conditioned in x ∈ D. Then the following
holds:

I. There is a constant M1 < ∞ such that for Gauss and Gauss-Lobatto
collocation (23) holds with

δj = M1τj

for all xj ∈ D ∩Xj .

II. If f ′′ is also Lipschitz continuous and (2) holds for xj , yj , yj +vj ∈ D∩Xj,
there is an M2 < ∞ such that (24) holds with

σj = M2τj .

As will be made clear in the proof, these estimates cannot be improved
substantially in a straightforward way.
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Proof of Theorem 3.2. In the following argumentation the notation f, f ′, f ′′ will
be used both for the functions and the corresponding superposition operators.
In [17] Section 2.4 it is shown that this identification is allowed in the context
of our norm ‖ · ‖, as boundedness and Lipschitz continuity are inherited from
the function to the corresponding superposition operator.

First we derive (14) for δj . Let ∆x satisfy F ′(xj)∆x = −F (xj). Then w :=
xj + ∆x satisfies

ẇ − f ′(xj)w = −f ′(xj)xj + f(xj). (29)

The right hand side is uniformly bounded in xj ∈ D due to the uniform bound-
edness of D and the continuity of f and f ′. Consequently ‖w‖W 1,∞ is uniformly
bounded in xj ∈ D, since the condition number of the BVP is bounded.

For the approximation error for the Newton correction we obtain

‖∆x−∆xj‖W 1,∞ = ‖(xj + ∆x)− (xj + ∆xj)‖W 1,∞ = ‖w − wj‖W 1,∞ ,

with wj as the approximate solution of (29) obtained by collocation. To estimate
‖w − wj‖W 1,∞ by application of Lemma 3.1 for p = 1 we calculate

‖ẅ‖ =
∥∥ d

dt (f ′(xj)w − f ′(xj)xj + f(xj))
∥∥

=
∥∥ d

dt (f ′(xj)∆x + f(xj))
∥∥

= ‖f ′′(xj)[ẋj ,∆x] + f ′(xj)∆ẋ + f ′(xj)ẋj‖
≤ ‖f ′′(xj)‖ ‖ẋj‖ ‖∆x‖+ ‖f ′(xj)‖ ‖ẇ‖,

which is uniformly bounded in W 1,∞ by a constant C(D), hence

δj = ‖∆x−∆xj‖W 1,∞ ≤ C(ρ̄)τj‖ẅ‖ ≤ C(ρ̄)C(D)τj .

In the second step we derive (21) for σj . Let now w be defined as the exact
solution of

ẇ − f ′(xj)w = (f ′(yj)− f ′(yj + vj)) vj

and wj its approximation. Then we compute:

‖ẅ‖ =
∥∥ d

dt

(
(f ′(yj)− f ′(yj + vj)) vj + f ′(xj)w

)∥∥
≤ ‖ (f ′(yj)− f ′(yj + vj)) v̇j + f ′′(yj)[ẏj , vj ]− f ′′(yj + vj)[ẏj + v̇j , vj ]‖

+ ‖f ′(xj)ẇ + f ′′(xj)[ẋj , w]‖
≤ ‖(f ′′(yj)− f ′′(yj + vj))ẏj‖ ‖vj‖+ ‖f ′′(yj + vj)v̇j‖ ‖vj‖

+ ‖f ′(yj)− f ′(yj + vj)‖ ‖v̇j‖+ ‖f ′(xj)‖ ‖w‖W 1,∞ + ‖f ′′(xj)ẋj‖ ‖w‖

≤ (Lf ′ + Lf ′′‖ẏj‖+ ‖f ′′(yj + vj)‖)‖vj‖2W 1,∞ + ‖f ′′(xj)‖ ‖ẋj‖)‖w‖W 1,∞

≤
(
C1 + ωC2

)
‖vj‖2W 1,∞ .

In the last step we used (2): ‖w‖W 1,∞ ≤ ω‖vj‖2W 1,∞ . With the same argumen-
tation as above Lemma 3.1 now yields (21) with σj ≤ M2τj .

Once Theorem 3.2 has been proved, we discuss briefly, why the estimates for
δj and σj cannot be improved by application of Lemma 3.1 for p > 1. For this
purpose, we would have to estimate ‖w(p+1)‖ (for both cases), which is possible
by computations similar to the ones performed above with stronger assumptions
on the smoothness of the right hand side. However, these estimates contain

13



higher piecewise derivatives of elements of D ⊂ Xj . These higher derivatives
can only be bounded by using inverse inequalities, which read

‖x(k)
j ‖ ≤ C( min

1≤i≤nj

τj,i)−(k−1)‖ẋj‖, k = 1, . . . , p.

Due to these inverse inequalities we would lose p − 1 powers of τ and end up
with O(τ) again. Moreover, this would force us to impose a quasi-uniformity
assumption on the sequence of meshes.

FEM for semilinear elliptic PDEs. Assume f : R → R is locally Lipschitz
continuously differentiable with

|f ′(x)− f ′(y)| ≤ L(1 + max(|x|, |y|))|x− y|.

This leads to the growth condition f = O(|x|3), which in turn implies that the
nonlinear superposition operator f generated by f maps H1

0 (Ω) continuously
into L2(Ω) on some convex polygonal domain Ω ⊂ Rd, d ≤ 3, via the embed-
ding H1

0 (Ω) ↪→ L6(Ω) (cf. [3, 12]). We define the continuous problem F as the
boundary value problem

F (x) = −div(κ∇x) + f(x) = 0, x ∈ H1
0 (Ω).

The discretizations Fj are provided by finite element approximations on shape-
regular triangulations Tj with mesh size τj = maxT∈Tj diam T . We consider
piecewise linear finite element spaces Xj ⊂ H1

0 (Ω) on the triangulations Tj .

Theorem 3.3. Assume there is some bounded set D ⊂ H1
0 (Ω) such that F ′(x) is

uniformly elliptic for all x ∈ D. Then there exist constants M1,M2 < ∞ depend-
ing only on D and the problem setting P = (Ω, κ, f), such that the Newton-FEM
discretizations Fj satisfy the Newton approximation condition (23) with

δj = M1τj

and the Lipschitz approximation condition (24) with

σj = M2τj

uniformly for all xj ∈ D ∩Xj.

Proof. To begin with, we prove the approximation condition (23). Let ∆x sat-
isfy F ′(xj)∆x = −F (xj) and let ∆xj be its FEM approximation. Returning
to equation (16) we notice that xk+1,k is more regular than ∆xk,k. Thus we
introduce w = xj + ∆x, which satisfies

−div(κ∇w)− f ′(xj)w = f(xj)− f ′(xj)xj ∈ L2(Ω)

and is therefore H2-regular (cf. [12]). Consequently,

‖wj − w‖H1 ≤ cτj‖w‖H2 ≤ cτj‖f(xj)− f ′(xj)xj‖L2

holds for its FEM approximation wj = xj +∆xj (cf. [4]). For the approximation
error ∆xj −∆x we now obtain

‖∆xj −∆x‖H1 = ‖(wj − xj)−∆x‖H1

= c‖wj − w‖H1

≤ cτj‖f(xj)− f ′(xj)xj‖L2 . (30)
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Exploiting the continuous imbedding H1(Ω) ↪→ L6(Ω) (cf. [12]) we estimate

‖f(xj)− f ′(xj)xj‖L2 =
∥∥∥∫ 1

t=0

(f ′(txj)− f ′(xj))xj dt
∥∥∥

L2

≤
∫ 1

t=0

L(1− t)‖(1 + |xj |)x2
j‖L2 dt

≤ L

2
(‖x2

j‖L2 + ‖x3
j‖L2)

=
L

2
(‖xj‖2L4

+ ‖xj‖3L6
)

≤ Lc(‖xj‖2H1 + ‖xj‖3H1)
≤ c

which, together with (30), confirms (14).
In the second step, we prove the Lipschitz approximation result (24). Define

w now by

F ′(xj)w = (F ′(yj + vj)− F ′(yj))vj = (f ′(yj + vj)− f ′(yj))vj ∈ L2(Ω).

Again, w is H2-regular, such that we obtain

‖wj − w‖H1 ≤ cτj‖(f ′(yj + vj)− f ′(yj))vj‖L2 .

Upon using Hölder’s inequality we conclude

‖(f ′(yj + vj)− f ′(yj))vj‖L2 ≤ L‖(1 + max(|yj |, |yj + vj |)2v4
j ‖

1/2
L1

≤ L‖(1 + max(|yj |, |yj + vj |))2‖1/2
L3
‖v4

j ‖
1/2
L3/2

= L‖1 + max(|yj |, |yj + vj |)‖L6‖vj‖2L6

= Lc‖vj‖2H1 ,

which proves (21).

Combining Theorem 2.2 and Lemma 2.4 with Theorem 3.3 we obtain asymp-
totic mesh independence for FEM approximations of semilinear elliptic equa-
tions.

FEM for strongly nonlinear elliptic PDEs. For strongly nonlinear PDEs
with a second order differential operator depending on the solution, the analytic
treatment of the approximation conditions (23) and (24) is considerably more
difficult. The global regularity of the right hand side is, in general, only H−1,
which results in sharp edges in the Newton correction. These bucklings, however,
coincide geometrically with the edges of the triangulation, such that the finite
element approximation quality does not deteriorate. This is indeed observed in
actual computation.

The regularity theory necessary for addressing such problems is beyond
the scope of the present paper. As a substitute, we give a numerical exam-
ple from [11], where the phenomenon of asymptotic mesh independence may be
studied.
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Example: Parametric minimal surface. Consider the variational problem

min
∫

Ω

√
1 + |∇u|2 dx

subject to the boundary conditions

u = cos(x) cos(y) on ΓD = ∂Ω\ΓN ,
∂u

∂n
= 0 on ΓN

on Ω = [−π/2, 0]2. The functional gives rise to the first and second order ex-
pressions

〈F (u), v〉 =
∫

Ω

(
1 + |∇u|2

)−1/2∇uT∇v dx,

〈F ′(u)v, w〉 =
∫

Ω

(
−

(
1 + |∇u|2

)−3/2∇wT (∇u∇uT )∇v

+
(
1 + |∇u|2

)−1/2∇wT∇v
)

dx.

We define two different problem settings by choosing

(a) ΓN = [−π/2, 0]× {0},

(b) ΓN = [−π/2, 0]× {0} ∪ {0} × [−π/4, 0].

Note that by symmetry, problem (a) represents a Dirichlet problem on a convex
domain, whereas the deliberate choice of boundary conditions (b) leads to a
Dirichlet problem on a highly nonconvex slit domain, on which no physically
meaningful solution exists.

The adaptive Newton-multilevel code Newton-KASKADE [10, 11] has
been run on both problems, providing affine invariant computational estimates
[ωj ] ≤ ωj on each mesh refinement level j. On each level, a few Newton steps
have been computed using the approximation from the level before, and the
maximum estimate encountered in these steps has been selected as [ωj ]. As can
be seen from Table 1, the Lipschitz constants for the well-defined problem (a)
remain bounded and rather independent of the refinement level, apart from some
fluctuation due to the finite sampling of ωj . In contrast to that, the estimates for
the Lipschitz constant of problem (b) are dramatically increasing by five orders
of magnitude. This indicates that the problem has finite dimensional solutions
on each of the successive meshes, each unique within the corresponding finite
dimensional Kantorovich ball with radius ρj ∼ 1/ωj ; however, these balls shrink
from radius ρ0 ≈ 1 to ρ12 ≈ 10−5. Frank extrapolation of this effect insinuates
the conjecture that there exists no continuous unique solution of the underlying
minimization problem.
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problem (a) problem (b)
j ]nodes [ωj ] ]nodes [ωj ]

0 4 1.32 5 7.5
1 7 1.17 10 4.2
2 18 4.55 17 7.3
3 50 6.11 26 9.6
4 123 5.25 51 22.5
5 158 20.19 87 50.3
6 278 19.97 105 1486.2
7 356 9.69 139 2715.6
8 487 8.47 196 5178.6
9 632 11.73 241 6837.2

10 787 44.21 421 12040.2
11 981 49.24 523 167636.0
12 1239 20.10 635 1405910.0
13 1610 32.93
14 2054 37.22

Table 1: Estimated Lipschitz constants [ωj ] on different refinement levels j.
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