
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

THOMAS BREUGEM
CHRISTOF SCHULZ

THOMAS SCHLECHTE
RALF BORNDÖRFER

A Three-Phase Heuristic
for Cyclic Crew Rostering

with Fairness Requirements

ZIB Report 19-43 (August 2019)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

A Three-Phase Heuristic for Cyclic Crew Rostering with

Fairness Requirements∗

Thomas Breugem1, Christof Schulz2, Thomas Schlechte2, Ralf Borndörfer3

1Econometric Institute and Erasmus Center for Optimization in Public Transport

Erasmus University Rotterdam, The Netherlands

2LBW Optimization GmbH

Berlin, Germany

3Zuse Institute Berlin

Berlin, Germany

breugem@ese.eur.nl, {schulz,schlechte}@lbw-optimization.de, borndoerfer@zib.de

Abstract

In this paper, we consider the Cyclic Crew Rostering Problem with Fairness Require-

ments (CCRP-FR). In this problem, attractive cyclic rosters have to be constructed

for groups of employees, considering multiple, a priori determined, fairness levels.

The attractiveness follows from the structure of the rosters (e.g., sufficient rest times

and variation in work), whereas fairness is based on the work allocation among the

different roster groups. We propose a three-phase heuristic for the CCRP-FR, which

combines the strength of column generation techniques with a large-scale neighbor-

hood search algorithm. The design of the heuristic assures that good solutions for

all fairness levels are obtained quickly, and can still be further improved if additional

running time is available. We evaluate the performance of the algorithm using real-

world data from Netherlands Railways, and show that the heuristic finds close to

optimal solutions for many of the considered instances. In particular, we show that

the heuristic is able to quickly find major improvements upon the current sequential

practice: For most instances, the heuristic is able to increase the attractiveness by at

least 20% in just a few minutes.

Keywords: Crew Planning, Column Generation, Variable-Depth Neighborhood Search

∗Parts of this work have been developed within the Research Campus MODAL (Mathematical Opti-
mization and Data Analysis Laboratories) funded by the German Ministry of Education and Research
(BMBF).

1

1 Introduction

The scheduling of personnel is one of the most challenging planning problems for a public

transport operator. This is partly due to the large-scale nature of the problem, but also

due to the two conflicting objectives: On the one hand, the operator must minimize cost

from an operational point of view, yet on the other hand the operator must also maximize

the quality of work from an employees’ point of view. The Netherlands, for example,

has a history of strikes from employees of Netherlands Railways (NS), expressing their

discontent regarding the scheduled work. Reoccurring themes during these conflicts are,

for example, the irregularity of scheduled work, and the distribution of work among the

different crew bases. Hence, it is clear that, in order to avoid such conflicts, a public

transport operator should incorporate the demands of employees in the planning process.

The assignment of work to the employees is traditionally decomposed into crew scheduling

and crew rostering. In the former, the duties (i.e., working days) are constructed, and, in

the latter, these duties are assigned to the employees. The focus in crew rostering lies on

perceived fairness and perceived attractiveness, leading to a bi-objective decision problem.

This problem was formalized in Breugem et al. [2017] as the Fairness-oriented Crew

Rostering Problem (FCRP). Roughly speaking, allocations are perceived fair whenever

each crew member performs similar work (measured over a given number of attributes).

Perceived attractiveness, on the other hand, focuses on the structure of the rosters, taking,

for example, the workload in each week and the rest time between consecutive working

days into account. Although both objectives have overlapping components, there is a

clear trade-off, as shown in Breugem et al. [2017].

It is evident that perceived fairness and attractiveness of rosters are far more ambiguous

concepts than, for example, the cost of a rolling stock schedule. As a result, the crew ros-

tering problem is generally solved multiple times for varying parameter settings, thereby

steering towards a desired solution. This implies that, even during the tactical planning

phase, it is desirable that high quality solutions can be obtained quickly. Furthermore,

exact methods can be intractable for some of the instances encountered in practice: The

exact approach developed in Breugem et al. [2017] is able to solve instances of about three

roster groups and 100 duties (obtained from crew base Utrecht) in at most a few hours,

but fails to obtain good solutions for instances of, say, six groups and about 200 duties

in reasonable time. The latter is the size of crew base Amersfoort, where NS conducted

a pilot study regarding decision support for crew rostering in the beginning of 2018. The

pilot sparked interest and enthusiasm for decision support, but also highlighted the need

for a heuristic algorithm for the larger instances, and is therefore a driving force behind

this work.

In this paper, we consider a variant of the FCRP, which we will call the Cyclic Crew

Rostering Problem with Fairness Requirements (CCRP-FR). This problem deviates from

2

the FCRP by assuming a fixed, a priori known, set of fairness levels for which rosters

must be constructed. This differs from the FCRP, where we aim at finding the entire

trade-off curve and hence determining the relevant fairness levels is part of the solution

process. In practice, the former setting is often encountered, as planners generally have

some fairness levels (e.g., high, medium, and low fairness) in mind for which they want to

construct rosters. One key difference with the FCRP is that the solution with maximum

fairness does not necessarily have to be computed, which can be time consuming for large

instances.

The main contribution of this paper is a three-phase heuristic for the CCRP-FR, which

combines the strengths of the exact approach for the FCRP developed in Breugem et al.

[2017] with a large-scale neighborhood search algorithm. The design of the heuristic

assures that good solutions for all fairness levels are obtained quickly, and can still be

further improved if additional running time is available. We evaluate the performance

of the proposed solution approach using real-world instances from NS. In particular, we

show that the three-phase heuristic finds close to optimal solutions for most instances,

and achieves a major improvement (up to 40%) over the current (sequential) approach.

The remainder of this paper is organized as follows. In Section 2 we discuss the CCRP-FR

in detail, and in Section 3, we give an overview of related work. In Section 4 we discuss

the row-based formulation, followed by a detailed description of the three-phase heuristic

in Section 5. Section 6 evaluates the performance of the solution method on practical

instances from NS, and the paper is concluded in Section 7.

2 Cyclic Crew Rostering with Fairness Requirements

The goal of crew rostering is to construct rosters for the employees whilst taking both

perceived fairness and perceived attractiveness into account. The crew is partitioned into

roster groups, and each of these groups has to be assigned a roster. Figure 1 shows an

example of two possible rosters, one for group A, consisting of three employees, and one

for group B, consisting of four employees.

The roster groups operate in cyclic rosters, i.e., the rosters are executed by multiple

employees in a periodic fashion. These rosters are constructed for a period of one year,

and the work for this period is assumed to be cyclic. In other words, Monday the 22th of

April is identical to Monday the 29th of April. Each roster has an underlying structure,

known as the basic schedule. The basic schedule specifies the type of work of each day

(e.g., a late duty or day-off). Each basic schedule consists of cells (i.e., elements to which

duties must be assigned), grouped into rows (i.e., weeks of work) and columns (i.e., generic

weekdays). The duty types, as specified in the basic schedules, for both rosters in Figure

1 is shown at the top left of the cells, and the numbers indicate the assigned duties. Here,

the basic schedule of group B, for example, specifies that the first row starts with a late

3

Mon Tue Wed Thur Fri Sat Sun

A3

A2

A1
R R N

105
N

111
L

123
R R

L

118
N

107
N

115
R N

108
L

121
L

103

L

123
L

110
R E

44
R E

7
E

25

Roster Group A

Mon Tue Wed Thur Fri Sat Sun

B4

B3

B2

B1
L

112
R E

60
E

61
R RL

142

L

126
R E

54
E

13
E

40
E

28
L

124

R R N

105
N

111
L

123
R R

L

101
R E

41
L

119
L

119
R E

2
R

Roster Group B

Figure 1: Example of two rosters for roster group A, consisting of three employees, and
B, consisting of four employees. The duty types are indicated by the types (Early, Late,
Night, and Rest) above the cells, and the numbers indicate the assigned duties.

duty (L), followed by a day-off (R), and then again a late duty. Similar to Breugem et al.

[2017], we assume the basic schedules to be input to the problem.

The crew rostering phase consists of allocating the duties, i.e., days of work, to the

basic schedules of the different roster groups. Note that, due the the cyclic nature, also

the duties are generic, i.e., the duties are specified on the weekday level. Consider, for

example, duty 112, scheduled on Monday in the first row of the roster for group B, as

shown in Figure 1. The cyclicity of the roster implies that this duty is executed by the

first employee of the group in the first week, by the fourth employee in the second week,

and by the third employee in the third week. This process is also known as rolling out

the roster. Note that the work for an employee of group B repeats itself every four weeks

and for an employee of group A every three weeks, since the rosters have has four and

three rows, respectively.

The perceived fairness and perceived attractiveness both depend on the way the duties

are allocated to the cells of the basic schedules. The perceived fairness relates to the

distribution of work among the roster groups (e.g., one roster group should not have

much nicer work compared to another roster group), and the perceived attractiveness

relates to the structure of these rosters (e.g., sufficient rest time, average workload).

The perceived fairness of the rosters is based on different characteristics of the duties.

Since every duty represents a work day, some can be considered more desirable than

4

others. Duties with many tasks on out-dated rolling stock, for example, are generally

considered undesirable. These characteristics are referred to as duty attributes. The

perceived fairness is measured by the spread (i.e., the difference between the maximal

and minimal average value of the duties in the roster) over the groups for the different

duty attributes. The smaller this spread, the higher the perceived fairness.

The perceived attractiveness considers the structural characteristics of the rosters, and

is defined by so-called roster constraints, which forbid or penalize assignments of duties.

Well-known examples of roster constraints are rest constraints, enforcing a certain mini-

mum time to rest between consecutive working days, and workload constraints, enforcing

a maximum amount of work within a week. The smaller the penalty incurred from the

roster constraints, the higher the perceived attractiveness.

Improving both the perceived fairness and perceived attractiveness is not always possible,

despite the fact that both metrics aim at improving the quality of the scheduled work.

This difference is best illustrated with a simple example, based on the rosters of Figure

1. Suppose the current average duty length is 7 hours and 50 minutes for group A, and

7 hours and 45 minutes for group B. Consider the Monday duties 110 and 112, assigned

to groups A and B, respectively. Duty 110 starts at 13:15 and ends at 21:15, hence has

a length of 8 hours, and duty 112 starts at 16:30 and ends at 00:10, having a length of

7 hours and 40 minutes. By swapping duties 110 and 112 we would reduce the spread

in average duty length, and hence improve the perceived fairness. This swap, however,

also implies that the rest period on Tuesday in row B1 becomes shorter, which makes the

roster possibly less attractive.

The CCRP-RF can now be stated as follows: Given as input the basic schedules and

duties, and a set of fairness levels, determine attractive rosters for each fairness level.

That is, determine for each fairness level a roster for each group that minimizes the

penalties incurred from the roster constraints, whilst enforcing the desired fairness level.

3 Related Work

Crew planning is a widely studied problem in the literature, dating back as far as Dantzig

[1954]. The applications range from health care (e.g., nurse rostering) to transportation

(e.g., airline, railway, and bus planning), and the solution methodology covers well-known

exact and heuristic methods, such as branch-and-price, simulated annealing, and tabu

search. In this section we focus mainly on crew planning within the transportation sector:

We refer to Ernst et al. [2004] and Van den Bergh et al. [2013] for more general overviews.

Crew planning is commonly decomposed into two sequential planning phases. In the

first phase, known as the crew scheduling or crew pairing problem, the days of work

(i.e., duties or pairings) are constructed. This phase mainly focuses on operational cost

5

(i.e., the number of necessary crew members), together with other key factors, such as

the fairness of the work allocation and the constraints resulting from the collective labor

agreements. The crew scheduling problem is a well-studied problem in the literature

(see, for example, Desrochers and Soumis [1989], Hoffman and Padberg [1993], Grötschel

et al. [2003], Abbink et al. [2005], among others), and has been considered in numerous

variants, such as rescheduling whenever the underlying tasks are modified (e.g., Lettovskỳ

et al. [2000], Potthoff et al. [2010]) and in conjuction with other planning problems, such

as aircraft routing and vehicle scheduling (e.g., Cordeau et al. [2001], Huisman et al.

[2005a]).

The second planning phase, known as crew rostering, consists of combining the duties

(or pairings) into rosters, which are sequences of duties (or pairings) satisfying numerous

labor constraints. Typical constraints consider, for example, days off, rest times, variation

of work, and personal preferences. Rosters are generally classified as cyclic, i.e., multiple

employees working the same roster, and acyclic, i.e., each individual employee working his

or her own roster. The latter type is common in the healthcare sector and airline industry

(see, for example, Kohl and Karisch [2004] and De Causmaecker and Vanden Berghe

[2011], and references therein), whereas the former type is often used in railway operations

and mass transit (see Huisman et al. [2005b], Caprara et al. [2007]). Cyclic crew rostering

is well-studied in the literature and a variety of formulations have been proposed to model

the problem, including a generalized assignment formulation (e.g., Hartog et al. [2009]),

a multi-commodity flow formulation (e.g., Caprara et al. [1997], Xie and Suhl [2015],

Borndörfer et al. [2015]), and a set covering or set partitioning formulation (e.g., Caprara

et al. [1997], Freling et al. [2004], Borndörfer et al. [2015]). The integration of both crew

scheduling and rostering has been considered in Mesquita et al. [2013] and Borndörfer

et al. [2017], which both propose a solution method based on Benders decomposition.

Note that most of aforementioned work focuses on exact methods or heuristics based

on mathematical programming techniques, such as column generation. For large-scale

and highly complex rostering problems, heuristic methods are sometimes better suited.

We refer to Van den Bergh et al. [2013], Table 13, for a detailed overview of solution

approaches. In this paper, we build upon the variable-depth neighborhood search heuristic

proposed in Borndörfer et al. [2015].

The incorporation of fairness measures in combinatorial optimization problems is, to

the best of our knowledge, a relatively young field of research. The fairness of utility

allocations, however, has a long history in the economic literature, dating back to the work

on bargaining problems by Nash [1950]. Recent work in the field of Operations Research

has focused on the trade-off between efficiency (e.g., minimizing cost) and fairness (e.g.,

maximizing the lowest derived utility). This work includes, among others, the work of

Bertsimas et al. [2012] and Bertsimas and Gupta [2015] in the context of air traffic flow

management, Bertsimas et al. [2013] on organ allocation, and, in Breugem et al. [2017],

on the trade-off between fairness and attractiveness in crew rostering.

6

The three-phase heuristic extends the exact branch-price-and-cut approach of Breugem

et al. [2017] to a solution approach for large-scale instances. It was shown in Breugem

et al. [2017] that the exact method is able to solve practically sized instances in reasonable

time. For some of the large instances encountered in practice, however, these computation

times are considered too high, and quickly found high-quality solutions, although possibly

sub-optimal, are preferred. We therefore develop a heuristic taking the exact method

as basis, thereby inheriting the strong points of this method, while avoiding excessive

computation times. This paper aims at bridging the gap between the exact method

developed in Breugem et al. [2017] and the current sequential practice, where first the

duties are assigned to the roster groups, and then the rosters per group are optimized

separately.

4 Mathematical Formulation

In this section we discuss the mathematical formulation underlying the heuristic. We

consider the row-based formulation introduced in Breugem et al. [2017] for the FCRP, in

which a variable represents the simultaneous assignment of multiple duties to all cells in a

row of the basic schedules. The main benefit of this formulation is that all weekly roster

constraints, such as weekly variation and maximum workload constraints, can be modeled

implicitly in the definition of the variables. In Section 4.1, we introduce the necessary

notation and terminology, and in Section 4.2, we present the row-based formulation.

4.1 Notation and Terminology

The row-based formulation models the assignment of duties to the cells by means of

roster sequences, which specify a simultaneous assignment of duties to a row. In the case

of Figure 1, for example, a roster sequence for row A1 has to specify a duty for all three

cells (recall that rest days are assumed fixed). In this specific roster, the selected roster

sequence specifies the assignment of duty 105 for Wednesday, 111 for Thursday, and 123

for Friday.

Let D denote the set of duties, and let R denote the set of basic schedules. Each basic

schedule r is defined by a set of cells Tr, and the set of all cells is denoted by T . An

assignment of a duty d to a cell t in a basic schedule will be denoted by the pair (t, d). We

define nr as the total number of duties to be assigned to basic schedule r. Let K denote

the set of all rows, and Kr denote the set of rows for basic schedule r ∈ R. We define Sk

as the set of all roster sequences for row k ∈ K, where each roster sequence is formally

defined as a sequence of assignments (t, d) for the cells in k. The parameter hkds indicates

whether sequence s ∈ Sk contains duty d.

The row-based formulation models the assignment of duties to the cells using the decision

7

variables xks , for all k ∈ K and s ∈ Sk, indicating whether roster sequence s ∈ Sk is

assigned to row k. The perceived fairness and perceived attractiveness are modeled as

follows.

Perceived Fairness

The perceived fairness is expressed in terms of the maximum and minimum average values

of different duty attributes (e.g., duty length) among the roster groups. Let A denote

the set of duty attributes, and let gad denote the value of attribute a ∈ A for duty

d ∈ D. Each attribute has a specified lower bound `a and upper bound ua, representing

the minimum and maximum allowed average values for a basic schedule. In case of the

duty length, for example, one could enforce that no roster group works more than 8

hours on average. Besides these bounds, each duty attribute has an associated weight wa,

representing the relative importance of the different duty attributes when calculating the

perceived fairness.

The calculation of the perceived fairness is based on the variables va and za, representing

the minimum and maximum average value of duty attribute a among all roster groups,

respectively. These variables are linked to the xks variables by means of the constraints

∑

k∈Kr

∑

s∈Sk

∑

(t,d)∈s
gadx

k
s ≤ nrza ∀a ∈ A, r ∈ R (1)

∑

k∈Kr

∑

s∈Sk

∑

(t,d)∈s
gadx

k
s ≥ nrva ∀a ∈ A, r ∈ R, (2)

assuring that va and za attain the minimum and maximum average value for each duty

attribute. Given the values va and za, the fairness level is calculated as

∑

a∈A
wa(za − va), (3)

and a fairness budget ζ is enforced by assuring that (3) does not exceed ζ.

Perceived Attractiveness

Each roster constraint penalizes, or forbids, certain combinations of assignments of duties

to the cells of the basic schedules. Let P denote the set of roster constraints and let fptd
denote the coefficient for assigning duty d to cell t for roster constraint p ∈ P . For any

given assignment of duties to the cells, the violation of the roster constraint is given by

the sum of these coefficients minus some allowed threshold value bp, and this violation is

restricted to the interval ∆p = [0,mp]. The interval ∆p = [0, 1], for example, would allow

8

a violation of at most one. Each roster constraint p ∈ P can be written as

∑

k∈K

∑

s∈Sk

∑

(t,d)∈s
fptdx

k
s ≤ bp + δp, (4)

where δp ∈ ∆p represents the violation. The perceived attractiveness is maximized by

minimizing the sum of roster constraint violations cpδp, where the cost coefficients cp

regulate the relative importance of the different roster constraints. The row-based formu-

lation allows every roster constraint that is contained in a row, i.e., it only has non-zero

coefficients fptd for the cells in one row, to be modeled implicitly. Let PK ⊆ P denote

the set of roster constraints that are contained in the rows k ∈ K (and can therefore be

modeled implicitly), and let cks denote the cost associated with sequence s ∈ Sk, that is,

cks is the sum of all roster constraint violations in the sequence s.

4.2 Row-Based Formulation

The concepts introduced in Section 4.1 can be integrated to obtain the row-based formu-

lation for the CCRP-FR, similar to the FCRP formulation introduced in Breugem et al.

[2017]. For a given fairness budget ζ, the model reads as follows.

min
∑

k∈K

∑

s∈Sk

cksx
k
s +

∑

p∈P\PK

cpδp (5)

s.t.
∑

a∈A
wa (za − va) ≤ ζ (6)

∑

s∈Sk

xks = 1 ∀k ∈ K (7)

∑

k∈K

∑

s∈Sk

hkdsx
k
s = 1 ∀d ∈ D (8)

∑

k∈K

∑

s∈Sk

∑

(t,d)∈s
fptdx

k
s ≤ bp + δp ∀p ∈ P \ PK (9)

∑

k∈Kr

∑

s∈Sk

∑

(t,d)∈s
gadx

k
s ≤ nrza ∀a ∈ A, r ∈ R (10)

∑

k∈Kr

∑

s∈Sk

∑

(t,d)∈s
gadx

k
s ≥ nrva ∀a ∈ A, r ∈ R (11)

za ≤ ua ∀a ∈ A (12)

va ≥ `a ∀a ∈ A (13)

xks ∈ B ∀k ∈ K, s ∈ Sk (14)

δp ∈ ∆p ∀p ∈ P \ PK (15)

va, za ∈ R ∀a ∈ A. (16)

9

The objective (5) expresses that we minimize the penalties incurred from the roster con-

straints, partly expressed by the roster sequence costs and partly expressed by the cost

of the explicitly modeled roster constraints. The fairness budget is enforced by (6). Con-

straints (7) and (8) assure that the duties are assigned correctly to the basic schedules:

Each row is assigned exactly one roster sequence, and each duty appears in exactly one

roster sequence. Constraints (9) model the roster constraint violations, as discussed in

Section 4.1. Furthermore, Constraints (10) and (11) assure that the variables va and za

are set to the minimum and maximum value, respectively, while (12) and (13) enforce the

lower and upper bounds on the attribute values. Finally, Constraints (14)–(16) express

the domains of the decision variables.

5 Three-Phase Heuristic

In this section we present the three-phase heuristic. We first give a general overview of

the heuristic and discuss the key components. We then discuss the three different phases

separately: In Section 5.1, we discuss the first phase of the heuristic, in which a feasible

solution is obtained using a sequential decomposition, and in Sections 5.2, and 5.3, we

discuss the paiwise and global improvements phases, respectively.

Recall that for the CCRP-FR the set of fairness levels is considered input. That is, the

goal is to determine a solution maximizing attractiveness for a given set of fairness levels,

represented by the ordered fairness budgets ζ1 < . . . < ζn. In this case, ζ1 corresponds to

the highest fairness level (i.e., smallest budget), and ζn to the lowest fairness level (i.e.,

largest budget). For the sake of explanation, we will often consider the three fairness

levels high, medium, and low, but note that the approach does not rely on any assumption

regarding the number of fairness levels, nor the size of their corresponding budgets.

The three-phase heuristic aims at quickly finding high-quality solutions for each fairness

level. Figure 2 schematically visualizes the algorithm. First, we obtain an initial allocation

of the duties to the basic schedules for the highest fairness level, i.e., the lowest fairness

budget. This is done by solving a mixed-integer linear program. The roster per basic

schedule, given the allocation of the duties, is then optimized using the exact branch-

price-and-cut approach developed in Breugem et al. [2017].

The second and third phase of the algorithm both aim at finding profitable re-allocations of

duties among the roster groups. In the second phase, we look for pairwise improvements,

i.e., we try to find a profitable re-allocation of duties between pairs of roster groups. This

is done by solving a reduced problem, based on the linear relaxation of (5)–(16). The key

aim of the second phase is to quickly find good solutions for each fairness level, which is

achieved by using the found solutions for high levels as starting point for the lower levels.

In the third and final phase of the heuristic we invoke a more time-consuming large-

10

HIGH

MEDIUM LOW

Sequential

Phase 1

Duties

Roster Roster Roster

Roster Roster Roster

optimize

Phase 2

Pairwise Improvement

. . .Roster Roster Roster . . .

Pairwise Improvement

Roster Roster Roster

Pairwise Improvement

Roster Roster Roster

Phase 3

Global Improvement

Roster Roster Roster

Global Improvement

Roster Roster Roster

Global Improvement

Roster Roster Roster

Figure 2: Schematic visualization of the three-phase heuristic. For illustrative purposes,
three fairness levels (high, medium, and low) are highlighted. The algorithm starts by
finding a feasible solution for the tightest fairness level using a sequential approach (Phase
1). This solution is taken as starting point of a pairwise improvement phase (Phase 2),
where we obtain a feasible solution for each fairness level. Finally, the separate solutions
are further improved in a global improvement step (Phase 3).

scale neighborhood search algorithm to further improve the solutions. Note that the

solutions found in the third phase are not used as starting solutions for the second phase.

This assures that, even upon early termination, the algorithm returns a solution for each

fairness level, thereby not having to wait for the third, most time consuming, phase

to finish. Furthermore, this explicit decoupling would also allow the third phase to be

executed in parallel.

5.1 Phase 1: Sequential Decomposition

In the first phase of the algorithm we consider a natural, yet heuristic, decomposition:

First, a fair and feasible allocation of the duties to the roster groups is determined, and,

secondly, the roster per group is optimized given the allocated duties. This sequential

decomposition closely resembles the current practice. The solution found in this phase

can therefore be considered as a well-motivated benchmark solution. The allocation of the

11

duties to the groups is obtained by solving a feasibility problem. We solve this problem

using a cell-based formulation: Let the binary variable πtd, for all t ∈ T and d ∈ D

indicate whether duty d is assigned to cell t, and let Dt ⊆ D denote the subset of duties

compatible with cell t, i.e., those duties for which the weekday and duty type match.

Similarly, let Td ⊆ T denote the cells to which duty d can be assigned. We obtain a

feasible allocation by solving the following system of inequalities.

∑

a∈A
wa(za − va) ≤ ζ (17)

∑

d∈Dt

πtd = 1 ∀t ∈ T (18)

∑

t∈Td

πtd = 1 ∀d ∈ D (19)

∑

t∈T

∑

d∈D
fptdπtd ≤ bp +mp ∀p ∈ P (20)

∑

t∈Tr

∑

d∈D
gadπtd ≤ nrza ∀a ∈ A, r ∈ R (21)

∑

t∈Tr

∑

d∈D
gadπtd ≥ nrva ∀a ∈ A, r ∈ R (22)

za ≤ ua ∀a ∈ A (23)

va ≥ `a ∀a ∈ A (24)

πtd ∈ B ∀t ∈ T, d ∈ D (25)

va, za ∈ R ∀a ∈ A. (26)

Constraints (18) and (19) assure each cell is assigned exactly one duty and (20) guarantees

the feasibility with respect to the roster constraints. Note that, compared to (4), we set

δp equal to the upper bound mp. The remaining constraints model the fairness budget,

as discussed in Section 4.1. The model (17) – (26) without fairness constraints is similar

to the assignment model proposed in Hartog et al. [2009] for cyclic crew rostering.

Given a feasible allocation, the roster for each group is optimized. This sequential decom-

position greatly simplifies the problem, as it eliminates the connection between fairness

and attractiveness: For a known allocation of duties to the roster groups, the fairness

constraints are either satisfied or not, and hence the problem decomposes into a set of

(simpler) cyclic crew rostering problems, one for each roster group. For practical ros-

ter group sizes, these problems can be solved efficiently using the branch-price-and-cut

approach proposed in Breugem et al. [2017].

5.2 Phase 2: Pairwise Improvement

In the second phase of the algorithm we obtain a feasible solution for each fairness budget.

First we improve the solution obtained in Phase 1 to obtain a solution for ζ1, and then

12

we proceed in an iterative fashion: The solution for the (i + 1)-th fairness budget ζi+1,

is obtained by searching a neighborhood around the solution for the i-th fairness budget

ζi, i.e., we exploit the increase of the fairness budget to find profitable re-allocations of

duties.

We search for a profitable re-allocation of duties between pairs of roster groups. Note

that profitable re-allocations might exist since we increase the fairness budget, hence

allocations previously not feasible become feasible. We restrict the re-allocation to pairs

of roster groups, to assure that the running time scales well with the instance size. The

pairs of roster groups are ordered such that the small groups are considered first. To

illustrate this, consider four roster groups A, B, C, and D, of 8, 9, 10, and 12 employees,

respectively. We first look for a profitable re-allocation between A and B, then between

A and C, then A and D, then between B and C, then B and D, and finally between C and

D, each time updating the rosters when a profitable re-allocation has been found. Hence,

given k groups, we check k(k − 1)/2 pairs, after which the improvement step terminates.

The re-allocation is determined by solving the row-based formulation for a reduced set

of roster sequences, where the reduction is based on the solution to the linear relaxation:

Consider a given feasible integer solution x̂ and an optimal (fractional) solution of the

linear relaxation x̄. For each cell t ∈ T , we allow only a subset D̄t ⊆ Dt of duties to be

assigned. The set D̄t is initialized by the duty assigned to t in the solution x̂, to assure

the integer solution remains feasible, and is then enriched based on x̄: For each k ∈ K
and t ∈ k, we enlarge D̄t by adding the duties d ∈ Dt for which

∑

s∈Sk:
s3(t,d)

x̄ks > 0,

i.e., we add those duties to D̄t that have a non-zero coefficient for t in x̄. Figure 3

illustrates this reduction. Generally, not too many duties are selected this way.

The reduced set of roster sequences S̄k ⊆ Sk for each row k ∈ K, consists of exactly those

roster sequences assigning only duties in D̄t to each t ∈ k. This set is determined by

complete enumeration. The resulting reduced model is solved using a commercial solver

to obtain a possible improved allocation of the duties. In this phase of the heuristic, we

also solve the linear relaxation of (5)– (16) for all roster groups simultaneously to obtain

a lower bound on the optimal solution value.

5.3 Phase 3: Global Improvement

In the third and final step of the algorithm, each of the solutions is further improved using

a sophisticated local search algorithm. In this phase of the heuristic we aim at finding im-

proving duty exchanges between all roster groups (hence, the name global improvement),

13

Mon Tue Wed Thur Fri Sat Sun

44 R 52 119 R 64 38

Mon Tue Wed Thur Fri Sat Sun

44 R 58 101 R 64 38

Figure 3: An example of the problem reduction. Suppose the shown roster sequences
are assigned positive values in x̄ for some given row. The allowed duties obtained from
x̄ are given by D̄Mon = {44}, D̄Wed = {52, 58}, D̄Thur = {101, 119}, D̄Sat = {64}, and
D̄Sun = {38}. In this example, two additional roster sequences will be generated leading
to a total of four roster sequences.

as opposed to Phase 2, where we only consider pairs of roster groups. This is done using

local search.

The proposed local search algorithm is based on variable-depth neighborhood search

(VDNS), a neighborhood search technique belonging to the family of so-called very large-

scale neighborhood search algorithms (see e.g., Ahuja et al. [2002], Pisinger and Ropke

[2010] for a detailed overview). The key idea behind VDNS is to (heuristically) explore

a large neighborhood by constructing a chain of moves, with each move belonging to a

smaller neighborhood. In this way, a large part of the solution space is searched, including

moves involving a large number of elements, whilst avoiding excessive computation times.

This simple yet successful idea dates back to Lin and Kernighan [1973], who used it to

construct an efficient heuristic for the Traveling Salesman Problem (TSP). The concept of

VNDS has been applied to a wide range of difficult combinatorial optimization problems

ever since.

To apply VDNS one first needs to define a parametrized neighborhood Nk, satisfying

N1 ⊆ . . . ⊆ Ni ⊆ . . . ⊆ Nn.

Typical examples of such neighborhoods are the k-permutation neighorhood, i.e., per-

muting k elements of the solution, or the k-arc exchange neighborhood considered in

Lin and Kernighan [1973]. The key idea is to first pick a suitably sized neighborhood

Ni, large enough to escape local optima and small enough to be searched efficiently, and

heuristically explore Nn by chaining together moves in the smaller neighborhood Ni. The

chain is constructed by making a profitable move in Ni, fixing the involved elements, and

repeating this until no more profitable moves exist. As noted in Johnson and McGeoch

[1997], this chaining of moves can be seen as a special type of tabu search, using a flexibly

sized tabu list. Figure 4 gives a schematic visualization of VDNS.

14

Nn

Ni+1

Ni

Figure 4: Schematic visualization of VDNS. The parametrized neighborhood Nk is heuris-
tically searched (indicated by the dashed area) by chaining Ni moves. The resulting move
can be part of Ni, Ni+1, or even Nn, implying that the ‘depth’ of the move is not fixed.

Crucial for VDNS to work is a suitably picked neighborhood. In particular, the neighbor-

hood should (i) be able to escape local optima, (ii) be searchable in reasonable time, and

(iii) guarantee that the solution remains feasible, or at least can be easily made feasible.

The latter depends heavily on the structure of the underlying problem. In case of a fixed

basic schedule, for example, duties cannot be freely exchanged (e.g., a late duty on Mon-

day cannot be exchanged with an early duty on Monday nor a late duty on Tuesday).

We therefore propose two neighborhoods for the VDNS algorithm, based on two different

duty exchange operations: vertical and horizontal duty exchanges.

Vertical k-exchanges are exchanges between k duties of the same type and in the same

column, i.e., they are vertically aligned. This assures that the involved duties can always

be exchanged without violating the basic schedule, i.e., the structure of the solution is

not affected by a vertical exchange. The feasibility with respect to the roster constraints

can be readily checked when performing an exchange, hence the feasibility of the solution

can always be assured. Note that the vertical k-exchange neighborhood can be searched

in O
(
|D|k

)
time. Figure 5a gives an example of a vertical 3-exchange. We will denote

the vertical k-exchange neighborhood by Vk.

Horizontal k-exchanges are a more involved type of exchange, affecting duties of different

types and in different columns. The horizontal exchange neighborhood aims at comple-

menting the vertical exchange neighborhood, which can get stuck in local optima due to

the restriction to one single column. Formally, a horizontal k-exchange, for k even, is

a sequence of k/2 vertical 2-exchanges, where each 2-exchange shares at least one row

with its predecessor. Figure 5b gives an example of a horizontal 4-exchange. By consid-

ering a sequence of multiple vertical 2-exchanges we allow duties of different weekdays

and types to be affected within a single exchange, i.e., one exchange can involve multiple

duties in one row. Furthermore, we limit the search time by only considering sequences

where consecutive exchanges share a row: It is not difficult to show that the horizon-

15

Mon Tue Wed Thur Fri Sat Sun

44 R 52 119 R 64 38

R R 105 111 123 R R

118 107 115 R 108 R 106

126 124 R 13 54 40 R

(a) State 1: vertical 3-exchange involving Monday

Mon Tue Wed Thur Fri Sat Sun

118 R 52 119 R 64 38

R R 105 111 123 R R

126 107 115 R 108 R 106

44 124 R 13 54 40 R

(b) State 2: horizontal 4-exchange involving Wednesday and Friday

Mon Tue Wed Thur Fri Sat Sun

118 R 52 119 R 64 38

R R 115 111 108 R R

126 107 105 R 123 R 106

44 124 R 13 54 40 R

(c) State 3: final roster

Figure 5: Example of horizontal and vertical exchanges. First, a vertical 3-exchange is
performed on the the Monday duties 44, 118 and 126. Then, a horizontal 4-exchange is
performed on the Wednesday duties 105 and 115, and the Friday duties 108 and 123.

tal k-exchange neighborhood can be searched in O
(
|D|k/2+1

)
time. We will denote the

horizontal k-exchange neighborhood by Hk.

The proposed VDNS algorithm combines chains of horizontal 4- and vertical 3-exchanges,

searchable in O
(
|D|3

)
time, with horizontal 6- and vertical 4-exchanges, searchable in

O
(
|D|4

)
time. This is done similar to the Dynamic Depth-EXchange (DEX) algorithm,

introduced in Borndörfer et al. [2015]: We combine H4+V3 chains, i.e., chains of horizontal

4- and vertical 3-exchanges, with single H6 + V4 moves to escape local optima. These

neighborhoods are large enough to escape local optima, and small enough to be considered

efficient.

The final VDNS algorithm is shown in Figure 6. Starting from an initial solution, we

construct improving H4 + V3 chains. Here we allow for some small deterioration in the

chaining process, to add more flexibility to the search. Once the chaining procedure

finishes, i.e., the best H4 + V3 move among the non-fixed duties leads to too much of a

cost increase, the solution is updated and all duties are removed from the set of fixed

duties. If an improving chain was found, we again search for an improving chain for the

updated solution. Otherwise, we try to escape the current local optimum by using one

(strictly profitable) H6 + V4 move. If this succeeds, we repeat the chaining procedure for

the updated solution. Otherwise the algorithm terminates and the final solution is found.

16

Initial solution x Current solution x

Return x

H4 + V3-chain

Find best H4 + V3 move,

allow small deterioration

Update x,

fix involved

duties

empty fixed

duty list, chain

is improving?

Find strict improving H6 + V4 move

no

yes

no

yes

no

yes

Figure 6: Schematic visualization of the VDNS algorithm. An initial solution is improved
using H4 + V3 chains. If no improving chain can be found, a single H6 + V4 move is con-
sidered. In case no profitable H6 + V4 move exists, the algorithm terminates. Otherwise,
the algorithm continues the search for improvements using H4 + V3 chains.

6 Computational Experiments

To evaluate the performance of the heuristic, we apply our solution approach to different

instances based on data from NS. In Section 6.1 we discuss the experimental set-up and

in Section 6.2 we show the computational results.

6.1 Experimental Set-Up

We consider a total of 10 instances. The first four instances are those considered in

Breugem et al. [2017], and can be used to validate the performance of the heuristic,

as the optimal solutions are known for these instances. For the remaining six (larger)

instances, no optimal solutions are known.

The instances each consist of basic schedules and duties that need to be assigned to these

schedules. The basic schedules specify a type, i.e., a duty type or a day off, for each cell.

The considered duty types are early, late, and night. Based on the types of the duties

that need to be assigned, each roster group can be (roughly) categorized in one of three

categories: early, late-night, and mixed (i.e., all three types). We refer to these categories

as E, LN, and M, respectively.

For each instance, Table 1 shows the number of duties of each type, and the size of the

groups per category (i.e., the entry 12/8 for LN means the instance contains one LN group

17

Duties Employees

E L N Total E LN M Nr Groups

1 55 29 29 113 14 12 4 3
2 58 33 24 115 12 12 4 3
3 38 22 11 71 6 6 6 3
4 37 17 15 69 6 8 6 3

5 74 62 55 191 12 12/12 12 4
6 88 36 31 155 14 8 12/6 4
7 86 36 37 159 12/6 12 12 4
8 74 30 16 120 6/6 8 12 4

9 126 70 54 250 14/6 12/8 12/12 6
10 142 63 61 266 12/12 12/8 12/12 6

Table 1: Characteristics of the instances. For each instance, the number of duties of type
early (E), late (L), and night (N) is shown, together with the total number of duties,
and the number of employees of each category early (E), late-night (LN), and mixed (M).
Finally, the number of roster groups per instance is shown.

of 12 employees and one LN group of 8 employees). The first four instances all consist

of three groups, one of each type, of varying sizes. The second four instances all consist

of four groups of varying type and varying size. The fifth instance is the largest among

these four, with approximately 190 duties, whereas the eighth instance is the smallest,

with roughly 120 duties. The final two instances both consist of six groups, with two

groups of each type. The total number of duties for both instances is roughly 250. The

size of these instances corresponds to the size of the pilot study mentioned in Section 1.

The perceived fairness is based on five different duty attributes. These include three

attributes concerning the scheduled work: the percentages of high quality work (e.g., In-

tercity work), aggression work (e.g., trips where passengers are less likely to have a ticket,

and hence might become aggressive), and double decker work (as work on double decker

trains is physically more demanding). Furthermore, there are two attributes regarding

the entire duty: the duty length, and the repetition within duty (as duties with many of

the same trips are repetitive, which is considered undesirable).

The perceived attractiveness is determined by four types of roster constraints. These

types can be divided into two classes. The first class contains ‘binary’ roster constraints,

i.e., roster constraints linking exactly two cells in the basic schedule. This class contains

the so-called rest time end rest day constraints: It is required that an employee has

a minimum rest time after each duty. After a night duty this rest time should be 14

hours and after any other type of duty it should be 12 hours. Furthermore, rest times

shorter than 16 hours are penalized. In addition, the length of each scheduled rest period

has to be sufficient. This implies that there is a minimal time enforced between duties

scheduled before and after rest days. The enforced rest time is 6 hours plus 24 hours

18

for each rest day. The second class of roster constraints consists of ‘row-based’ roster

constraints. This class contains workload constraints, i.e., the total workload in a row

is not allowed to exceed 45 hours, and a large collection of variation constraints. This

latter type of constraint aims at balancing different duty attributes (e.g., duty length,

percentage double decker work) equally over the rows, which is achieved by penalizing

positive deviations from the average (measured over all duties) for each row in the roster.

In total we consider variation constraints for 9 different attributes. Note that the stronger

bound obtained from the row-based formulaton (compared to the cell-based formulation)

results from capturing the row-based roster constraints directly in the roster sequence

costs.

6.2 Computational Results

We evaluated the heuristic solution method on each of the ten instances using different

fairness budgets. The cell-based formulation used in the first phase is solved using CPLEX

12.7.1 (from hereon simply referred to as CPLEX), with a time limit of 30 minutes, i.e.,

whenever no feasible allocation is found within 30 minutes the fairness budget is considered

infeasible. The optimization problem per roster group, when a feasible allocation is found,

is solved to optimality using the branch-price-and-cut approach developed in Breugem

et al. [2017]. For the pairwise improvement step in the second phase, we allow a solving

time of two minutes per pair. The linear relaxation of the row-based formulation is solved

using the column generation approach proposed in Breugem et al. [2017], and the reduced

problem is again solved using CPLEX.

The results for the first four instances are shown in Table 2. For each instance, we consider

five different fairness levels: extreme, high, moderate, low, and poor. The corresponding

fairness budgets are obtained as follows. We first determine the exact trade-off curve

between perceived fairness and attractiveness, using the branch-price-and-cut algorithm

of Breugem et al. [2017]. We then pick the fairness budgets for each level based on the

quantiles of the trade-off curve: extreme corresponds to the leftmost (i.e., fairest) point,

high to the 10% quantile, moderate to the 25% quantile, low to the 50% quantile, and,

finally, poor to the 75% quantile of the curve. In this way, we assure that the fairness

levels cover the entire spectrum of possible solutions.

Table 2 shows that the heuristic finds high-quality, close to optimal, solutions for all

but a few instances. For the extreme fairness level, the solution found in the first phase

coincides with the optimal solution for all four instances. As Table 2 shows, the major

improvement is often achieved in the second phase of the algorithm, i.e., the pairwise

improvement phase. The third phase generally improves only slightly upon this solution.

There are, however, also some cases (e.g., instance 2) in which the third phase greatly

improves upon the second phase. Note that for most of the instances, there is a substantial

integrality gap.

19

Fairness Phase 1 Phase 2 Phase 3 Optimal Root Gain (%) Gap (%)

1

Extreme 1175.8 1175.8 1175.8 1175.8 1155.6 0.0 0.0
High 1172.6 1172.6 1169.2 1133.4 0.3 0.3
Moderate 1172.3 1172.3 1164.2 1128.5 0.3 0.7
Low 1172.3 1165.8 1133.8 1115.4 0.8 2.7
Poor 1143.1 1142.7 1120.8 1104.8 2.8 1.9

2

Extreme 1288.0 1288.0 1288.0 1288.0 1172.3 0.0 0.0
High 1288.0 1248.6 1216.4 1158.3 3.1 2.6
Moderate 1257.3 1226.3 1192.2 1149.3 4.8 2.8
Low 1257.3 1210.2 1186.1 1135.8 6.0 2.0
Poor 1204.5 1196.7 1177.8 1126.6 7.1 1.6

3

Extreme 979.3 979.3 979.3 979.3 800.9 0.0 0.0
High 979.3 979.3 853.8 793.4 0.0 12.8
Moderate 859.0 859.0 830.3 788.4 12.3 3.3
Low 802.4 802.4 794.0 781.5 18.1 1.0
Poor 791.3 787.5 787.5 777.6 19.6 0.0

4

Extreme 910.5 910.5 910.5 910.5 776.7 0.0 0.0
High 872.1 872.1 847.2 767.3 4.2 2.9
Moderate 872.1 872.1 827.7 761.3 4.2 5.1
Low 808.4 808.4 788.0 746.8 11.2 2.5
Poor 774.2 774.2 774.2 742.7 15.0 0.0

Table 2: Results for the first four instances for five different fairness levels. For each
instance and each fairness level, we show the objective values, i.e., perceived attractiveness
penalty, obtained in the different phases of the heuristic, the optimal solution value, the
root bound, the gain compared to the benchmark solution (i.e., Phase 1), and the gap
with the optimal solution.

The computation times for each instance and each fairness level are shown in Table 3. The

overall computation times are decomposed per fairness level and phase of the algorithm.

Furthermore, we show the total computation times for the solutions for each fairness level

found in Phases 2 and 3: The sequential nature of Phase 2 implies that solutions for low

fairness levels are found only after the solutions for the higher fairness levels are already

computed. The total computation times take these additional computations into account.

Table 3 shows that in almost all cases the computation time of the heuristic is an order of

magnitude smaller than the time necessary for the exact approach. Only for a few fairness

levels, the computation time of the branch-price-and-cut algorithm is comparable with

those of the heuristic. For instances 3 and 4, we observe that the heuristic only needs

half a minute, wheres the exact approach can take up to more than one hour. Finally,

Table 3 shows that the time necessary for the pairwise improvement step in Phase 2, is

substantially smaller than the time necessary for Phase 3.

For instances 5 to 10, computing the exact trade-off curve is computationally intractable.

We therefore solve each instance for four fairness levels, and compare with the lower

bound based on the linear relaxation of the row-based formulation. We consider the

fairness levels extreme, high, moderate, and low. These fairness levels correspond to the

a priori determined fairness budgets 2, 3, 5 and 10. To intuitively understand and relate

20

Fairness Phase 1 Phase 2 Total Phase 2 Phase 3 Total Phase 3 Optimal

1

Extreme 21 25 46 171 217 99
High 13 59 172 231 979
Moderate 28 87 168 255 1102
Low 25 112 191 303 507
Poor 15 127 193 320 1009

2

Extreme 83 77 160 132 292 479
High 77 237 172 409 460
Moderate 76 313 174 487 533
Low 77 390 163 553 721
Poor 35 425 172 597 2769

3

Extreme 0 1 1 24 25 2315
High 1 2 24 26 1093
Moderate 0 2 26 28 686
Low 0 2 25 27 50
Poor 0 2 24 26 28

4

Extreme 2 3 5 23 28 5346
High 3 8 23 31 2498
Moderate 1 9 23 32 5044
Low 0 9 25 34 1306
Poor 0 9 25 34 629

Table 3: Computation times for the first four instances for five different fairness levels.
For each instance and each fairness level, the computation times for each phase are shown
(in seconds). Furthermore, we show the total computation time for Phase 2 and 3, since
Phase 2 is solved sequentially, and hence the computation times are cumulative. Finally,
the computation times of the branch-price-and-cut algorithm are shown.

the chosen fairness budgets, consider that, for groups of about 10 employees, a two unit

difference in fairness budget could imply that one group is assigned one full Intercity duty

less than the other groups, or has to work about half an hour longer in one row of the

schedule compared to the other groups. From a practical point of view, such differences

are substantial and undesirable, also because these differences persist throughout the

entire year. The results are shown in Table 4.

Table 4 shows that the heuristic increases the attractiveness greatly: For 12 out of 18

instances, the improvement was more than 20%, and only for one instance the improve-

ment was not substantial. The improvement for the largest two instances is especially

large. Furthermore, the largest gains are obtained for the less strict fairness levels. This

is intuitive, as the focus on fairness is less, and hence the loss of not taking attractiveness

into account when allocating the duties over the groups will be larger. Note that a major

part of the improvement is in the pairwise improvement phase, i.e., the second phase,

and only a small further improvement is obtained in the third phase. For some instances,

however, the third phase allows for a substantial improvement (e.g., for instance 8). The

gap with the root bound indicates that the found solutions are of high quality, although

in some cases a substantial gap is still present. We note, however, that a substantial

integrality gap can be expected, especially for tight fairness budgets, as was also noted in

Table 2.

21

Fairness Phase 1 Phase 2 Phase 3 Root Gain (%) Gap (%)

5

Extreme 2041.5 2041.5 2039.5 1542.5 0.1 24.4
High 1780.2 1778.2 1529.0 12.9 14.0
Moderate 1668.0 1630.5 1514.5 20.1 7.1
Low 1546.2 1544.1 1491.8 24.4 3.4

6

Extreme 1811.7 1651.6 1650.4 1296.4 8.9 21.4
High 1513.2 1512.0 1291.5 16.5 14.6
Moderate 1412.4 1411.1 1282.3 22.1 9.1
Low 1358.2 1356.9 1265.7 25.1 6.7

7

Extreme 1956.3 1559.0 1557.8 1328.4 20.4 14.7
High 1510.4 1503.7 1318.0 23.1 12.3
Moderate 1469.5 1465.1 1299.2 25.1 11.3
Low 1412.1 1410.7 1262.5 27.9 10.5

8
Moderate 1502.0 1397.4 1396.9 1120.4 7.0 19.8
Low 1292.7 1207.9 1097.8 19.6 9.1

9
Moderate 2877.0 2252.1 2249.2 1774.0 21.8 21.1
Low 2194.0 2182.3 1768.2 24.1 19.0

10
Moderate 3009.0 1863.7 1859.2 1526.0 38.2 17.9
Low 1759.6 1759.6 1486.5 41.5 15.5

Table 4: Results for instances 5 to 10. Each instance is solved for four different fairness
levels: extreme, high, moderate, and low. For each instance and each fairness level, we
show the objectives obtained in the different phases of the heuristic, the gain compared
to the benchmark solution (i.e., Phase 1), and the gap with the root bound obtained from
the row-based formulation. Omitted rows indicate that no feasible allocation could be
found within the time limit of 30 minutes.

The computation times for the second set of instances are shown in Table 5. Similar to

Table 3, we show the computation times per fairness level and phase of the algorithm,

together with the total computation times for Phases 2 and 3.

The running times shown in Table 5 can be considered well-suited for practice: The

second phase has a running time of a few minutes, the same order of magnitude as the

first phase, and the third phase stays within two hours for all instances. Note that, for

instances 8, 9, and 10, the running time for Phase 1 does not include the time for fairness

levels Extreme and High, for which no solution could be found within the time limit of

half an hour.

Summarizing, our experiments show that the heuristic approach complements the exact

branch-and-price method developed in Breugem et al. [2017]. The algorithm is able to

find close-to-optimal solutions for the first set of instances, and greatly improves upon

the sequential approach for the second set of instances. Furthermore, a major part of this

improvement is due to the pairwise improvement in the second phase of the algorithm,

which runs orders of magnitude faster than the branch-and-price approach. The third

phase is more time consuming, but can realize a substantial improvement.

22

Fairness Phase 1 Phase 2 Total Phase 2 Phase 3 Total Phase 3

5

Extreme 167 301 468 1020 1488
High 214 682 1079 1761
Moderate 25 707 1232 1939
Low 15 722 1068 1790

6

Extreme 56 201 257 731 988
High 47 304 767 1071
Moderate 11 315 740 1055
Low 8 323 815 1138

7

Extreme 512 92 604 695 1299
High 11 615 728 1343
Moderate 30 645 871 1516
Low 8 653 746 1399

8
Moderate 7 46 53 309 362
Low 4 57 361 418

9
Moderate 23 328 351 4594 4945
Low 26 377 5452 5829

10
Moderate 127 58 185 6335 6520
Low 38 223 5546 5769

Table 5: Computation times for the instances 5 to 10, for the four different fairness levels.
For each instance and each fairness level, the computation times for each phase are shown
(in seconds). Furthermore, we show the total computation time for the solutions found
in Phase 2 and 3, to account for the sequential approach used in Phase 2. Omitted rows
indicate that no feasible allocation could be found within the time limit of 30 minutes.

7 Conclusion

In this paper, we proposed a heuristic method for the Cyclic Crew Rostering Problem with

Fairness Requirements (CCRP-FR), a variant of the Fairness-oriented Crew Rostering

Problem (FCRP). In this problem, attractive rosters have to be constructed for a fixed,

a priori known, set of fairness levels. The development of the heuristic solution approach

is motivated by practice: The crew rostering problem is generally solved multiple times

for varying parameter settings, implying that, even during the tactical planning phase,

it is desirable that high quality solutions can be obtained quickly. Also, the underlying

complexity of the problem implies that exact methods are incapable of coping with some

of the large instances encountered in practice.

The developed three-phase heuristic combines the strengths of the exact apprach for

the FCRP developed in Breugem et al. [2017] with a large-scale neighborhood search

algorithm. The design of the heuristic assures that good solutions for all fairness levels

are obtained quickly, and can still be further improved if additional running time is

available.

We evaluated the heuristic on real-world data from NS. We showed that the heuristic

finds close to optimal solutions for many of the considered instances. Furthermore, the

23

computation times are generally an order of magnitude smaller than the time necessary

for the branch-price-and-cut approach. In particular, the computational results show that

the heuristic is able to quickly find major improvements upon the sequential approach:

For most instances the heuristic is able to reduce the attractiveness penalty by at least

20% in just a few minutes. Furthermore, the heuristic also provides a lower bound which

gives an estimate of the solution quality. This bound indicates that the heuristic finds

high-quality solutions, also for the instances for which no optimal solution is known.

The running time of the heuristic can be considered well-suited for practice, even for the

largest instances: The second phase has a running time of a few minutes, similar to the

first phase, and the third phase stays within two hours for all instances.

References

E. Abbink, M. Fischetti, L. Kroon, G. Timmer, and M. Vromans. Reinventing crew

scheduling at Netherlands Railways. Interfaces, 35(5):393–401, 2005.

R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-scale

neighborhood search techniques. Discrete Applied Mathematics, 123(1-3):75–102, 2002.

D. Bertsimas and S. Gupta. Fairness and collaboration in network air traffic flow man-

agement: an optimization approach. Transportation Science, 50(1):57–76, 2015.

D. Bertsimas, V. F. Farias, and N. Trichakis. On the efficiency-fairness trade-off. Man-

agement Science, 58(12):2234–2250, 2012.

D. Bertsimas, V. F. Farias, and N. Trichakis. Fairness, efficiency, and flexibility in organ

allocation for kidney transplantation. Operations Research, 61(1):73–87, 2013.

R. Borndörfer, M. Reuther, T. Schlechte, C. Schulz, E. Swarat, and S. Weider. Duty

rostering in public transport-facing preferences, fairness, and fatigue. In CASPT, 2015.

R. Borndörfer, C. Schulz, S. Seidl, and S. Weider. Integration of duty scheduling and

rostering to increase driver satisfaction. Public Transport, 9(1-2):177–191, 2017.

T. Breugem, T. Dollevoet, and D. Huisman. Is equality always desirable? Analyzing

the trade-off between fairness and attractiveness in crew rostering. Technical Report

EI2017-30, Econometric Institute, 2017.

A. Caprara, M. Fischetti, P. Toth, D. Vigo, and P. L. Guida. Algorithms for railway crew

management. Mathematical Programming, 79(1-3):125–141, 1997.

A. Caprara, L. Kroon, M. Monaci, M. Peeters, and P. Toth. Passenger railway opti-

mization. Handbooks in Operations Research and Management Science, 14:129–187,

2007.

24

J. F. Cordeau, G. Stojković, F. Soumis, and J. Desrosiers. Benders decomposiion for

simultaneous aircraft routing and crew scheduling. Transportation science, 35(4):375–

388, 2001.

G. B. Dantzig. Letter to the editor-A comment on Edie’s “traffic delays at toll booths”.

Journal of the Operations Research Society of America, 2(3):339–341, 1954.

P. De Causmaecker and G. Vanden Berghe. A categorisation of nurse rostering problems.

Journal of Scheduling, 14(1):3–16, 2011.

M. Desrochers and F. Soumis. A column generation approach to the urban transit crew

scheduling problem. Transportation Science, 23(1):1–13, 1989.

A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and rostering: A

review of applications, methods and models. European Journal of Operational Research,

153(1):3–27, 2004.

R. Freling, R. M. Lentink, and A. P. M. Wagelmans. A decision support system for

crew planning in passenger transportation using a flexible branch-and-price algorithm.

Annals of Operations Research, 127(1-4):203–222, 2004.

M. Grötschel, R. Borndörfer, and A. Löbel. Duty scheduling in public transit. In

Mathematics-Key Technology for the Future, pages 653–674. Springer, 2003.

A. Hartog, D. Huisman, E. Abbink, and L. Kroon. Decision support for crew rostering

at NS. Public Transport, 1(2):121–133, 2009.

K. L. Hoffman and M. Padberg. Solving airline crew scheduling problems by branch-and-

cut. Management Science, 39(6):657–682, 1993.

D. Huisman, R. Freling, and A. P. M. Wagelmans. Multiple-depot integrated vehicle and

crew scheduling. Transportation Science, 39(4):491–502, 2005a.

D. Huisman, L. G. Kroon, R. M. Lentink, and M. J. C. M. Vromans. Operations research

in passenger railway transportation. Statistica Neerlandica, 59(4):467–497, 2005b.

D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case study in

local optimization. Local search in combinatorial optimization, 1(1):215–310, 1997.

N. Kohl and S. E. Karisch. Airline crew rostering: Problem types, modeling, and opti-

mization. Annals of Operations Research, 127(1-4):223–257, 2004.

L. Lettovskỳ, E. L. Johnson, and G. L. Nemhauser. Airline crew recovery. Transportation

Science, 34(4):337–348, 2000.

S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman

problem. Operations Research, 21(2):498–516, 1973.

25

M. Mesquita, M. Moz, A. Paias, and M. Pato. A decomposition approach for the inte-

grated vehicle-crew-roster problem with days-off pattern. European Journal of Opera-

tional Research, 229(2):318–331, 2013.

J. Nash. The bargaining problem. Econometrica: Journal of the Econometric Society,

pages 155–162, 1950.

D. Pisinger and S. Ropke. Large neighborhood search. In Handbook of metaheuristics,

pages 399–419. Springer, 2010.

D. Potthoff, D. Huisman, and G. Desaulniers. Column generation with dynamic duty

selection for railway crew rescheduling. Transportation Science, 44(4):493–505, 2010.

J. Van den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester, and L. De Boeck.

Personnel scheduling: A literature review. European Journal of Operational Research,

226(3):367–385, 2013.

L. Xie and L. Suhl. Cyclic and non-cyclic crew rostering problems in public bus transit.

OR Spectrum, 37(1):99–136, 2015.

26

