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Abstract

The research on optimization of transient gas transport is still in the
early stages. The optimization model presented in this paper includes a
variety of different network elements. Especially compressors are described
in great detail, comparable to already existing models for the less complex
stationary case. In this paper, we concentrate on those parts of the net-
work, which contain the majority of active elements, i.e., elements for which
control decisions have to be taken, and are typically located at the inter-
section of major transportation pipelines. Due to the proximity of these
elements, connecting pipes are rather short. Therefore, we use a linear ap-
proximation of the equations describing the physics of gas flow in pipelines
and can formulate the optimization problem as a mixed-integer program
(MIP). The majority of the discrete decisions is determined using a spe-
cialized algorithm, which repeatedly solves a stationary variant of the MIP
model. Finally, we obtain a transient solution of the problem using a rolling
horizon approach.

1 Introduction

Throughout the past years, the mathematics of gas transport have been an in-
tensively studied topic. While natural gas was, is and will be one of the major
energy source in Europe, making the efficient and save transport a field of high
economical and political relevance, the task is also challenging from a mathemat-
ical point of view. On the one hand, the physics of gas flow are described by
the Euler Equations, a set of nonlinear hyperbolic partial differential equations
(PDEs), which yield even in simplified versions highly complex and computation-
ally challenging constraints. On the other hand, controlling the single elements
like valves or compressors to operate the overall network involves a vast amount
of discrete decisions, making the problem also hard from a combinatorial point
of view.

Historically, research focused first on the simulation of gas flow, i.e. dealing
with the partial differential equations given all the discrete decisions, which has
been studied for many decades already, see for example [3] and the references
therein. In the recent years, the optimization of gas transport including also the
combinatorial aspects gained more and more attention. In [21] a general overview
over optimization problems related to natural gas is given, which includes but
is not restricted to the transport of gas. Most of the corresponding literature
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so far considers the stationary gas transport problem, which searches for one
stable network state, making an algebraic description of the gas flow possible.
An overview of state-of-the-art approaches for the stationary case can be found
in [13] resp. [20], which consider a huge amount of element detail and large real-
world instances. The more challenging variant of the problem, which will also be
the subject of this paper, is the transient gas transport problem, where the goal
is to find a set of control decisions on the elements over a future time horizon.
Here, research is still in somewhat early stages.

One of the first publications on transient gas transport optimization was [6],
who are solving the problem of minimizing the compressor fuel costs. In their
approach a combination of mixed-integer (linear) problems (MIPs), in which the
non-linear constraints arising from discretizing the PDE constraints are approx-
imating with piece-wise linear functions, and non-linear problems (NLPs) are
solved in an alternating way to find a solution to the overall mixed-integer non-
linear problem (MINLP) within a chosen approximation error. Other approaches
tackle transient transport optimization problems, but neglect the discrete nature
of some of the elements and therefore purely optimize over continuous variables,
i.e. solve NLP problems. We mention as example the work of [24] and [15], who
decide on the compression ratios of compressors, while minimizing again their fuel
consumption. Very recently a few more studies on transient gas network opti-
mization has been published. In [10] a specialized branching rule is used to solve
a MINLP formulation of the problem with the objective to minimize fuel con-
sumption. Another approach combining different specialized solving techniques
is presented in [9], where iteratively a MIP model and NLP model are solved
for each single time step, which is achieved by using a special discretization of
the Euler Equations. The objective is here to comply with a set of future pres-
sure and flow values given at the boundary nodes. At last we mention [4] who
are considering the maximization of temporarily stored gas in the network while
maintaining a feasible transient control of the elements. They also introduce a
new discretization of the Euler Equations, which results in a formulation close to
the algebraic form of the stationary model and use this to obtain globally opti-
mal solutions. The problem is solved again by alternating between solving a MIP
model, which is obtained by replacing the non-linear constraints by piece-wise
linear function, and a NLP model, in which the discrete decisions from the MIP
are already fixed.

Because of the complexity of the overall problem, the approaches of the above
mentioned publications have all been tested on rather small instances in terms
of network sizes. Furthermore, the implemented models for the single elements
have been relatively simple compared to the amount of detail included in work
on the stationary problem like in [13], with the exception of the non-linear PDE
constraint pipelines. In contrast to this, we will study in this paper the problem of
transient gas network optimization featuring lot of different elements, which have
rather detailed substructures, comparable to previous stationary work. To do so,
we will concentrate on those network areas containing the majority of active ele-
ments, which are mainly the intersection areas of major transportation pipelines.
At these places the gas in compressed, regulated, and redirected depending in the
current needs. We call these network areas navi stations. Due to the proximity of
the elements in a navi station, pipes are very short and hence have a much smaller
impact on the overall model. Therefore, we restrict ourselves to a linear and thus
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simple pipe model introduced in [11]. For each navi station we are given an initial
state as well as future demands in terms of inflow and pressure at the boundaries.
The goal is then to find a feasible control of all the network elements over time,
which can be interpreted as a recommendation for network operators on how to
control the network in the future, similar to a navigation system. The overall
objective is to meets the demands as best as possible while trying to minimize
the number of needed control changes in the single elements.

The rest of the paper is organized as follows: In Section 2 we will describe the
mathematical models for all used elements and simultaneously formulate a corre-
sponding MIP model. The preprocessing needed to convert the given compressor
data into a linear description of the feasible operating range will be introduced in
Section 3. However, even when using a linearized pipe model, solving the result-
ing MIP is quiet challenging. We therefore propose a different solution approach
in Section 4 based on solving slightly adjusted versions of the presented MIP. We
finish with the conclusion in Section 5.

2 Mathematical model

As usual in gas network optimization the gas network is modelled as a directed
graph G = (V,A) in which the arcs A represent the different network elements
and nodes V represent the junctions of arcs. We split A into individual sets
A = Api∪Ava∪Ars∪Arg∪Acs for the network elements considered in this paper,
i.e. pipes, resistors, valves, regulators, and compressor stations respectively. Note
that regulators are also often named control valves in the literature, e.g. see [7] or
[13]. In a similar fashion we split the node set V = Vb ∪ V0 into boundary nodes
and inner nodes respectively. Here, boundary nodes Vb represent those having
inflow and pressure level demands value for the future time steps. We define the
set of considered time steps as T0 := {0, . . . , k} where T := T0 \{0} are the future
time steps having demand conditions at boundary nodes. Associated with each
time step t is a value τ(t) representing the time difference in seconds from t to
the initial time step 0 representing the time of the initial state.

The most important quantities we will consider to describe the gas flow are
the pressure pv,t at each node v ∈ V and time t ∈ T0 as well as the flow qa,t
from l to r on each non-pipe arc (l, r) = a ∈ A \ Api and time t ∈ T0. For a
pipe (l, r) = a ∈ Api, we have two flow variables ql,a,t representing the inflow
into the pipe at end node l and qr,a,t representing the outflow out of the pipe at
end node r, similar to the model of [7] on pipes or the one of [6] on all arcs. As
last important flow quantity we have the inflow at a boundary node dv,t entering
the network for each v ∈ Vb and t ∈ T0. Although we are given flow demands
for the future, we allow to deviate from these and hence have to have a variable
capturing the actual inflow value.

We assume that there are bounds on all stated quantities, so upper and lower
bounds p̄v,t and

¯
pv,t on the pressure at each node v ∈ V, upper and lower bounds

q̄v,t and
¯
qv,t on the flow on each non-pipe arc a ∈ A \Api respectively the inflow

and outflow of each pipe a ∈ Api as well as upper and lower bounds d̄v,t and

¯
dv,t on the inflow at each boundary node v ∈ Vb to exist for each point in time
t ∈ T0. Note that while the pressure is always positive the flow can be negative
as well representing flow in the opposite direction, for example negative inflow at

3



a boundary node represents flow out of the network at this node.
In the following we will describe each of the elements and at the same time

introduce a MIP formulation in terms of variables and constraints. This MIP will
not be solved directly, but is the basis for the three variants used in our overall
solution algorithm described in Section 4.

2.1 Pipes

Gas flow in pipelines is for operational purposes modeled as one-dimensional flow
in a straight line pipe of cylindric shape. When assuming a constant gas tem-
perature T , the isothermal Euler Equations[18] consisting of Continuity Equation
and Momentum Equation describe this flow in a pipe a as

∂ρ

∂t
+
∂(ρv)

∂x
= 0 (1)

∂(ρv)

∂t
+
∂p

∂x
+
∂ρv2

∂x
+

λa
2Da
|v|vρ+ gsaρ = 0. (2)

Here x denotes the position in the pipe in meters, t the current time in seconds,
ρ the density of the gas, v its velocity, Da the diameter of the pipe and g the
gravitational acceleration and λa the friction factor of the pipe, which we assume
to depend on pipe characteristics only, see Section 2.1.1. With sa ∈ [−1, 1]
we denote the slope of the pipe, i.e. the quotient of the acceleration increase
between the pipes endpoints and the length La of the pipe. In order to complete
the equation system describing the state variable p, ρ, and v we add the equation
of state for real gases establishing the connection between p and ρ as

p = ρRsTza. (3)

The two new quantities are the specific gas constant Rs, depending on the molar
mass of the gas mixture which we assume to be a given constant, and the com-
pressibility factor za, which we again assume to be constant and only to depend
on pipe characteristics, see again Section 2.1.1.

In the following, we will drop the terms ∂t(ρv) and ∂x(ρv2) as they contribute
only little to the equation under normal operating conditions [7][18]. In addition,
we reformulate the pipe flow equations in terms of the quantities we are interested
in, i.e. pressure and mass flow q, which is defined using the cross sectional area
Aa = D2

a
π
4 of the cylindric pipe a as

q = Aaρv. (4)

Then we can write (1) and (2) as

∂p

∂t
+
RsTza
Aa

∂q

∂x
= 0

∂p

∂x
+
λaRsTza
2DaA2

a

|q|q
p

+
gsa

RsTza
p = 0.

For discretization, we use the implicit box scheme introduced by [6], resp. [14],
where the time domain is the already defined set of time steps T0 and the space
is discretized along the length La of pipe a = (l, r). Using the above introduced
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notation of flow into and out of a pipe as well as the function τ we are able to
write the discretized model for two adjacent time point t0 and t1 as

pl,t1 + pr,t1 − pl,t0 − pr,t0 +
2RsTza(τ(t1)− τ(t0))

LaAa
(qr,a,t1 − ql,a,t1) = 0 (5)

pr,t1 − pl,t1 +
λaRsTzaLa

4DaA2
a

(
|ql,a,t1 |ql,a,t1

pl,t1
+
|qr,a,t1 |qr,a,t1

pr,t1

)
+
gsaLa

2RsTza
(pl,t1 + pr,t1) = 0. (6)

In one final step, we will linearize the Momentum Equation (6) as proposed in
[11] by fixing the absolute velocity |v|, which is according to (3) and (4) defined

as |v| = |RsTzaAa

q
p | = RsTza

Aa

|q|
p , to a predefined constant in the friction term.

We do this to be able to model the pipe flow in a MIP context. Also, since
navi stations are usually clustered in a small geographic area pipes are relatively
short in comparison to the rest of the network. Since the friction based pressure
reduction is depending on the pipe length the corresponding term has much less
impact than usual making the relative error stated in [11] less relevant for the
overall accuracy. However, we discuss further aspects of how to deal with this
error in the outlook. Using the constant absolute velocity in the friction term,
the final equations for each pipe (l, r) = a ∈ Api and all adjacent time points
t0, t1 ∈ T0 are:

pl,t1 + pr,t1 − pl,t0 − pr,t0 +
2RsTza(τ(t1)− τ(t0))

LaAa
(qr,a,t1 − ql,a,t1) = 0 (7)

pr,t1 − pl,t1 +
λaLa

4DaAa
(|vl,a|ql,a,t1 + |vr,a|qr,a,t1)

+
gsaLa

2RsTza
(pl,t1 + pr,t1) = 0 (8)

The constant |vx,a| for one of the end nodes x ∈ {l, r} of pipe a = (l, r) is
determined based on the flow and pressure values of the given initial state, i.e.

|vx,a| =
RsTza
Aa

|qx,a,0|
px,0

.

2.1.1 Friction and compressibility factor

The friction factor λ, more specific the Darcy–Weisbach friction factor, describes
the pressure drop on a pipe a caused by frictional forces and depends on the
diameter Da and integral roughness ka of the pipe, as well as the current flow q
and the dynamic viscosity η of the gas. For turbulent gas flow the most accurate
description is given by the implicit Colebrook-White equation[5][8]. There exist
a series of different explicit approximation formulas typically depending on the
Reynolds Number, which describes the amount of turbulence of the flow. We use
the formula of Nikuradse[16][8], which assumes infinite turbulence and makes the
friction factor only depending on the constant diameter Da and integral roughness
ka of the pipe:

λa =

(
2 log10

(
Da

ka

)
+ 1.138

)−2
.
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For the compressibility factor z we use the approximation formula developed
by Papay[19][22], which by being valid up to 150 bar fits well to our considered
pressure range and is given as

z(p) = 1− 3.52
p

pc
e−2.26

T
Tc + 0.247

(
p

pc

)2

e−1.878
T
Tc .

Apart from the pressure p and gas temperature T it depends on the gas mixture
depended pseudo-critical pressure pc and temperature T c, which we assume to
be given constants. The constant compressibility factor za per pipe a = (l, r) is
then determined as average of the corresponding values derived from the initial
state pressure values of the pipes end nodes, i.e. by za = (z(pl,0) + z(pr,0))/2.

2.2 Resistors

Resistors are artificial elements to model points of high friction in the network
caused by all sorts of special elements like for example measuring equipment or
complex local piping, which is not captured by the other considered element types
but needs to be taken into account. The pressure drop induces by a resistor arc
(l, r) = a ∈ Ars for time t ∈ T is defined by the Darcy-Weisbach equation[8]:

pl,t − pr,t =
ζaRsTza

2A2
a

(
|qa,t|qa,t
pin,t

)
Here the friction factor is called drag factor ζa of the resistor and is given as a
dimensionless parameter of the element. The compressibility factor za is deter-
mined in the same way as described for pipes, see Section 2.1.1. Also note, that
the formula is flow direction dependent, where pin,t is either pl,t or pr,t depending
on qa,t being positive or negative (for qa,t = 0 holds pl,t = pr,t).

We use the same simplification for resistors as we already used for pipes and

linearize the model by assuming a constant velocity |v| = RsTza
Aa

|q|
p , which also

includes the flow direction dependent pressure value. The equations for each arc
(l, r) = a ∈ Ars and time t ∈ T then reads

pl,t − pr,t =
ζa|va|
2Aa

qa,t. (9)

The constant velocity value is again calculated based on the initial element state
and is defined as average of the two velocities using the pressure from the corre-
sponding resistors end node as

|vl| =
RsTza
Aa

|qa,0|
pl,0

|vr| =
RsTza
Aa

|qa,0|
pr,0

|va| =
|vl|+ |vr|

2

2.3 Valves

Valves are active elements allowing to dynamically connect or disconnects two
nodes by being open or closed respectively and thereby changing the network
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topology. This is captured by the binary variable mop
a,t. The consequence of this

decision in terms of no flow for a closed valve and equal pressure at the end nodes
of an open valve can for a valve arc (l, r) = a ∈ Ava and some time t ∈ T be
written as

pl,t − pr,t ≤ (1−mop
a,t)(p̄l,t −

¯
pr,t) (10)

pl,t − pr,t ≥ (1−mop
a,t)(

¯
pl,t − p̄r,t) (11)

qa,t ≤ (mop
a,t)q̄a,t (12)

qa,t ≥ (mop
a,t)

¯
qa,t. (13)

2.4 Regulators

A regulator or control valve is a valve with variable opening degree, used to
reduce the pressure in flow direction. Like a regular valve it has the capability of
changing the network topology by disconnecting its two end nodes in the closed
mode. In addition it can be completely open, which is called the bypass mode,
and in active mode reduce the pressure. For each mode there is a binary variable,
from which exactly one is equal to 1 at a time, i.e. the regulator always has to
have a unique mode

1 = mcl
a,t +mby

a,t +mac
a,t ∀a ∈ Arg ∀t ∈ T (14)

The implications of each of the modes can be modeled by the following constraints
for each arc a ∈ Arg and all times t ∈ T as

pl,t − pr,t ≤ +(1−mby
a,t)(p̄l,t −

¯
pr,t) (15)

pl,t − pr,t ≥ +(1−mby
a,t −mac

a,t)(
¯
pl,t − p̄r,t) (16)

qa ≤ (1−mcl
a,t)q̄a,t (17)

qa ≥ 0. (18)

Note that the flow is always positive, even in bypass mode, since regulators have
a flap trap, which prevent flow against the topological orientation.

2.5 Compressor stations

The final of the five different element types are the compressor stations. They
are the most important elements as they increase the pressure in the network
and thereby control the flow of the gas in the network. However, they are also
the most complex elements having an own substructure and a lot of operation
restrictions.

Structure of a compressor station Similar to regulators a compressor sta-
tion (l, r) = a ∈ Acs has three different modes: Bypass and closed, which work in
the same way as the corresponding modes for regulators, and the active mode, in
which the pressure is increased in flow direction. For the active compression, the
compressor station has a set of associated compressor units Ua to use. These are
the actual pressure increasing elements, each with a separate operating range. In
the compressor station, these compressor units can be combined in series and/or
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parallel to allow reacting to situations of different compression requirements. The
set of all allowed series-parallel compressor unit combinations is called the set of
configurations Ca for a compressor station a ∈ Acs, from which exactly one active
configuration has to be chosen if the compressor station is in active mode. For
each of these configurations c ∈ Ca, we create a polytope in the space (pl, pr, q)
describing the feasible operating range of the compressor station using configura-
tion c. This polytope is described as a set of hyperplanes Hc = {(w, x, y, z) ∈ R4}
encoding inequalities of the form w · pl + x · pr + y · q + z ≤ 0. The creation of
the feasible operating range of the configurations of the compressor stations is
described in Section 3.

Compressor station model To model the above described constraints we use
a disjunctive formulation, whose LP relaxation was proved to be equal to the con-
vex hull of its feasible points and also to be the compactest possible formulation
for the convex hull in terms of number of constraints and variables[1][2]. For this
we introduce for each configuration c ∈ Ca of a compressor station (l, r) = a ∈ Acs

as well as the bypass and closed mode corresponding binary ”selection” variables
mcf
c,a,t, m

by
a,t, and mcl

a,t respectively and in addition a corresponding separate set
of pressure and flow variables. The activation variables will force the pressure
and flow variable of all not selected configurations or modes to be zero and only
enforce the constraints of the selected configuration or mode. The introduced
pressure and flow variables are the following ones:

pbya,t qbya,t bypass mode variables

pl-cla,t pr-cla,t closed mode variables

pl-cfc,a,t pr-cfc,a,t qcfc,a,t ∀c ∈ Ca configuration variables

Note that we only have one p value for bypass mode, since here pl = pr holds. Also
there is no q variable for the closed mode, since q = 0 holds in this case anyway.
Furthermore, all introduced variables have bounds equal to the corresponding
original pressure and flow bounds p̄l,t,

¯
pl,t, p̄r,t,

¯
pr,t, q̄a,t,

¯
qa,t of the compressor

station (l, r) = a ∈ Acs, possibly enlarged to include zero. We indicate these
bounds by the variable symbol combined with an overscore resp. underscore.
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We are now able to state the constraints as for all (l, r) = a ∈ Acs and t ∈ T :

1 =
∑
c∈Ca

mcf
c,a,t +mby

a,t +mcl
a,t (19)

pl,t = pbya,t + pl-cla,t +
∑
c∈Ca

pl-cfc,a,t (20)

pr,t = pbya,t + pr-cla,t +
∑
c∈Ca

pr-cfc,a,t (21)

qa,t = qbya,t +
∑
c∈Ca

qcfc,a,t (22)

¯
pl-cfc,a,tm

cf
c,a,t ≤ pl-cfc,a,t ≤ p̄l-cfc,a,tm

cf
c,a,t ∀c ∈ Ca (23)

¯
pr-cfc,a,tm

cf
c,a,t ≤ pr-cfc,a,t ≤ p̄r-cfc,a,tm

cf
c,a,t ∀c ∈ Ca (24)

¯
qcfc,a,tm

cf
c,a,t ≤ qcfc,a,t ≤ q̄cfc,a,tmcf

c,a,t ∀c ∈ Ca (25)

¯
pbya,tm

by
a,t ≤ pbya,t ≤ p̄

by
a,tm

by
a,t (26)

¯
qbya,tm

by
a,t ≤ qbya,t ≤ q̄

by
a,tm

by
a,t (27)

¯
pl-cla,tm

cl
a,t ≤ pl-cla,t ≤ p̄l-cla,tm

cl
a,t (28)

¯
pr-cla,tm

cl
a,t ≤ pr-cla,t ≤ p̄r-cla,tm

cl
a,t (29)

w · pl-cfc,a,t + x · pr-cfc,a,t + y · qcfc,a,t + zmcf
c,a,t ≤ 0 ∀(w, x, y, z) ∈ Hc ∀c ∈ Ca (30)

Note that the underscore and overscore variables represent lower bound and upper
bound values of the corresponding variables.

2.6 Nodes

The nodes represent no technical elements but rather establish the connections
between them. While the pressure coupling is realized by using the same pressure
variables of the nodes in the constraints of all incident arcs, the mass flow values
of the arcs are connected by the flow conservation in each node, meaning that the
sum of incoming flows should match the sum of outgoing flows resulting in the
constraints for all t ∈ T :∑

(u,v)=a∈Api

qr,a,t −
∑

(v,u)=a∈Api

ql,a,t

+
∑

(u,v)=a∈A\Api

qa,t −
∑

(v,u)=a∈A\Api

qa,t + dv,t = 0 ∀v ∈ Vb (31)

∑
(u,v)=a∈Api

qr,a,t −
∑

(v,u)=a∈Api

ql,a,t

+
∑

(u,v)=a∈A\Api

qa,t −
∑

(v,u)=a∈A\Api

qa,t = 0 ∀v ∈ V0 (32)

2.7 Navi station

In addition to the constraints imposed by the single elements used in the network,
also the navi station itself has a certain set of restrictions to the set of feasible
solutions.
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Navi station structure Most important are the operation modes O of the navi
station from which exactly one has to be selected at each time point, and which
determine the modes and configurations of all valves and compressor station and
thereby prescribe the controlling capabilities. Note that not all possible mode
combinations of the different elements have to be valid operation modes of the
navi station. In addition to the operation mode a flow direction of the navi
station has to be chosen from the set of flow directions of the navi station F . The
restrictions here are, that each flow direction of the station prescribes the flow
patterns in terms of inflow, outflow or no flow over the boundary nodes of the
station, which has to match the actual flow patterns, and that the flow direction
has to fit to the selected operation mode of the navi station, where the set of
feasible operation mode flow direction pairs is OF .

Operation modes model We introduce binary variables mom
o,t for each o ∈ O

and t ∈ T0 representing if the operation mode has been selected, resp. if the
navi station in the given operation mode at this point in time. Furthermore we
define the following function M(o, a) mapping operation modes to the modes and
configurations they define for valves and compressor stations:

M(o, a) := x where x is the mode or configuration of arc a

in operation mode o ∀o ∈ O ∀a ∈ Ava ∪ Acs

with x ∈ {“op”, “cl”} if a ∈ Ava

x ∈ {“by”, “cl”} ∪ Ca if a ∈ Acs

Note, that we assume w.l.o.g. that all valves to be determined by the navi station
operation modes. In really there are also valves, whose mode is already given over
time and cannot be changed. However, these can be handled by preprocessing
and either shrunken for open valve or just removed for closed ones.

Using M(o, a) we can then state the operation mode related constraints for
all t ∈ T : ∑

o∈O
mom
o,t = 1 (33)

mop
a,t =

∑
o∈O:M(o,a)=“op”

mom
o,t ∀a ∈ Ava (34)

mby
a,t =

∑
o∈O:M(o,a)=“by”

mom
o,t ∀a ∈ Acs (35)

mcl
a,t =

∑
o∈O:M(o,a)=“cl”

mom
o,t ∀a ∈ Acs (36)

mcf
c,a,t =

∑
o∈O:M(o,a)=c

mom
o,t ∀c ∈ Ca ∀a ∈ Acs (37)

Operation mode unavailability Certain navi station operation modes are
not available at specific points in time. The basis for this is the non-availability
of compressor units over time, which is part of the model input data.

As explained in Section 2.5, a configuration c ∈ Ca of some compressor sta-
tion a ∈ Acs represents the series and/or parallel combination of a subset of the

10



compressor stations compressor units. Hence, the unavailability of a certain com-
pressor unit at time t results in the unavailability of all configurations which use
this unit. On the next level, each navi station operation mode defines the mode
and (for the active mode) the configuration of each compressor station in the navi
station. Hence, all navi station operation modes using a configuration for a com-
pressor station which is unavailable for time t will be unavailable for t, too. To
implement this in the model, we just fix the variables mom

o,t for the corresponding
operation mode o and time points t to zero, i.e. remove them from the model.

The unavailability of a compressor unit may not be aligned with the set of
discrete time points T0, i.e. the unavailability period may start or stop in between
two adjacent time points. To be able to tell which of the two points is then effected
by this, we have to establish an interpretation for the operation mode of a navi
station between two time steps. Therefore, we define that if a navi station has the
operation mode A at the discrete time point t, then we also assume the station
to have operation mode A in the following time interval up to the next discrete
time point t+ 1.

From this definition follows, that if a navi station operation mode is not avail-
able for some t ∈ (k, k + 1) with k, k + 1 ∈ T0, then the station mode is not
available for time k but potentially for time k + 1. Since for time t ∈ (k, k + 1)
the active mode is determine by the time k, we only have to mark it unavailable
there.

Operation mode transition times If the operation mode of a navi station
is changed from mode A to some other mode B, the transition takes a given
amount of time θ(A,B) which is given for each possible combination of operation
modes as part of the input data. While in transition between the two modes, the
navi station acts as follows: Assume the transition starts at time t0, then for t ∈[
t0, t0 + θ(A,B)

2

)
the station uses mode A while for t ∈

[
t0 + θ(A,B))

2 , t0 + θ(A,B)
)

the station uses mode B. In other words, the station stays in mode A until
reaching the middle of the transition period and then changes to mode B. While
being in transition, the whole transition period is blocked for other changes, i.e.
two transition periods should not overlap. Since we are only able to change
navi station operation modes at discrete time points, we assume that for each
transition the middle point is in T0. This is also in line with our interpretation of
navi station operation modes in between discrete time points.

In Figure 1 we see an example of a navi station mode sequence with corre-
sponding transition times. The time points tX represent the first t ∈ T0 in which
station mode X is active, which is according to the interpretation above also the
first discrete time point t in which X is active. In this example, there would be
a conflict in the transition times θ(C,D) from mode C to mode D and θ(D,E)
from mode D to mode E, since the two time periods overlap. Note that this is
true, although for each single transition period the navi station has the correct
operation mode for each point in time, i.e. first mode in the first half of the
period and the second mode in the second half.

We will not cover the transition time restrictions in the MIP model, but will
make sure our solutions respect these in a different way, see Section 4.2. For
this we only need a way to check for a given sequence of station modes if all
the transition times are valid, i.e. the corresponding periods do not overlap,

11



Time
tB tC tD tEA B C D E

A→ B

B → C

C → D

D → E

Figure 1: Transition time example with 5 station modes and 4 transitions, from
which two are in conflict. The time point tX represent the first discrete time
point in T0 in which mode X is active.

which we do as follows: For each navi station operation mode in the sequence,
we check if the time of the mode being active is at least as big as the sum of
adjacent transition time parts, i.e. the sum of half the time of the transition into
that mode and half of the time of the transition out of that mode. In the given

example, we would have to check for mode C if τ(tD)− τ(tC) ≥ θ(B,C)
2 + θ(C,D)

2
holds, where τ(t) represent the time different of a time step t to the initial state
time. If yes, the transition periods can never overlap, since they are centered
around the time points in which the mode change happens.

Note, that for the last mode in the sequence, we do not need to do any checks
at all. Here, we do not know how long the station mode is going to be active in
the future and assume it is active long enough to comply with the given transition
time, to have the possibility to apply navi station mode changes also at the very
last time step. For the first mode, a similar assumption would be too optimistic,
since then the desired navi station mode change would have already been triggered
before we even start our time horizon. However, there is no known transition into
the first mode, so we only have to check if half of the time of the transition into
the next mode fits into the active period of the first one.

Flow directions model Similar to the ones for operations modes, we also
introduce binary variables mfd

f,t representing the selection of flow direction f ∈
F at time t ∈ T0. Furthermore, we have to state the connection between the
chosen flow direction and the actual boundary node inflow pattern. Therefore,
we represent each flow direction f as tuple of the set of boundary nodes having
inflow into the station f+ and the set of boundary nodes having outflow out of
the station f−. Hence, using the power set P a flow direction f is defined as

(f+, f−) = f ∈ F ⊆ P(Vb)× P(Vb) where f+ ∩ f− = ∅

Note that if v 6∈ f+ and v 6∈ f− for flow direction (f+, f−) the inflow of node v
is zero.

Using the inflow variable dv,t for boundary node v and time t we can define
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the flow direction constraints for each t ∈ T as:∑
f∈F

mfd
f,t = 1 (38)

mom
o,t ≤

∑
(o,f)∈OF

mfd
f,t ∀o ∈ O (39)

dv,t ≥ (1−
∑

f=(f+,f−)∈F :v 6∈f−

mfd
f,t)¯

dv,t ∀v ∈ Vb (40)

dv,t ≤ (1−
∑

f=(f+,f−)∈F :v 6∈f+

mfd
f,t)d̄v,t ∀v ∈ Vb (41)

Flow direction exit pressures Apart from the consequences the flow direc-
tion choice has onto the corresponding boundary node inflows, there is also an
upper pressure bound p̄exitv given for each boundary node v ∈ Vb, which is only
active if the node is in the outflow set of the currently active flow direction, i.e.
serving as exit of the navi station. The corresponding constraint is the following
for each time t ∈ T

pv,t ≤ p̄exitv + (1−
∑

f=(f+,f−)∈F :v∈f−

mfd
f,t)(p̄v,t − p̄exitv ) ∀v ∈ Vb (42)

Flow direction conditions As last constraints concerning flow directions,
there exist in some navi stations a special set of conditions W concerning the
flow over sets of boundary nodes, which have to be met for a flow direction to be
active. There are two variants of conditions, which we state for ∼∈ {≥,≤} being
one of the supported mathematical operators as:

Flow value conditions in which the condition w = (f,Vw1 ,∼,Mw) states that
the flow over a set of boundary nodes Vw1 has to be smaller resp. bigger
than a given constant Mw if f is selected

Comparison conditions in which the condition w = (f,Vw1 ,∼,Vw2) states
that the flow over a set of boundary nodes Vw1 has to be smaller resp.
bigger than the flow over a second set of boundary nodes Vw2 if f is selected

Note, that the flow over a set of boundary nodes Vw for time t is defined as∑
v∈Vw |dv,t|, which is potentially a non-linear expression due to the absolute

value. However, each boundary node set Vw which is part of some w ∈ W is
known to be either a subset of f+ or a subset of f− of the corresponding flow
direction (f+, f−). For this reason, we always know the sign of the flow over Vw
in advance and hence using the following function definition for easier notation

sgn : F × Vb → {−1, 1} ,
(
(f+, f−), v

)
→

{
1 if v ∈ f+

−1 if v ∈ f−

we can write the flow value conditions for each t ∈ T as∑
v∈Vw1

sgn(f, v)dv,t ≥Mw + (1−mfd
f,t)C1 ∀(f,Vw1 ,≥,Mw) ∈ W (43)∑

v∈Vw1

sgn(f, v)dv,t ≤Mw + (1−mfd
f,t)C2 ∀(f,Vw1 ,≤,Mw) ∈ W (44)
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while the comparison conditions can be written for each t ∈ T as∑
v∈Vw1

sgn(f, v)dv,t −
∑
v∈Vw2

sgn(f, v)dv,t

≥ (1−mfd
f,t)C3 ∀(f,Vw1 ,≥,Vw2) ∈ W (45)∑

v∈Vw1

sgn(f, v)dv,t −
∑
v∈Vw2

sgn(f, v)dv,t

≤ (1−mfd
f,t)C4 ∀(f,Vw1 ,≤,Vw2) ∈ W. (46)

Here C1-C4 denote big-M constants, which can be set as follows:

C1 =
∑

v∈Vw1 :v∈f+

max(0,
¯
dv,t)−

∑
v∈Vw1 :v∈f−

min(0, d̄v,t)−Mw

C2 =
∑

v∈Vw1 :v∈f+

max(0, d̄v,t)−
∑

v∈Vw1 :v∈f−

min(0,
¯
dv,t)−Mw

C3 =
∑

v∈Vw1 :v∈f+

max(0,
¯
dv,t)−

∑
v∈Vw1 :v∈f−

−

 ∑
v∈Vw2 :v∈f+

max(0, d̄v,t)−
∑

v∈Vw2 :v∈f−

min(0,
¯
dv,t)


C4 =

∑
v∈Vw1 :v∈f+

max(0, d̄v,t)−
∑

v∈Vw1 :v∈f−

min(0,
¯
dv,t)

−

 ∑
v∈Vw2 :v∈f+

max(0,
¯
dv,t)−

∑
v∈Vw2 :v∈f−

min(0, d̄v,t)


2.8 Scenario and initial state

For the future we are given scenario values for the boundaries of the station in
terms of pressure and inflow. While we are given one pressure value p̂v,t per
boundary node v ∈ Vb for each future time point t ∈ T , the flow demands are
only given for sets of boundary nodes, the so called fence groups of the navi
station, which form the set FG. For each set g ∈ FG, which can also consist of
only a single boundary node, and each future time point t ∈ T the sum of inflows
should be equal to the given demand value d̂g,t.

However, we do not require strict obedience of the given values p̂v,t and d̂g,t,
but instead allow to deviate from them, which in return will be punished in the
objective function. The deviation is captured in the slack variables σp+v,t and σp−v,t
for the positive resp. negative difference of the pressure value of boundary node v
at future time t from the given demand p̂v,t, as well as the variables σd+v,t and σd−v,t
capturing the positive and negative contribution to the difference of the inflow
demand d̂g,t of fence group g ∈ FG of each boundary node v in the fence group
g and each future time step t.

The described relations can be modeled for each future time step t ∈ T as:

p̂v,t = pv,t − σp+v,t + σp−v,t ∀v ∈ Vb (47)

d̂g,t =
∑
v∈g

(
dv,t − σd+v,t + σd−v,t

)
∀g ∈ FG (48)
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The second set of prescribed values are those of the initial state. Here we are
given values for the initial pressures pv,0 for each node v ∈ V, the in- and outflow
values ql,a,0 and qr,a,0 for each pipe (l, r) = a ∈ Api, the flow values qa,0 for each
non-pipe arc a ∈ A\Api, as well as the modes of all valves, regulators, compressors
stations, the corresponding configuration for all active compressor stations and
the operation mode of the navi station itself, which determine the values of the
variables mop

a,0, mby
a,0, mcl

a,0, mac
a,0 for each corresponding arc a, the values of mcf

c,a,0

for each compressor station a ∈ Acs and corresponding configuration c ∈ Ca as
well as the values mom

o,0 for each navi station operation mode o ∈ O. All these
variables are actually parameters of the model and fixed to the corresponding
value.

2.9 Objective

As already describe above, the objective function should punish deviation from
the given future scenario, while simultaneously favor those solutions with a stable
control of the single elements. While the first part can easily be described by using
the slack variables introduced in Section 2.8, we still need to define a measure
for the stability. To do so, we first quantify the discrete changes of the control in
binary variables, i.e. the change of the navi station into a new operation mode
at time t in variable δomt as well as the change into a new mode of regulator
r at time t in variable δrga,t. Furthermore, we capture the start of compressor
unit u at time t in the variable δusu,t, since starting a compressor is a very time
and energy intensive action and should therefore be avoided if possible. The
mode changes of valves and compressor stations are not tracked separately, since
each of the elements can only change its mode by changing the operation mode
of the whole navi station. When denoting by Cu the set of configurations of
the containing compressor station which uses compressor unit u, we enable the
described variable behavior using the following constraints for each future time
step t ∈ T :

δomt ≥ mom
o,t −mom

o,t−1 ∀o ∈ O (49)

δomt ≤ 2−mom
o,t −mom

o,t−1 ∀o ∈ O (50)

δrgr,t ≥ mcl
r,t −mcl

r,t−1 ∀r ∈ Arg (51)

δrgr,t ≤ 2−mcl
r,t −mcl

r,t−1 ∀r ∈ Arg (52)

δrgr,t ≥ m
by
r,t −m

by
r,t−1 ∀r ∈ Arg (53)

δrgr,t ≤ 2−mby
r,t −m

by
r,t−1 ∀r ∈ Arg (54)

δrgr,t ≥ mac
r,t −mac

r,t−1 ∀r ∈ Arg (55)

δrgr,t ≤ 2−mac
r,t −mac

r,t−1 ∀r ∈ Arg (56)

δusu,t ≥
∑
c∈Cu

mcf
c,a,t −

∑
c∈Cu

mcf
c,a,t−1 ∀u ∈ Ua∀a ∈ Acs (57)

In order to even obtain a smooth operation for network situations without
discrete mode switching we will also add variables tracking the change of the
operation point of single elements, i.e. their corresponding changes in flow, in-
coming pressure and outgoing pressure. We do this for all elements with an actual
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operation point, i.e. regulators and compressor stations in active mode, while ig-
noring times in which the navi station operation mode or regulator mode has
just been changed. The variables δrg-pla,t , δrg-pra,t , δrg-qa,t representing changes of the
incoming pressure, outgoing pressure and flow of an active regulator a respec-
tively δcs-pla,t , δcs-pra,t , δcs-qa,t representing the corresponding value changes of an active
compressor station a can be established using the following constraints for each
(l, r) = a ∈ Arg and each t ∈ T

pl,t − pl,t−1 ≤ δrg-pla,t + (mby
a,t +mcl

a,t + δrga,t)(p̄l,t −
¯
pl,t−1) (58)

pl,t−1 − pl,t ≤ δrg-pla,t + (mby
a,t +mcl

a,t + δrga,t)(p̄l,t−1 −
¯
pl,t) (59)

pr,t − pr,t−1 ≤ δrg-pra,t + (mby
a,t +mcl

a,t + δrga,t)(p̄r,t −
¯
pr,t−1) (60)

pr,t−1 − pr,t ≤ δrg-pra,t + (mby
a,t +mcl

a,t + δrga,t)(p̄r,t−1 −
¯
pr,t) (61)

qa,t − qa,t−1 ≤ δrg-qa,t + (mby
a,t +mcl

a,t + δrga,t)(q̄a,t −
¯
qa,t−1) (62)

qa,t−1 − qa,t ≤ δrg-qa,t + (mby
a,t +mcl

a,t + δrga,t)(q̄a,t−1 −
¯
qa,t) (63)

respectively for each (l, r) = a ∈ Acs and each t ∈ T

pl,t − pl,t−1 ≤ δcs-pla,t + (mby
a,t +mcl

a,t + δomt )(p̄l,t −
¯
pl,t−1) (64)

pl,t−1 − pl,t ≤ δcs-pla,t + (mby
a,t +mcl

a,t + δomt )(p̄l,t−1 −
¯
pl,t) (65)

pr,t − prl,t−1 ≤ δcs-pra,t + (mby
a,t +mcl

a,t + δomt )(p̄r,t −
¯
pr,t−1) (66)

pr,t−1 − pr,t ≤ δcs-pra,t + (mby
a,t +mcl

a,t + δomt )(p̄r,t−1 −
¯
pr,t) (67)

qa,t − qa,t−1 ≤ δcs-qa,t + (mby
a,t +mcl

a,t + δomt )(q̄a,t −
¯
qa,t−1) (68)

qa,t−1 − qa,t ≤ δcs-qa,t + (mby
a,t +mcl

a,t + δomt )(q̄a,t−1 −
¯
qa,t). (69)

Note that we needed to define the upper bound constraints for the discrete change
variables δomt and δrgr,t to allow them to be only if there really is a discrete change.
Otherwise it might have been possible to set the change variable to 1 although
there is no actual discrete change and thereby avoid high costs imposed by the
continuous change variables, which is not a desired behavior.

Finally, we are able to state our objective function, which minimizes the
weighted sum of the change variable and the slack variables defined in Section 2.8
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as

min objective :=∑
t∈T

( ∑
v∈Vb

wσ-p · (σp+v,t + σp−v,t ) + wσ-d · (σd+v,t + σd−v,t )

+ wom · δomt
+
∑
a∈Arg

wrg · δrga,t (70)

+
∑

u∈Ua,a∈Acs

wus · δusu,t

+
∑
a∈Arg

wrg-pl · δrg-pla,t + wrg-pr · δrg-pra,t + wrg-q · δrg-qa,t

+
∑
a∈Acs

wcs-pl · δcs-pla,t + wcs-pr · δcs-pra,t + wcs-q · δcs-qa,t

)
,

where the w∗ parameters denote the corresponding positive weights given to the
single quantities.

2.10 Final model

Putting everything together, we can formulate our problem in the following tran-
sient gas flow model P:

min (70)

s.t. ∀t ∈ T (7)− (8) ∀a ∈ Api

(9) ∀a ∈ Ars

(10)− (13), (34) ∀a ∈ Ava

(14)− (18), (51)− (56), (58)− (63) ∀a ∈ Arg

(19)− (22), (26)− (29), (35)− (36), (64)− (69) ∀a ∈ Acs

P (23)− (25), (37) ∀a ∈ Acs ∀c ∈ Ca
(30) ∀a ∈ Acs ∀c ∈ Ca ∀(w, x, y, z) ∈ Hc
(31), (40)− (42), (47) ∀v ∈ Vb

(32) ∀v ∈ V0

(33), (38)

(39), (49)− (50) ∀o ∈ O
(43) ∨ (44) ∨ (45) ∨ (46) ∀w ∈ W
(48) ∀g ∈ FG
(57) ∀a ∈ Acs u ∈ Ua

Note, that we apply the constraints only starting from time step 1 explicitly
excluding the initial time step 0. We do this, since the initial pressure and flow
values as well as the initial modes described in Section 2.8 are not guaranteed to
fit our model and just serve as a starting point for the calculations.
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3 Feasible operating range of compressor station
configurations

As already explained in Section 2.5 each compressor station arc a ∈ Acs has
an inherent substructure. It represents a set of compressor units Ua, which are
the actual compressing elements and can be combined in a series and/or parallel
fashion, to either allow for a higher compression ratio, a higher flow rate or a
mixture of both. The set of all feasible series-parallel combinations is called the set
of configurations Ca of a compressor station. For each of these configurations, we
will describe in this section how to obtain their polytope description given by the
set of hyperplanes Hc, which is used in the model as described in Section 2.5. The
polytope of a configuration is created based on the polytopes of the compressor
units, which unify the corresponding feasible operation ranges with a maximum
power restriction. Note that we drop the time index in this section for the ease
of notation.

3.1 Feasible operating range for a single compressor unit

A compressor unit is a combination of a single compressor machine (or just a com-
pressor), which increases the gas pressure in flow direction, and a corresponding
drive, providing the power needed to run the compressor. For each compressor
machine we are given a feasible operating range as polytope in the space (prpl , Q),
where the volumetric flow rate Q is given as

Q = q/ρl, with ρl =
pl

RsTza
.

Usually, the feasible operating range, sometimes also called “characteristic di-
agram” or “performance curve”, is given as area in the dimensions (Had, Q)
restricted by a set of possibly concave quadratic curves, see e.g. [8][17]. The
quantity Had denotes the specific change in adiabatic enthalpy and is defined as

Had = RsTza
κ

κ− 1

[(
pr
pl

)κ−1
κ

− 1

]
, (71)

using for the isentropic exponent κ the constant value 1.296, as stated in [8].
The transformation of such a feasible operating range using Had into the format
used here is easily doable, since there is a unique transformation from Had to pr

pl

obtained by simply rearranging (71). The diagram then just has to be linearized
by approximation or relaxation to obtain the polytope description in the desired
space.

In addition to the feasible operating range polytope, each compressor machine
is given an upper bound on the absolute pressure increase ∆̄p ≥ pr − pl and an
upper bound on the maximum power to use P̄ based on the power of the com-
pressor drive. The power needed for compression depends on the above defined
Had as well as the mass flow and is given as

P =
qHad

ηad
=

q

ηad
RsTza

κ

κ− 1

[(
pr
pl

)κ−1
κ

− 1

]
. (72)
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Here ηad denotes the adiabatic efficiency of the compression, which in theory
depends on the actual point of operation in the feasible region but is here assumed
to be a given constant per compressor unit. An example of a feasible operating
range of a compressor unit is given in Figure 2a, where different levels of the
maximum pressure difference bound and the maximum power bound are given
based on different values for the incoming pressure pl.

(a) Original power bound (b) Linearized power bound

Figure 2: The feasible operating range of a compressor unit. The grey region
shows the operating range given as a polytope. The blue lines represent the
upper bound on the absolute pressure increase ∆̄p, the red lines illustrate the
power bound P̄ , respectively drawn for different values of the incoming pressure
pl. While the left picture shows the original non-linear non-convex power bound,
the right pictures shows the linearized version, see Section 3.2

.

Ignoring the power bound for a moment, we will now lift the feasible operating
range into the (pl, pr, q) space we are interested in. Therefore, we first transform
each of the faces a0 + a1Q+ a2

pr
pl
≤ 0 of the original polytope into constraints of

the higher dimensional space using the equation of state for real gases (3):

a0 + a1Q+ a2
pr
pl
≤ 0

⇔ a0 + a1
q

ρL
+ a2

pr
pl
≤ 0

⇔ a0 + a1
qRsTza
pl

+ a2
pr
pl
≤ 0

⇔ a0pl + a1RsTzaq + a2pr ≤ 0

⇔ ã0pl + ã1pr + ã2q ≤ 0.

To bound the polyhedron described by the new constraints, we add the restriction
of the absolute pressure difference as well as two pressure bounds of the end nodes
of the compressor station arc (l, r) = a ∈ Acs containing this machine

pr − pl ≤ ∆̄p

pl ≥
¯
pl

pr ≤ p̄r.
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A picture of the three dimensional polytope resulting from the feasible operating
range of Figure 2 can be seen in Figure 3a.

(a) Without power bound (b) With power bound

Figure 3: The feasible operating range of a compressor unit in the space (pl, pr, q),
computed from the two dimensional operating range shown in Figure 2. While
the left picture shows the lifted polytope based on the original feasible operating
range, the maximum absolute pressure difference and the end nodes pressure
bounds, the right pictures also includes the linearized power bound, see Section 3.2

.

3.2 Power bound linearization

Until now, we have ignored the maximum power constraint that restricts the value
of the available power P for compression in the three dimensional feasible opera-
tion range polytope. Figure 2a shows the constraint P ≤ P̄ cuts into the original
two dimensional feasible operating range in a non-linear and non-convex fashion.
The same holds for the feasible operating range representation in (pl, pr, q). In
the following, we are going to derive a linear approximation to this constraint
that can then be added to the operating range polytope.

Therefore, we generate a set of N random sample points from within the
three dimensional operating range polytope, which we represent by the vectors
pl,pr,q ∈ RN . For each point, we then determine the corresponding compressor
power using Equation (72) and store these values again in a vector P ∈ RN .
The goal is now to obtain a linear approximation of the power function, i.e. an
approximation of the form

P ≈ a0 + a1pl + a2pr + a3q.

We achieve this by applying an ordinary least-squares method in order to deter-
mine the coefficients of the linear function as

min
a0,a1,a2,a3

|| P− (a0 + a1pl + a2pr + a3q) ||2 .

Finally, we can formulate the new linearized power bound constraint based on
the obtained solution values (ā0, ā1, ā2, ā3) as

ā0 + ā1pl + ā2pr + ā3q ≤ P̄,
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which is then added to the three dimensional polyhedron to create the final three
dimensional polytope description of the feasible operating range of a compressor
unit. An example the final polytope is illustrated in Figure 3b, while the linearized
power bound projected to the original two dimensional operating range can be
seen in Figure 2b.

3.3 Feasible operating range for a compressor station con-
figuration

In the final step, we will now create the polytope description for each configu-
ration by combining the polytopes of the used compressor units. The procedure
was originally described in [12], while we exactly follow the steps of the variant
described in [23].

Each configuration c is given as a serial sequence S1, . . . , Snc of parallel com-
pressor machine arrangements, where combining compressors in series allows for
higher output pressures by multi-step compression while parallel compression
increases the throughput in terms of flow. We call such a parallel machine ar-
rangement stage and denote by US the set of compressor units combined in stage
S ∈ {S1, . . . , Snc}.

We will now start with definition the feasible operation range polytope PS
of such a stage S ∈ {S1, . . . , Snc}. Denoting by Pu the corresponding polytopes
determine above for each compressor unit u ∈ US , we can described PS as

PS := { (pl, pr, q) | ∀u ∈ US ∃(pl,u, pr,u, qu) ∈ Pu
with pl = pl,u ∀u ∈ US ,

pr = pr,u ∀u ∈ US ,

q =
∑
u∈US

qu }.

In words, a valid operation point of the stage is represented by each unit operating
at the same incoming and outgoing pressures, while the the mass flows add up.

In a similar fashion, we can then define the polytope Pc for the overall con-
figuration. Here, the mass flow through all the stages stays the same, while the
outgoing pressure of some stage Si in the sequence has to match the incoming
pressure of the subsequent stage Si+1. Using this logic Pc can be defined as

Pc := { (pl, pr, q) | ∀S ∈ {S1, . . . , Snc} ∃(pl,S , pr,S , qS) ∈ PS
with pl = pl,S1

,

pr = pr,Snc ,

pr,Si = pl,Si+1
∀i ∈ {1, . . . , nc − 1},

q = qS ∀S ∈ {S1, . . . , Snc} }.

Finally, the set of hyperplanes Hc used in Section 2.5 to define the feasible op-
erating range of the configuration c are simply the facets of the polytope Pc
representing the feasible operating range.

Note, that due to the symmetric polytope creation the parallel compressor
units of a stage do not need a specific order. In contrast, the serial stage sequence
is indeed important since in general two sequences using the same stages but in
a different order will have different operating ranges.
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4 Specialized navi station algorithm

The MIP model P presented in Section 2.10 turns out to be quite challenging
according to our experiments even though we are only considering parts of the
original gas network. We therefore created a specialized algorithm to solve the
problem for navi stations. The baseline insight of it is that the elements in navi
stations are all very close to each other, making the corresponding pipes inside
the station relatively short. That means, their capability to store gas, which is
often referred to as linepack, is insignificant in comparison to the long pipelines
in between the navi stations. Thus there is not possibility to “prepare for the
future” in terms of preparing for upcoming critical demand situations by already
transporting gas from or to right network areas, at least not inside the navi station
itself. The station basically has to adjust its control to what is needed at a point
in time in terms of pressure and inflow demands at its boundaries.

This led us to the idea of splitting the time coupled model P into individual
stationary models to determine the best operation mode for each individual time
step. We then use this information to find a sequence of operation modes over
time which enables us to meet the boundary demands for each time step as good
as possible while respecting also the transition time condition, which has not been
modeled in P explicitly, see the corresponding part of Section 2.7. Note however,
that our algorithm does not have the guarantee to find a globally optimal solution
anymore, which we would have been the case when directly solving P enhanced
by a proper description of the operation mode transition time constraints.

Since our goal is to find a feasible solution for the presented model P of Sec-
tion 2.10, we will not only have to determine the navi station operation modes,
but also all other involved quantities. Hence, after determining the navi station
operation modes we still need to calculate a transient version of P, which for ex-
ample also takes care of minimizing the differences in the operation points of the
single elements, see Section 2.9. However, since we will prescribe the obtained op-
eration modes here the costs resulting from the operation point differences have a
lower priority. This works fine, as long as the operation mode depending objective
function weights wom for changing to a new operation mode and wus for starting
a new compressor unit by choosing a operation mode with a corresponding active
compressor station configuration dominate the other weights, which we assume
to be the case.

In this Section we will first introduce in 4.1 the three different variants of the
model P we will use in our algorithm. Afterward, we will present our algorithm
to determine navi station operation modes in 4.2 and finish with the so-called
smoothening procedure in 4.3, in which we will find the feasible transient solution
to our problem.

4.1 Model variants

As mentioned above, we will not solve the complete transient model P directly,
but use the following variants of it in our overall solution approach.

Ps – Stationary model For the first variant we solve a stationary version
of the model, do determine the best operation mode for one independent time
step t. This mainly effects the pipe model. In the stationary case a pipe has no
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longer the possibility to store gas, since the incoming and outgoing pipe flows
are balanced, i.e. ql,a,t = qr,a,t = qa,t for all pipes (l, r) = a ∈ Api. This is due
to the Continuity Equation, in which ∂tp = 0 holds as for all time dependent
derivatives resulting in the mass flow balance. Hence, the Continuity Equations
is no longer part of the model and the stationary Momentum Equation (8) for
pipe (l, r) = a ∈ Api and the stationary time step t we are considering can be
stated as

pr,t − pl,t +
λaLa

4DaAa
(|vl,a|+ |vr,a|) qa,t +

gsaLa
2RsTza

(pl,t + pr,t) = 0.

Note that we still calculate the fixed velocity based on the initial pressure and
flow values from time step 0, since we are looking for a feasible solution for the
original model P in the end.

For all other elements the constraints only consider exactly one time step and
we therefore simply apply them for the one time step t of the stationary case. The
only other part to adjust is the objective function, where we keep the penalties
σp+v,t , σ

p−
v,t , σ

d+
v,t , and σd−v,t for each boundary node v ∈ Vb since they are defined

based on each individual time step t. In addition, we will keep tracking the
change to a new navi station operation mode in variable δomt as well as the start
of new compressor units using δusu,t for all u ∈ Ua a ∈ Acs by calling the model
with the parameter prevMode representing the navi station operation mode of the
previous time step. The other variables tracking changes in regulator modes δrga,t
as well as the current point of operation of regulators and compressor stations
as δrg-pla,t , δrg-pra,t , δrg-qa,t , δcs-pla,t , δcs-pra,t , and δcs-qa,t for all a ∈ Arg resp. a ∈ Acs will
be remove from the model, as well as the constraints (51)-(56) resp. (58)-(69)
defining their behavior. The final stationary objective function for the time step
t under consideration reads as

min
∑
v∈Vb

wσ-p · (σp+v,t + σp−v,t ) + wσ-d · (σd+v,t + σd−v,t )

+wom · δomt
+

∑
u∈Ua,a∈Acs

wus · δusu,t

Pf – Transient with fixed operation modes and flow directions For
this variant, we are given a f ixed operation mode ot and flow direction ft for
all future time steps t ∈ T . This is used in our algorithm to finally determine
all transient quantities, after the decision for a navi station operation mode and
flow direction for each time step has been made. By fixing the corresponding
variables mom

ot,t and mfd
ft,t

to 1 for all future time steps t ∈ T , the majority of
binary variables can be replaced by constants, since the operation modes already
decides about valve and compressor station modes, as well as the configuration
of all active compressor stations. Only the binary variables mac

a,t, m
by
a,t and mcl

a,t

for the mode of a regulator a ∈ Arg are still to be decided.
In addition, a lot of implicating big-M constraints can already be resolved, i.e.

we can remove the current formulation and just add the implied constraints, if the
corresponding condition is fulfilled. Examples for this are the constraints (10)-
(13) describing the valve behavior or the flow direction conditions (43)-(46). Fur-
thermore, we do no longer need to use a disjunctive model, but can apply the
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corresponding constraints (20)-(30) of the active mode and/or configuration of
time step t directly to the variables pl,t, pr,t and qa,t for each compressor station
(l, r) = a ∈ Acs.

Psf – Stationary with fixed operation mode As a last variant we basically
combine the two variants above and use the stationary version of the model with
already f ixed operation mode. Note, that in contrast to model P f the flow
direction of the navi station is not already given, which results in more binary
variables and still to decide big-M constraints. However, this variant still results
in a very small and rather simple model and we can therefore solve it very often
to test the appropriateness of a given operation mode for a certain time step.

4.2 Determining navi station operation modes

Our algorithm to determine the operation modes of the navi station is split into
two steps: First, we create an initial solution by a greedy, forward oriented pro-
cedure presented in 4.2.1. We then in a second step improved this solution by
testing, if certain operation modes can be replaced by similar ones to find a better
sequence of operation modes over time. This second step is described in 4.2.2.

4.2.1 Initial solution creation

To find a first feasible sequence of navi station operation modes over time, we
follow a rather simple idea. In order to keep the number of needed operation
mode changes small, we determine an operation mode for time step t by first
testing the used operation mode of the previous time step t− 1 using Psf. Only
if this previously used operation mode does not yield a sufficiently cheap solution
in terms if the objective function value, we use the general stationary model Ps

to determine the best operation mode for t. By this mechanic, we also reduce the
amount of calls to the Ps model, which are in general much more expensive in
terms of computing time then calls to the Psf model. A detailed description is
given as Algorithm 1.

There are a few things to note about Algorithm 1. First, the parameter
prevMode given to the calls for solving the models Psf in line 5 and Ps in line 13
is the navi station operation mode of the previously time step, which we need
to determine the operation mode change and compressor unit start variables δomt
resp. δusu,t for some unit u ∈ Ua a ∈ Acs and t ∈ T as explained in Section 4.1.
In the call to Ps we furthermore give the parameter validModes, which re-
places the set of valid navi station operation modes O. We also call the functions
modeAvailable and transitionsWork in Algorithm 1. These refer to the navi
station operation mode unavailability and the transition time restriction intro-
duced in Section 2.7, where modeAvailable checks for a given operation mode
o and time t if o is available at t and transitionsWork performs the checks de-
scribed in Section 2.7 to test if a given navi station operation mode sequence is
valid regarding the corresponding transition times. In addition, Algorithm 1 uses
a function called notSoonInfeasible. Here, we check if choosing a new oper-
ation mode for time t would result in an infeasibility at one of the subsequent
time steps caused by a combination of operation mode unavailability and too long
transition times. More specifically, we check if the new operation mode for time
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Data: Operation mode o0 of the navi station in the initial state
Result: A list of navi station operation modes for each time t ∈ T0

1 operationModes ←− list()
2 operationModes.add(o0)
3 for t ∈ T do
4 oldMode ←− operationModes.last()

// call Psf with fixed operation mode oldMode for time t
5 oldModeFeasible, oldModeCost

←− Psf (oldMode, t, prevMode = oldMode)
6 if oldModeFeasible

and modeAvailable(oldMode,t)
and oldModeCost < wom then
// operation mode of t− 1 is also good for t

7 operationModes.add(oldMode)

8 else
// operation mode of t− 1 is NOT good for t
// ⇒ search best possible valid stationMode for t

9 validModes ←− list()
10 for o ∈ O do
11 if modeAvailable(o,t)

and transitionsWork(concat(operationModes, list(o)))
and notSoonInfeasible(t, newMode = o, oldMode = oldMode)

then
12 validModes.append(o)

// find best from validModes by calling Ps for time t

13 bestMode, bestModeFeasible, bestModeCost
←− Ps (t, O = validModes, prevMode = oldMode)

14 if not bestModeFeasible then abort without solution
// bestMode is best choice for t

15 operationModes.add(bestMode)

16 return operationModes
Algorithm 1: Initial solution creation

t will become unavailable in one of the future time steps and if yes, if there is
enough time left to transition into another operation mode until then, also taking
into account the time needed by the transition from the old operation mode at
time t − 1 to this new operation mode at time t. This look into the near future
turned out to be necessary according to our computational experiments in order
to avoid that Algorithm 1 gets stuck in infeasible situations. However, apart
from this check, the algorithm only consider the very time point t it is currently
searching a new operation mode for.

Two other lines in the algorithm need some further explanation. In line 6 we
decide if the previous navi station operation mode is good enough for the current
time step by comparing its stationary objective function value against the cost of
an operation mode change wom. If the objective function value is indeed smaller
we know that the previous operation mode is the best option considering this
individual time step given the chosen operation modes for the past time steps,
since each other operation mode would at least have to pay the penalty of wom
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for changing the operation mode. As a last point to mention, Algorithm 1 may
abort without a feasible solution in line 14. This is no proof of infeasibility, since
in theory cases are possible, where we abort although a feasible solution exists.
However, in all of our test cases we never aborted the algorithm at this point
after we added to check using the notSoonInfeasible function. Furthermore,
the combination of transition times and unavailable operation modes can lead to
very hard to find feasible solutions, which makes the design of an algorithm per-
forming reasonably fast on average but guaranteeing to find all feasible solutions
a challenge. Therefore, we leave this problem open for future research.

4.2.2 An improvement heuristic

After we have found a feasible solution using Algorithm 1, we now look for further
improvements of it. The way we implemented it, Algorithm 1 only considers
individual time steps to decide which operation mode to choose for each time step.
However, we can easily imagine a situation in which the operation mode o1 found
by Ps is best for time step t, but another operation mode o2 is slightly better for
all subsequent time steps and would have been the overall better choice at time
t. We might even be able to avoid operation mode changes, if o1 would become
unavailable in the future, while o2 has only slightly worse objective function
values, but stays available.

To deal with these situations, we created for a given feasible solution the
improvement heuristic stated as Algorithm 2. Here the idea is, to identify all
sequences of identical operation modes over time in the solution. We call these
sequences stable phases or just phases of a feasible solution represented by a
sequence of navi station operation modes over time. Obviously, the switch from
one phase to the subsequent one happens if the navi station operation mode
changes to a new mode. For each of these phases we then check if we can replace
the operation mode of the whole phase with a similar one being more beneficial
in terms of the objective function value.

We obtain these similar navi station operation modes from the call of the
function convexCombination, which is the key feature of Algorithm 2. To de-
fine it, we use the the function M(o, a) returning the mode or active configu-
ration of a valve or compressor station a in operation mode o, see Section 2.7.
Furthermore, we denote by U(x) the compressor units used in mode or con-
figuration x ∈ {“by”, “cl”} ∪ Ca for some compressor station a ∈ Acs, where
U(“by”) = U(“cl”) = ∅. Then we first define the function convexCombination

on a tuple (x, y) with x, y ∈ {“by”, “cl”} ∪ Ca as

convexCombination(x, y) := {x, y}∪{
c ∈ Ca | ∀u ∈ U(x) ∩ U(y) : u ∈ U(c)

∧∀u ∈ U(c) : u ∈ U(x) ∪ U(y)
}
.

Note, that convexCombination(x, y) ⊆ {“by”, “cl”} ∪ Ca holds. Then we are
ready to define convexCombination on a tuple (o1, o2) of navi stations operation
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Data: A sequence S of valid navi station operation modes over time
Result: A valid sequence S∗ of navi station operation modes with

obj(S∗) ≤ obj(S)
1 backwards ←− True
2 while not having two iterations without improvements do
3 changeTimes ←− list of times t with S[t− 1] 6= S[t]
4 if backwards then reverse(changeTimes)
5 for t ∈ changeTimes do
6 if S[t− 1] = S[t] then continue
7 if backwards then
8 phaseToReplace ←− phase ending at S[t− 1]
9 else

10 phaseToReplace ←− phase starting from S[t]

11 Sbest, bestImprovement ←− list(), 0.0
12 for newMode ∈ convexCombination(S[t− 1], S[t]) do
13 Snew ←− S.replace(phaseToReplace, newMode)
14 improvement ←− obj(S) - obj(Snew)
15 if allModesAvailable(Snew)

and transitionsWork(Snew)
and improvement > bestImprovement then

16 Sbest, bestImprovement ←− Snew, improvement

17 if bestImprovement > 0 then
// Found improvement in this interation!

18 S ←− Sbest

19 backwards ←− not backwards

20 S∗ ←− S
Algorithm 2: Improvement heuristic

modes as

convexCombination(o1, o2) :=
{
o ∈ O |(

∀a ∈ Ava : M(o, a) =M(o1, a) ∨ ∀a ∈ Ava : M(o, a) = M(o2, a)
)

∧ ∀a ∈ Acs : M(o, a) ∈convexCombination
(
M(o1, a),M(o2, a)

)}
.

Note here, that while we allow a compressor station a to have a configuration
using a compressor unit set “in between” the used compressor unit set of the
configurations used in o1 and o2 for a, we only allow the exact valve mode com-
bination used in o1 or the one used in o2. The reason for this is, that a valve
mode combination enables a very specify set of paths through each navi station,
and it is very unlikely that a valve mode set obtained from combining the modes
used in the two given operation modes yields operation modes, which are able to
handle the same demand situation. Since, each of the modes obtained by calling
convexCombination is tested in Algorithm 2, we hereby restrict the result set to
the most promising candidates.

Apart from calling convexCombination, Algorithm 2 uses the two functions
transitionsWork, which works in the same way as described for Algorithm 1
above and allModesAvailable, which is similar to modeAvailable from Algo-
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rithm 1, but instead of checking the availability of a given operation mode o for
time t checks the availability of a whole sequence of operation modes at the times
corresponding to the position in the sequence. Furthermore, we evaluated the
objective function value of a sequence of operation modes using the function obj

by successively calling Psf for each operation mode and time corresponding to
its position in the sequence. If one of the models turns out to be infeasible, the
returned objective function value will be infinity.

Finally, we note that we decided to start the algorithm in the backwards ori-
ented mode, where we test to replace the operation mode of a phase with an
operation mode obtained by combining this operation mode with the one of the
subsequent phase, since the initial solution is obtained by Algorithm 1 which is op-
erated in a forward direction. Furthermore, we highlight that Algorithm 2 has the
potential to reduce the total number of needed operation mode changes, since the
two original operation modes are always part of the result of convexCombination.
In addition, it is possible that the an operation mode change from the loop of
line 5 has already been removed in the previous iteration by replacing one of the
involved operation modes with the other one, which makes the check in line 6
necessary.

4.3 Transient solution smoothening

As a final step of our specialized navi station algorithm, we solve the transient
model variant P f with fixed navi station operation modes and flow directions.
We obtain both from the stationary model solutions for each time step created
in the previous steps of the algorithm. We expect the transient solution states to
be more similar in general and in case of changing conditions to be more smooth
compared to the series of stationary solution states. This is due to the missing
penalty of operation point changes in the independent stationary models, which
may result in considerable different solution states, for example in terms of the
overall pressure level, even if the demand situation as well as the determined navi
station operation mode and flow direction are the same.

In our computational experiments we observed that even though most of the
binary decision variables of P are fixed in P f, only a limited number of time steps
can be solve for large navi stations. Therefore, we use a rolling horizon approach
to solve P f, which is described in Algorithm 3. Here, we specify a small fixed
time horizon size h, which represent the number of time steps to solve in model
P f including the time step for the given initial state. We then solve a series of
models P f, while always fixing the earliest time step and shifting the time horizon
by 1 in each iteration. In the function call to solve P f in Algorithm 3, we give the
subsequence of navi station operation modes and flow directions, corresponding
to and also encoding the current time horizon to solve. Furthermore, we specify
the state to use as fixed initial state.

The main benefit of this method is, that increasing the size |T0 := {0, . . . , k}|
of the overall time horizon only increases the number of equally sized and therefore
similar complex MIP models to solve rather then increasing the complexity of the
model, which may lead to an exponential increase in runtime.
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Data: A sequence S of tuples of navi station operation modes and flow
directions over time as well as a time horizon size h

Result: A set of transient solution states for all t ∈ T0
1 if h ≥ |T0| then

// overall time horizon covered by smoothening time horizon

2 return P f (S, initialState = initialState)

3 solutionStates ←− list()
4 solutionStates.add(initialState)
5 currTime ←− 0
6 while currTime + h ≤ |T0| do
7 Sh ←− S.slice(currTime, currTime + h)

8 thisTimeStates ←− P f (Sh, initialState = solutionStates.last())
9 if currTime + h = —T0 — then

10 solutionStates.addAll(thisTimeStates)
11 else
12 solutionStates.add(thisTimeStates.first())
13 currTime ←− currTime + 1

14 return solutionStates;
Algorithm 3: Transient smoothening

5 Conclusion

In this paper we presented the transient gas network transport problem on so-
called navi stations, which represent the intersection points of major transporta-
tion pipelines and contain the majority of active elements to control the network.
We introduced a mixed-integer programming model for the problem including a
complex model for compressor stations as well as additional variables and con-
straint for the navi station itself. For the pipes, a linear approximation was used,
since they are short and therefore have less overall impact in navi stations. To
solve the problem, we developed a specialized algorithm, exploiting the high de-
pendency of the operation mode choice on the corresponding demands in each
individual time step caused by the short pipes. Therefore, we determine the op-
eration modes of the navi station based on solving a stationary version of the
presented MIP. Here, we also satisfy the previously excluded transition time con-
straints of the operation modes. In order to obtain a feasible solution for the
original MIP model, we finally solve the original MIP with fixed navi station
operation modes in a rolling horizon fashion.

There are a lot of different possibilities to continue the research. To increase
the model correctness, the approximative linearization of the friction in pipes
and resistors as well as the maximum power bound of compressor units should be
replaced by their original non-linear versions, turning the model into a MINLP
and thereby increasing the overall complexity. From a theoretical point of view,
extending Algorithm 1 to be able to guarantee finding a feasible solution without
losing overall performance in terms of execution time would greatly improve it’s
robustness. Finally, real-world gas network operation is a complicated business
with a never-ending list of special elements and extra constraints, which can still
be added to our model. As examples we name ramp-up and cool down times for
compressor units as well as target value based control of regulators and compressor
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stations.
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