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Abstract

Empirical studies are fundamental in assessing the effectiveness of implementations of branch-and-

bound algorithms. The complexity of such implementations makes empirical study difficult for a wide

variety of reasons. Various attempts have been made to develop and codify a set of standard tech-

niques for the assessment of optimization algorithms and their software implementations; however,

most previous work has been focused on classical sequential algorithms. Since parallel computation

has become increasingly mainstream, it is necessary to re-examine and modernize these practices. In

this paper, we propose a framework for assessment based on the notion that resource consumption

is at the heart of what we generally refer to as the “effectiveness” of an implementation. The pro-

posed framework carefully distinguishes between an implementation’s baseline efficiency, the efficacy

with which it utilizes a fixed allocation of resources, and its scalability, a measure of how the effi-

ciency changes as resources (typically additional computing cores) are added or removed. Efficiency

is typically applied to sequential implementations, whereas scalability is applied to parallel imple-

mentations. Efficiency and scalability are both important contributors in determining the overall

effectiveness of a given parallel implementation, but the goal of improved efficiency is often at odds

with the goal of improved scalability. Within the proposed framework, we review the challenges to

effective evaluation and discuss the strengths and weaknesses of existing methods of assessment.

Key words: effectiveness, efficiency, performance, scalability, algorithm assessment, branch-and-

bound, benchmarking
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1 Introduction

This paper considers the challenging question of how to assess and compare the widely differing imple-

mentations of what is perhaps the most well-known algorithmic paradigm for solving NP-hard discrete

optimization problems—the branch-and-bound algorithm. We introduce a general framework for as-

sessing the effectiveness of branch-and-bound-based algorithms that is broadly applicable but with a

particular focus on algorithms for solving difficult discrete optimization problems. We indicate how

the current methodology for assessment fits into our framework and also review some of the challenges

in performing such assessment. To this end, we highlight some ways that existing methods are not

well-suited for measuring aspects of effectiveness, particularly in the case of parallel implementations.

As many terms are overloaded or inconsistently used in the literature when discussing the assessment

of implementations one of the first challenges is to develop a clear and consistent terminology. In

Section 2, we introduce a formal language for describing the measurable properties of algorithms that

we use to assess them. Throughout the paper, we use the term effectiveness in a general way to denote

the overall combination of these measurable properties that leads to their observed behavior in practice.

Other, more common terms related to the assessment of implementations will be used in a more technical

way.

Although branch-and-bound is often described as an “algorithm,” its general description leaves the

implementation of several critical procedures unspecified. As such, branch-and-bound is more a general

algorithmic framework than a complete algorithm. In the decades since the first variant was described

by Land and Doig [41], a vast number of adaptations have subsequently been presented in the literature,

making it one of the most widely implemented algorithmic approaches for solving difficult discrete

optimization problems.

The flexibility of the basic framework gives it tremendous power to solve a wide variety of problems.

Unfortunately, this power leads to a level of sophistication of implementations that makes rigorous

assessment and comparison much more challenging. The comparison of differing implementations has

traditionally been approached by assessing effectiveness on a fixed set of test instances, which must

be carefully chosen in order to allow a fair comparison (or even to make comparison possible at all).

Unfortunately, in some important cases, the use of a fixed test set for purposes of comparison is simply

not feasible using traditional measures of effectiveness. In particular, when comparing parallel scalability,

this method of assessment requires not only that instances are solvable by all implementations on a single

(or a small number) of cores1, but also that the instances are not “too easy.” Obtaining a set of such test

instances large enough to draw valid and generalizable conclusions is difficult, especially when comparing

implementations with contrasting strengths.

Generally speaking, there are two substantially different approaches to the assessment of algorithms:

theoretical and empirical. Theoretical analysis has many advantages, most notably the rigor of the

1We use this term throughout to informally refer to units of hardware capable of doing a single sequential computation.
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underlying analysis. It also eliminates many of the difficulties and confounding factors related to prop-

erties of the hardware, programming language used, compiler, programmer skill, and other extraneous

environmental factors that interfere with analysis of the algorithm itself.

Unfortunately, in the case of discrete optimization, the tools for theoretical analysis that currently

exist are largely inadequate for the task. The worst-case measure by which implementations are tradition-

ally judged in a formal complexity analysis (due to the difficulties associated with doing an average-case

or other types of analysis) is not capable of distinguishing between variants of branch-and-bound, all of

which are theorized at present to have the same or similar worst-case behavior. That leaves little option

but to compare implementations empirically.

Within the empirical realm, computational experimentation is the main tool employed by researchers

for assessing the relative effectiveness of both algorithms and software. While there has long been a heavy

reliance on computational experiments, relatively little effort has gone into the development of a rigorous

science of experimental analysis for algorithms. While some best practices have been discussed, much

of the early work is now dated and newer technology calls for updated techniques that unify concepts

of analysis for both sequential and parallel implementations. In what follows, we propose a unified

framework for assessing the effectiveness of algorithms.

1.1 Basic Setting

A (mathematical) optimization problem is that of determining

z∗ = min
x∈F

f(x), (1)

where f : Rn → R is a given objective function and

F = {x ∈ Zp × Rn−p | gi(x) ≤ bi, 1 ≤ i ≤ m}

is the feasible set. We assume for convenience that f is continuous and F is compact so that the minimum

exists. A class of such optimization problems is a parametric family in which the feasible regions and

objective functions have a certain well-defined structure, i.e., the functions, f(x) and gi(x), are from

a particular class (e.g., linear functions) that are parameterized on certain input data. In such a case,

specific values of the input parameters correspond to a specific instance in the class. Typically, a class

contains instances with arbitrarily large numbers of variables and constraints.

Discrete optimization problems can be roughly defined as those for which at least some fixed pro-

portion of the variables must take integer values in all feasible solutions. Such problems are particularly

amenable to solution by a search algorithm, such as branch-and-bound. We do not describe branch-

and-bound itself in detail, since it is well-described in many other places. For a formal description of

branch-and-bound in the context of solving discrete optimization problems, including an introduction

to the issues arising in its parallelization, we refer the reader to Ralphs et al. [50].
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We consider only exact algorithms. Such algorithms produce both an optimal solution x∗ ∈ argminx∈F f(x)

to (1) (when required) and a proof of the optimality of that solution (or a proof that some alternative

termination criteria have been satisfied). This proof usually comes in the form of a branch-and-bound

tree (see [28] for details on how such a tree encodes a proof) that provides global upper and lower bounds

on z∗ (upper and lower bounds are more generally referred to as primal and dual, respectively, to al-

low for the possibility that the sense of the optimization is maximization). These bounds are updated

throughout the solution process and the algorithm usually terminates when they are (approximately)

equal. In cases of early termination, such as when reaching a time limit, the reported bounds are likely

not equal but are nevertheless valid.

A fully rigorous empirical analysis requires distinguishing between an algorithm and its software

implementation. This in turn requires distinguishing between factors arising from i) properties of the

algorithm itself (as a mathematical abstraction); ii) incidental properties of the software implementation

(compiler, language, operating system kernel, etc.); and iii) incidental properties of the hardware on

which the experimentation is done (memory hierarchy, network topology, etc.). Such an analysis would

obviously be painstaking and impractical, but it’s still important to acknowledge that the inability to

account for these confounding variables is a significant limitation. An accounting of the full range of

confounding variables is beyond the scope of this paper. In acknowledgment of these challenges, we

have, however, endeavored to use the term implementation whenever we are speaking of the assessment

of a particular algorithm, since it is the implementation, not the algorithm itself, that is actually being

assessed.

There are innumerable practical aspects that we do not fully address in this work. It is unavoid-

able that different implementations may produce different solutions and different proofs for the same

problem—this is one of the difficult challenges we face. Most implementations do not actually output

the proof they construct (parts of the proof that are no longer relevant are typically discarded to save

memory), but rather only output the upper and lower bounds. Finally, as the computations are done in

finite precision arithmetic, the proofs produced are only approximate (see, e.g., [42]). While numerical

issues arising from the use of floating point computation and other practical limitations of typical im-

plementations are important in the study of these algorithms, they are less important in practice and

have little impact on the development of the concepts presented here. We therefore avoid unnecessary

discussion of these details.

1.2 Previous Work

Assessing the relative effectiveness of algorithms for solving mathematical optimization problems and

their software implementations dates back as far as the earliest packages for solving such problems. Since

the early days of computing, scores of papers have endeavored to present comparisons of the software

implementations of various algorithms. One of the first efforts to systematically evaluate optimization
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software is presented by Hoffman et al. [30] in the context of evaluating solvers for linear optimization

problems (LPs). Due to the inherent limitations of theoretical analysis of these algorithms, such empirical

comparisons have been crucial in assessing progress in the field and in evaluating the merit of different

algorithmic approaches. In the decades since, computational research has become mainstream and an

enormous number of papers have been published that touch on the issues surrounding empirical research

in general. We do not attempt to survey this entire literature, but rather refer the reader to the general

overview given by Lilja [42]. In what follows here, we briefly review the most closely related works from

the optimization literature.

The dependence on empirical assessment for research in optimization algorithms has prompted many

calls for improved standards and guidelines. One of the early works suggesting standards for computa-

tional experiments was from Ignizio [33], who argues that such standards are required to maintain the

high status of research in the field. The need for standards has lead to various attempts at laying out

guidelines to direct researchers in performing computational experiments. One set of recommendations

are provided by Crowder et al. [16], covering the experimental design, the selection of test instances, and

the possible measures for comparing algorithms. Building upon the work of Crowder et al. [16], Jackson

et al. [34] presents an updated set of guidelines for the reporting of computational results. While the

guidelines presented by Jackson et al. [34] are not prescriptive, they do highlight a number of factors

that should be considered when conducting computational experiments. Following the report on the

guidelines by Jackson et al. [34], a number of suggestions about conducting experiments have also been

made by Greenberg [26]. Later, another survey of many recommended best practices for experimental

analysis was given by Johnson [35].

The heavy reliance on empirical assessment in computational mathematical optimization has lead to

a number of proposals for increasing the rigor with which such analysis is done, but these have not met

wide adoption. One of the most comprehensive proposals for a more scientific approach to the empirical

analysis of algorithms was developed by McGeoch [44] in her dissertation (and in a later book [45]). This

was followed by a call by Hooker [31] for an empirical science of algorithms and a call by Moret [46,47]

for the development of a discipline of experimental algorithmics. This more scientific approach is to

be set apart from the more theoretical aspects of the analysis of algorithms, with a particular focus on

the evaluation of practical implementations. The difficulties associated with computational experiments

are further discussed in a subsequent paper by Hooker [32] with a focus on the evaluation of heuristic

methods. Further, Coffin and Saltzman [14] proposed methods for statistically analyzing experimental

data.

More recently, a review of the best practice for comparing optimization algorithms is presented

by Beiranvand et al. [9]; however, the discussions are primarily focused on continuous, unconstrained

optimization algorithms. A more in-depth discussion related to guidelines for computational experi-

ments is presented by Kendall et al. [36]. The focus of Kendall et al. [36] is the development of good
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laboratory practice for performing optimization-based research. An important topic relevant to discrete

optimization algorithms that is discussed by Beiranvand et al. [9] is the presentation of empirical data—

particularly methods for visualizing the results of computational experiments. There has been some

limited work done on this topic over time (see [14, 20, 35, 51]), but more focus is needed on this often

overlooked yet important topic.

Another topic that deserves more focused attention is the development of suitable objective measures

for assessing algorithm effectiveness. While Crowder et al. [15] covers all aspects of algorithm evaluation,

the literature on current practices regarding measures of effectiveness is limited. Primarily, Crowder et

al. [15] examines the classical measures of CPU time and iteration counts. Additionally, Crowder et

al. [15] propose the observed rate of convergence, which is aimed at assessing the empirical effective-

ness of iterative algorithms (in contrast to the theoretical rate of convergence, which is a worst-case

measure). The discussion presented by Ahuja and Orlin [3] reviews measures that can aid in gaining

further insight into the behavior of an algorithm. The suggestion by Ahuja and Orlin [3] is to evaluate

algorithms using representative operation counts. This measure is aimed at controlling effects that are

attributable to irrelevant details of the implementation and have little to do with assessment of the

mathematical algorithm itself. Moret [46] discusses choosing an appropriate measure, but makes no

specific recommendations. McGeoch [44,45] also discussed the choice of suitable measures in her work.

Most of the work mentioned so far has focused purely on optimization software designed to run on

a single core. The growth in multi-core computing technology introduced a wide array of additional

challenges in assessing the effectiveness of software implementation. As a result, many papers were

produced describing not only the implementation of parallel algorithms, but also how to measure their

performance. Many of the early papers focused on the most straightforward measures of strong scalability

(defined in Section 2.2), such as parallel speed-up. Barr and Hickman [7,8] summarize the general issues

surrounding assessment of parallel implementations and discuss how to compute parallel speed-up, also

observing that anomalous behavior, such as super-linear speed-up, is possible in some cases. They observe

that the proper evaluation of parallel scalability (defined later in Section 2.2) can lead to advances in

the underlying sequential implementations.

Despite the continued use of speed-up on a fixed test set as a measure of scalability, it was already

observed in the early days of parallel computing that this method of evaluation has many drawbacks.

Amdahl [4] famously noted that as long as there is a certain fraction of the computation that is in-

herently sequential, the parallel speed-up that can be achieved on a fixed computational task will be

limited, no matter how many additional resources are utilized. This observation is easily borne out in

practice. To overcome this limitation, it is necessary to scale up the computational task itself as the

resources are scaled in order to maintain an efficient usage. This more nuanced view was first promoted

by Gustafson [27] and was later taken up by many other authors, resulting in the development of the

notion of weak scalability. Kumar and Gupta [39] summarize many of the works from a large body of
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literature related to assessing scalability and describe notions similar to weak scalability, though they

do not use the term. A thorough yet succinct introduction to parallelization and different notions of

scalability can also be found in Chapter 5 of Hager and Wellein [29]. We discuss how these notions fit

into our own framework in Section 2.2.

1.3 Contributions

This paper presents a unified framework for assessment that incorporates independent yet interlinked

concepts of effectiveness—efficiency and scalability. These concepts link the assessment of sequential

and parallel algorithms, traditionally analyzed in different ways. At the core of the proposed framework

is an abstract concept of resource consumption based on the following ideas.

• The notion that resource consumption is at the heart of what is meant by “effectiveness” and that

assessment is primarily concerned with measuring how efficiently resources are being used, as well

as the trade-offs between different resources.

• The clear separation of baseline efficiency, applicable in an environment with fixed resources, and

scalability, applicable to environments with dynamically allocated resources.

• The differentiation of traditional measures of efficiency, from measures of progress and measures

of work, which can be used as proxies and allow the comparison of computations that cannot be

completed in a reasonable amount of time.

• A proposal for measuring weak scalability (defined later) based on a chosen measure of progress

that is more robust than the more familiar strong scalability that is typically used to assess parallel

implementations.

Through the lens of this framework, we discuss the strengths and limitations of existing practices for

the assessment of both sequential and parallel implementations of branch-and-bound algorithms. To the

best of our knowledge no recent discussion of this topic has attempted to view assessment in this broad

fashion. We hope this work contributes to the continued development of best practice for assessment,

but emphasize that it is intended more as a starting point than a final conclusion.

A key part of this work is to highlight a fundamental and vexing challenge in designing effective

parallel algorithms: the fact that the goal of achieving scalability and the goal of achieving efficiency

may be at odds, especially for branch-and-bound implementations. Better baseline efficiency very often

leads to decreased scalability. Although baseline efficiency is generally thought of as critically important,

good scalability matters more in the limit. Whether efficiency or scalability is more important in actual

practice depends crucially on the environment in which the implementation will be deployed. This is

why assessing and comparing implementations requires the separate analysis of efficiency and scalability.
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It’s also why one cannot always say whether one implementation is “better” than another. The measure

of goodness has multiple objectives.

To aid the exposition of the concepts in this paper, examples from various computational ex-

periments are presented. These computational experiments involve using various branch-and-bound

implementations—sequential and parallel—to solve the instances from the MIPLIB2010 benchmark test

set [37]. Due to limitations of the comparison methods being described, it is not possible to use all

instances of the test set in every example. In each of the following examples, the method for selecting

the instances is clearly described. All computational experiments have been conducted using a cluster

of Intel Xeon E5-2670 CPUs with 2.50GHz and 6.6 GB memory per core.

2 Assessing Effectiveness

One way of informally formulating the goal of assessment is as a methodology for approximating the

(cumulative) probability distribution function of some measure of effectiveness across all instances in a

certain class. When comparing implementations, it is the true probability distributions that we would

ideally like to use for comparison, but because the true distributions are unknown, we must approximate

them by determining the empirical cumulative distribution function (CDF) with respect to a smaller set

of test instances that are chosen so as to be representative of the full class (see Section 3.3). This is a

rough approximation at best and a uniform probability distribution is typically assumed for simplicity.

Solution of these instances constitute the benchmark computation. In general, there are two distinct

steps in comparing the effectiveness of algorithm implementations:

1. Measure the effectiveness of each implementation with respect to one or more chosen measures on

a set of selected instances individually.

2. Aggregate this data for each implementation and then produce either summary statistics or a

visualization (or both) that enables valid conclusions to be drawn about effectiveness across an

entire test set (and ultimately across an entire class of instances).

The goal of the latter step is typically to identify which algorithm is “better.” This choice is obviously

subjective. So, the goal in summarizing and/or visualizing is usually to enable the reader of the study

to draw their own conclusions based on the data. Any general conclusions regarding dominance of one

implementation over another should ideally be done using statistical methods, as mentioned earlier,

though this is difficult to do in a rigorous way.

A central aspect of our framework for assessing the effectiveness of an implementation is the mea-

surement of the resources required to perform the benchmark computation.

Definition 1. A resource is an auxiliary input, some measurable quantity of which is required to produce

the result of a computation.
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The notion of a resource is most typically associated with hardware, primarily compute cores and

memory, but the notion is very general and can also include more abstract things like energy. The

underlying assumption is that the required resources have a cost and that the goal of the computation

is to minimize the overall cost. One important resource that is not concretely associated with physical

hardware is time, the measurement of which is both crucial and difficult. Two differing notions of time

are wall clock and CPU time.

Definition 2. Wall clock time is a measure of the amount of real time required to perform a computation.

Definition 3. CPU time is a measure of the actual number of atomic operations required to perform a

computation, typically scaled by the amount of real time required to perform such an operation.

In the case of a sequential computation on a single core, CPU and wall clock time typically do not differ

much and the distinction may be unimportant. The distinction is crucial in the case of measuring the

effectiveness of parallel implementations. In parallel computations, core hours are a related resource that

may be limited both in total quantity and in the rate at which they are delivered. The way in which

core hours are allocated to a computation plays a rather unique role in the analysis, as further described

in Section 2.2. For now, we simply note that, assuming no other computational tasks are competing

for these resources during testing, the number of core hours allocated to a computation is simply the

wall clock time multiplied by the number of cores. For a more detailed discussion of the details of time

measurement we refer the reader to Lilja [42].

In what follows, we distinguish carefully between the two aspects of effectiveness that were mentioned

earlier. Efficiency measures the effectiveness with which an implementation utilizes a fixed set of allo-

cated resources. Scalability considers the trade-off between resources that can be allocated dynamically

(e.g., using more cores to reduce the wall clock time).

The scalability and efficiency of an implementation combine to determine how effective it will be in

practice. However, one must carefully consider the trade-off between these when designing algorithms in

modern computing environments. It is possible for an implementation to have good baseline efficiency

and poor scalability, as well as the reverse. An example of such behavior is shown in Table 1, which

presents the wall clock execution times for the parallel implementation of both a naive branch-and-

bound algorithm for solving the knapsack problem, implemented using the ALPS framework (see Xu et

al. [56] for a complete description), and the branch-and-bound algorithm of a representative commercial

solver. The naive implementation, due to its lack of sophisticated algorithmic features, requires signif-

icantly more time than the commercial implementation on a single core but exhibits good reductions

in the required time as the number of cores is increased (i.e., good scalability). For the commercial

implementation, the addition of more cores results in a longer solution time, due to its excellent base-

line efficiency—making the efficient use of additional resources difficult. This is obviously an extreme

example, but it helps illustrate the trade-off between efficiency and scalability.
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Cores 1 4 8 16 32

ALPS (sec) 132.835 75.133 43.736 22.212 13.339

Speed-up 1.768 3.037 5.98 9.958

Commercial (sec) 0.01 0.01 0.02 0.03 0.22

Speed-up 1 0.5 0.333 0.045

Table 1: The solution times and parallel speed-up (see Section 4.2.2) for ALPS and a commercial

implementation when solving a knapsack problem instance.

The relative importance of efficiency and scalability in practice is a function of a number of factors,

including, but not limited to, the environment in which the algorithm will be deployed and the properties

of the instances to be solved. The fact that different implementations are tuned for different environments

is one of the things that makes comparison difficult. When comparing implementations, it is important to

take into account and measure these differing properties, in order to gain more insight into the trade-offs

between them.

2.1 Efficiency

Building on the abstract notion of resource consumption introduced above, a measure of efficiency is

defined as follows.

Definition 4. A measure of efficiency for a given benchmark computation is the amount of one chosen

resource that is required to perform that computation, with the level of all other resources fixed.

In a classical analysis, the number of cores is typically fixed and the required wall clock time is the

resource that is measured. This leads to the traditional view of “efficiency” as a property of sequential

implementations. By allowing resources other than wall clock time to vary, however, we obtain alternative

measures of efficiency that can be applied to parallel algorithms. For example, we could fix the amount

of wall clock time and memory, asking instead how many cores a parallel implementation would require

to complete a given computation.

In cases where a particular benchmark computation cannot be fully completed with the allocated

resources, an alternative is to use a measure of progress or a measure of work as a proxy.

Definition 5. A measure of progress is an estimate of (or proxy for) the fraction of a benchmark

computation completed by an implementation, given a fixed bundle of resources.

Measuring progress is far from straightforward in many algorithmic contexts, especially with respect to

branch-and-bound. If a reliable measure of progress were to exist, however, this would allow comparisons

to be carried out on the basis of efficiency without requiring a benchmark computation that could

be completed under all experimental conditions with all implementations, addressing one of the key

difficulties discussed earlier.
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Unfortunately, no measure of progress proposed for branch-and-bound to date can be considered

effective in practice. There have been a number of attempts to develop methods of estimating tree

size [5, 10] and these seem to be the most obvious candidates for a measure of progress. Statistical

estimates have also been shown to be viable in some contexts [6]. We discuss later in this paper how the

primal integral of Berthold [11] may hold promise in some limited contexts.

As an alternative to measuring progress, and as a proxy for efficiency, it is possible to directly measure

the amount of work that has been performed during a computation. Measuring the amount of work can

be much easier than measuring efficiency and progress.

Definition 6. A measure of work is a direct measure of the amount of work done in performing a

benchmark computation, generally expressed in terms of the number of atomic units of computational

effort executed in order to perform the computation.

The work performed during a computation is usually defined as a count of the number of times some

set of defined atomic operations are performed. For example, this could be the number of arithmetic

operations performed, the number of times a certain bounding subproblem is solved, or the number of

branch-and-bound nodes enumerated.

Unfortunately, simply measuring the amount of work does not indicate how the work contributed

to the progress of the computation, i.e., whether the work was useful. This is particularly true in the

context of branch-and-bound algorithms for the solution of discrete optimization problem, where the

goal is typically to limit the amount of work done that was useless in hindsight, e.g., time spent pursuing

sub-trees that turn out to contain an optimal solution. For this reason, measures of work are not often

good indicators of efficiency and don’t indicate much about progress in this context. Nevertheless, they

are useful in some contexts, especially in measuring parallel scalability, where simply maximizing the

throughput of computational tasks can be an important goal.

2.2 Scalability

Scalability is a property of an implementation deployed in a dynamic computing environment and specif-

ically addresses the notion that the bundle of resources required to perform a certain benchmark compu-

tation is not unique—there is a natural trade-off of some resources for others. The most often analyzed

trade-off is between wall clock time and cores. By increasing the number of cores by a factor of N ,

we hope that the wall clock time time required to complete a given benchmark computation, such as

solve an MILP instance to optimality, can ideally be reduced by a factor of 1/N . In other words, the

computation should ideally be completed in the same number of total core hours (see Section 2), no

matter how many cores are supplied. Unfortunately, this rarely occurs in practice. Typically, the use of

more cores introduces overhead. As a result an increase in the number of cores also increases the total

number of core hours required to complete a computation—the computation becomes less efficient.
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We think of scalability analysis abstractly in our framework as the analysis of how some measure of

efficiency changes as the bundle of resources is varied in some way. A canonical analysis, as described

above, investigates the trade-off between cores and wall clock computing time, but other trade-offs could

also be analyzed. In the literature, the term scalability may be used to refer to many different aspects

of an implementation or a hardware platform. We use it here to refer to two distinct concepts, known

as strong and weak scalability, which we now formally define.

Strong Scalability. Strong scalability is the ability of a particular implementation to exploit the

trade-off between two resources with respect to a single benchmark computation.

Definition 7. Strong scalability is the change in the level of one resource required to perform a bench-

mark computation, as a function of the level of a second resource, with all other resources fixed.

A classical (strong) scalability analysis involves a systematic assessment of the trade-off between time

and cores. When the number of cores allocated to a computation that originally took wall clock time T

is increased by a factor of α, we ideally hope that the wall clock time required is reduced to T/α

Strong scalability appears to be a very natural way of measuring the effectiveness of a parallel

algorithm as resources are scaled, but it has some significant issues in practice, as mentioned earlier in

Section 1.2. To see why, note that all computations involve a certain fraction that is inherently sequential

(for example, reading in the data). For a fixed test set, as the number of cores is increased, this part

of the computation eventually becomes such a high fraction of the total that no additional scaling is

possible beyond a certain point (this is known as Amdahl’s Law [4]). This is one of the many challenges

faced when using a single test set in performing a scalability analysis. Unfortunately, as we describe

below, there are even more significant challenges to be faced when not using a fixed test set.

Weak Scalability. The contrasting concept of weak scalability is both more difficult to define and

more difficult to measure, though it has significant theoretical advantages over strong scalability. Weak

scalability measures the effect of increasing exactly one of the available resources while simultaneously

scaling the computation itself. In other words, we do not necessarily limit the testing to a single fixed

benchmark computation. This concept results in the slightly vague definition below, which differs slightly

from the similarly vague alternatives appearing in the literature but still captures the essence of what is

meant conceptually by weak scalability.

Definition 8. Weak scalability is the amount of additional computation that can be done as the level

of a single resource is increased, holding all other resources fixed.

The resource being increased is usually cores. Meanwhile, the wall clock time allocated to the computa-

tion remains constant. Hence, we are typically measuring how much more useful computation (not just

work) we can get done with more cores, but the same amount of wall clock time. Although it is not
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exactly clear what is meant by “the amount of additional computation” in the above definition, it should

be clear why measuring this kind of scalability requires varying/scaling the computation to be done at

the same time as the resources are varied. The difficulty in rigorously defining how the computation

should be scaled and exactly what is meant by the above definition is part of the reason why weak

scalability is a less frequently used measure.

In principle, this scaling should be done by increasing the “difficulty” of the test set, e.g., to be able

to say that computation A is “twice as difficult as” computation B. This apparently requires producing

multiple sets of instances with different, objectively measurable levels of difficulty, such that one can

experimentally determine the most difficult set that can be handled under given conditions. For this

reason, weak scalability can be most easily measured for computations for which the total amount

of work required is objectively a predictable function of the input size. Matrix multiplication is an

example application where weak scalability can be easily assessed. The naive implementation for the

multiplication of two square matrices, each with n2 elements, requires O(n3) operations. With two cores,

if the algorithm is perfectly scalable we can expect to do twice as many operations in the same amount of

time. So, we should ideally be able to multiply two square matrices, each with (21/3n)2 elements, since

this would require (21/3n)3 = 2n3 operations. If the operations could be split evenly between the two

cores without introducing any additional work (not the typical case), then the multiplication of these

larger matrices could be accomplished in the same time on two cores as the multiplication of the smaller

matrices on a single core. This perfect scaling is rarely achieved and the actual size of the matrices that

could be multiplied with two cores will be somewhat below the perfect scaling factor of (21/3n)2. In

this context, the weak scalability of the parallel implementation is measured by the difference between

perfect and realized scaling.

Unfortunately, it is impossible, for all practical purposes, to objectively measure the “difficulty”

of a given test set a priori when dealing with an NP-hard problem (this is the very nature of such

problems). Size is well-known not to be correlated with difficulty in solving mathematical optimization

problems; however, it is hard to imagine any other reliable measure. The time required to perform a

given computation with a baseline implementation is a measure that may be useful in some situations,

but it certainly cannot be considered an objective measure when comparing implementations with much

different capabilities. One could imagine theoretical measures, such as the provable minimum size of a

branch-and-bound tree obtainable under certain algorithmic assumptions. However, such measures are

generally impractical.

Alternative Notions. Alternatively, we propose here some new notions of scalability that use mea-

sures of progress in order to retain the advantages of working with a fixed test set while addressing

the need for a dynamically scaled computation. If we could effectively measure the fraction of a large

computation that could be completed with a fixed resource configuration, then we could scale the com-
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putation by employing larger fractions of the same computation. We conjecture that such notions of

scaling may be easier to implement in this setting than the more conventional ones. In particular, if we

can effectively measure progress, we can consider the trade-offs underlying the assessment of scalability

from additional points of view. For example, we might ask questions like the following.

• How does the fraction of a given computation we can complete in a fixed amount of time change

as we increase the number of cores?

• How does the fraction of a given computation we can complete change as we increase the amount

of time allocated to the computation while keeping the total number of core hours fixed?

As we have already emphasized, applying these alternative notions of scalability requires a reliable

measure of progress. On the face of it, devising a reliable measure of progress would seem as difficult

as the problem of predicting how long a given computation will take, which is also well-known to be

intractable. The difference, however, is that having performed a computation to completion once, we get

information that may enable us to measure progress with respect to the same computation, but executed

in a different fashion experimentally (with more cores, for example).

3 Overview of Challenges

In this section, we survey some of the many challenges associated with the use of empirical analysis as

a tool for comparing implementations, in a general sense, and branch-and-bound in particular.

3.1 Sophistication of Implementations

As described earlier, branch-and-bound is not so much an algorithm as an algorithmic framework.

Modern implementations are increasingly sophisticated, which has lead to dramatic gains in the ability

to solve difficult instances. This sophistication has also introduced much difficulty in the assessment of

these implementations—making their behavior a challenge to understand and analyze.

Sequential Implementations. Sophisticated implementations of the branch-and-bound algorithm

actually consist of collections of many different semi-independent algorithmic components, each con-

trolling a different aspect of the overall algorithm. Examples of these algorithmic components include

branching methods, which determine the best branching candidate at each node of the branch-and-

bound tree; separation routines, which generate valid inequalities that eliminate fractional LP solutions

from the feasible region; as well as primal heuristics, presolving, and propagation routines. Among

other things, these algorithmic components are responsible for solving the many decision problems that

arise during execution. Readers unfamiliar with the function of individual components in a modern
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branch-and-bound algorithm are referred to Achterberg [1] for a detailed description of the elements of

a state-of-the-art solution methodology for MILPs.

Binding together this collection of component algorithms is a control mechanism that determines

how to mix them effectively. The control mechanism must make decisions about which implementation

of each internal component to employ (there are often multiple implementations to choose from), when

to employ them, and what amount of effort, relative to other components, should be afforded. This

involves both auto-tuning to adjust strategies based on learned properties of individual instances and

controlling various trade-offs based on user priorities and overall algorithmic strategy.

Subtle differences in algorithmic choices and control mechanisms may have a dramatic effect, even

if the effectiveness of these choices is not itself the subject of investigation. This is what makes it

particularly difficult to rigorously judge the impact of a change in a single component within differ-

ent implementations or to compare different implementations overall. There is no single approach to

mitigating these issues, but awareness is certainly the first step. What strategies are appropriate for

overcoming these difficulties must be determined on a case-by-case basis.

Parallel Implementations. Parallel implementations have all of the same components mentioned

above plus an additional control mechanism whose job it is to distribute both tasks and associated data

to the available computational resources to enable parallel execution. This mechanism may either be

an integrated part of the overall implementation or may be completely separated from the underlying

sequential implementation. In the latter case, the parallel control mechanisms are usually designed to

work with any sequential implementation whose external interface supports certain functionality required

for managing the data and task distribution process. We refer to such a separate control mechanism as

a parallel framework.

Parallel frameworks (and even integrated parallel control mechanisms) have their own empirical be-

havior that can be evaluated independently of the underlying solver implementation. However, isolating

the effect of the parallelization strategy from effects attributable to the properties of the underlying

solver implementation is difficult. A given parallel control mechanism may work well with one solver im-

plementation and not with another. Further, it is primarily the scalability that matters when evaluating

the scheme for parallelization, whereas it is primarily the baseline efficiency that matters in evaluating

the solver implementation. Teasing out the effect of these various aspects of the overall implementation

is difficult at best, but is made especially so by the inherent trade-off between efficiency and scalability.

When the parallel control mechanism is tightly integrated with the underlying sequential implemen-

tation, this may make it particularly difficult to isolate the effect of its strategy on overall scalability.

On the other hand, it is easier to observe the effects of parallelization strategies when using parallel

frameworks such as the Ubiquity Generator (UG) framework [59] or the CHiPPS/ALPS framework [56].

Both UG and CHiPPS consist of collections of base classes that can be customized to parallelize any
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underlying sequential implementation. UG is designed to exploit the underlying sequential solver as a

black box, while CHiPPS requires more granular access. In both cases, the modular implementation

enables the use of the same underlying sequential implementation with different parallel frameworks or

the same parallel framework with different underlying sequential implementations. The UG framework,

for example, has been customized to work with SCIP [23,52,54], Xpress [21,53], and PIPS-SBB [48,49].

3.2 Variability

One of the most challenging issues in assessing algorithms is that there are many sources of variability that

arise in measuring outcomes. This variability can result in what appears to be anomalous behavior [18,

40]. The sources of variability can be divided roughly into two categories: Non-deterministic behavior

and performance variability. Non-deterministic behavior is the possibility that an algorithm will follow

different (but valid) execution paths at different times—even when given precisely the same input—due to

exogenous effects. Performance variability, or algorithmic variability, is the possibility that an algorithm

will follow different execution paths given different but mathematically equivalent inputs. Performance

variability can be witnessed in conjunction with deterministic and non-deterministic behavior.

As a result of this variability, measures of effectiveness for an implementation should be considered

random variables and the outcome of any single computational experiment should be treated as one

observation. Repetition of experiments and the evaluation of results by statistical methods are truly

necessary, though either are rarely performed when assessing the effectiveness of implementations. Space

constraints prohibit the inclusion here of a detailed discussion of proper methods for doing such statistical

analysis, but the paper of Coffin and Saltzman [14] provides an excellent overview. In what follows, we

discuss only the reasons why such variability arises in the first place.

3.2.1 Non-deterministic Behavior

The possible non-deterministic behavior of implementations is a critically important issue in empirical

studies. Non-determinism is undesirable for practical reasons in many settings. For example, customers

of commercial software vendors tend to distrust software that does not behave in the same way when

executed multiple times with the same input. Nevertheless, determinism is sometimes hard to achieve.

In particular, parallel implementations are inherently non-deterministic unless specifically implemented

in a fashion designed to combat this. The reasons are related to the order of execution of commands in

a parallel computing environment. For example, different cores may operate at slightly different speeds

and this can result in sets of tasks being completed in different orders during two executions of the same

implementation. This non-determinism can trigger cascading effects that eventually result in wildly

different behavior from run to run in some cases.

Table 2 presents a simple example of non-deterministic behavior of a parallel branch-and-bound

implementation. In this example, SYMPHONY is executed on four cores in order to solve neos-1109824
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four separate times. The run time and number of created nodes for each of the runs is presented. From

this small example, the largest deviation in run times is 14% where the largest deviation in the number

of nodes is 11%. This highlights a real effect of non-determinism and the difficulty it introduces to the

assessment of algorithms. For a more detailed example, the reader is referred to the online supplement of

Shinano et al. [54], which presents the results of five repeated runs of FiberSCIP with different parameter

settings and solver configurations for all MIPLIB2010 benchmark instances.

It is possible to develop deterministic parallel implementations, but this comes at the cost of reduced

efficiency and scalability due to synchronization steps that introduce core idle time into the compu-

tation. On the other hand, it is important to be aware that approaches to enforcing determinism do

so by ensuring that tasks get completed in the same order each time (at least for all cases where the

order matters). Nevertheless, this ordering should still be considered arbitrary and the efficiency of the

particular ordering enforced may be much better or much worse than what would be observed with

alternative orderings.

3.2.2 Performance Variability

Danna [17] was the first to highlight the importance of accounting for performance variability when

assessing the effectiveness of implementations. The variability can be of several types, some of which

are further described by Lodi [43]. It is important to understand that even when an implementation

is sequential and deterministic in principle, it may still exhibit performance variability. For example,

permuting the rows and columns of the constraint matrix in a linear optimization problem without

changing the problem itself may result in different behavior. This is because the order in which the

problem is read by the implementation can lead to differences in procedures that are sequence dependent.

Some changes include the way ties are broken, or choosing between alternative optimal solutions that

are produced when relaxations are solved. These differences can be very large in some cases.

An example of performance variability is presented in Table 3. In this example, SCIP is used to solve

neos18 with 5 different random seeds for permuting the constraints of the problem. It can be seen in

Table 3 that simply changing the order of the constraints can have a significant effect on the efficiency

of the branch-and-bound algorithm.

Run time Nodes

Run 1 620.834 161123

Run 2 560.324 159151

Run 3 578.838 165963

Run 4 652.507 178255

Table 2: The run time and number of created nodes for SYMPHONY solving neos-1109824 using 4

cores over 4 different runs.
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Run time Nodes LP Iterations

Seed 1 26.94 4154 280546

Seed 2 56.14 14446 653459

Seed 3 21.95 6033 201103

Seed 4 99.54 18032 1249410

Seed 5 30.56 4418 279840

Table 3: The run time, number of processed nodes and LP iterations for SCIP solving neos18 using 5

different permutation seeds to permute the problem constraints.

While an implementation may appear to be deterministic, the appearance of determinism is deceiving.

The fact that different equivalent inputs can result in very different efficiency means that the behavior

is essentially non-deterministic from the standpoint of a rigorous algorithmic analysis. Simply running

the implementation one time is not enough to understand its behavior. This kind of non-determinism is

explained and exploited algorithmically in Shinano et al. [54] and Fischetti et al. [22]. The many sources

of performance variability with respect to benchmarking are discussed by Koch et al. [37]. While no

particular strategies are proposed by Koch et al. [37] to address performance variability, the discussion

highlights the related issues and challenges.

3.3 Impact of Test Sets

Test sets for the evaluation of branch-and-bound implementations are abundant and also highly influ-

ential. The most well-known and valued test sets for MILPs are the MIPLIB series [2,12,13,24,37] and

the many test sets available for specific problem classes, e.g., TSP [58], QAP [57], and VRP with time

windows [55]. These test sets have been developed with the aim of providing an objective benchmark

for the evaluation of different implementations.

Although these test sets have generally proven to be useful to the research community and helpful in

aiding objective assessment, care must still be taken when using these test sets. With respect to a single

set of experiments, it is important to determine whether a given test set is actually appropriate for the

experimental hypotheses in question. For example, it is not suitable to evaluate a new branching rule

using the complete MIPLIB2010 benchmark test set, since a large proportion of the instances are solved

in a small number of nodes (SCIP 3.2.1 (with SoPlex 2.2.1 as LP solver) solves 10% of the instances

in less than 10 nodes). Similarly, primal heuristics are best evaluated on problem instances where it is

difficult to find the optimal solution.

More broadly, care must also be taken regarding the influence that publicly available test set has on

the research community agenda. The research community should be striving not only to improve the

effectiveness of algorithms on a particular test set, but also across the broad range of instances that the

test set is meant to represent.
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The general goal of selecting a test set is to select a subset of instances that is “representative” of

the instances in an entire class. The effectiveness of an implementation, as assessed by the techniques

described in this paper, on the resulting benchmark computation, should be similar to what one could

expect in practical usage. In other words, summary measures, which will be described in Section 5, should

be similar on the benchmark to what they would theoretically be across the entire set of instances in

the class. It is difficult to know for sure whether this goal has been achieved, since for most classes of

mathematical optimization problems, we don’t actually know what behavior is like across the entire set

of instances we’re interested in. In general, we will likely have only seen (and may only ever see) a very

tiny subset of the possible instances to date. The selection of instances for the MIPLIB 2017 benchmark

set is a good example of employing systematic methods to ensure the test set is representative [24].

Assessing Efficiency. Test sets like MIPLIB provide a diverse set of instances with a wide range of

properties that are selected in an effort to allow a fair comparison of different MILP solvers. However,

it is not always the case that test sets appropriate for a particular class of problems will exist. When

an appropriate test set is not available and one needs to be gathered or constructed, it is important to

keep certain the following guidelines in mind.

It is well-known that, unless one has deep knowledge of the types of instances that arise in a particular

practical setting, randomly generated instances are usually not representative (see [35] for a related

discussion of this). Rather, it is usually much better to gather instances that have actually arisen in a

particular application setting. Identifying particular properties of instances that seem to have an impact

on difficulty and ensuring that the benchmark is diverse with respect to these properties is a good

general practice. Most importantly, the benchmark must avoid bias with regard to one particular (type

of) implementation. This is exceedingly difficult to achieve, since the benchmark must be at least first

designed prior to any testing having taken place. For this reason, it is necessary to update benchmarks

as more knowledge of algorithms for a particular class is derived. Below are more specific guidelines for

constructing benchmarks specifically for the measurement of efficiency and scalability.

Performance variability is also an important issue that must be considered with respect to instance

selection. A factor not often considered is that the instances of a chosen test set should not be particularly

susceptible to large changes in measured efficiency with only minor algorithmic changes. The report for

the MIPLIB 2010 test set comments directly on this issue [37]. In particular, small test sets can be more

prone to performance variability. As such, it is important to use a test set that is diverse and contains

enough instances to reduce the negative effects of variability.

Although the following may be obvious, it should nonetheless be noted that the efficiency of an

implementation can not be assessed by looking at the results of a single instance or even a small set of

instances. After the release of MIPLIB2010 the overall geometric mean when measuring the efficiency
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of CPLEX, Gurobi and Xpress was nearly equal, while the efficiency on individual instances varied by

a factor of up to 1,500.

Assessing Scalability. It is important to realize that properties of individual instances can limit the

scalability that is possible to achieve, independent of a given implementation’s approach to parallelizing

branch-and-bound. In the context of MILP solvers, instances that can be solved in a small number of

nodes or for which the LP relaxation in the root node is extremely difficult to solve will not scale with

any current parallelization approach. For example, from the MIPLIB2010 benchmark test set, there

are 75, 63 and 60 instances, out of 86 instances, that require more than 1000 nodes when solved using

SYMPHONY (Build Date: 24th January 2017), SCIP 3.2.1 (with SoPlex 2.2.1) and a commercial solver

respectively (as at 17th August 2017). It is therefore important to select instances that are suitable for

evaluating parallel branch-and-bound implementations.

• Instances should produce a tree suitably large and broad enough that parallelization is both nec-

essary and effective. Unfortunately, this property depends very much on the efficiency of the

underlying sequential implementation. An instance may be suitable in this regard with respect to

one implementation and not with respect to another. In addition, the size of the tree is not fixed

and may vary based on random factors that induce performance variability.

• If one wants to use the traditional measure of speed-up, which is based on wall clock time, as a

measure of efficiency, it is important that instances be solvable with one core (or at least a small

number of cores). This will be used as a baseline for assessing the amount of overhead introduced

by parallelization. Unfortunately, instances that can be solved in a reasonable amount of time on

a single core may not be difficult enough with a large number of cores to be interesting and also

not be suitable with respect to the first criteria.

This makes standard benchmark sets only partly useful to test parallel scalability, at least if we are

assessing methods that parallelize the tree search itself. Naturally, subnode parallelism could be employed

in the case of small trees, but as yet, this approach has not been vigorously pursued.

While the MIPLIB2010 benchmark test set is not ideal for assessing scalability, it is deemed suitable

for the examples that we present here in this paper. A major reason for using the MIPLIB2010 benchmark

test set is that there does not currently exist a benchmark test set for assessing parallel branch-and-bound

implementations. The creation of such a test set is an area of future research.

3.4 Generalizability of Results

One of the biggest pitfalls of assessment is the danger of over-generalizing results and making conclusions

that have little scientific basis. Given all of the above challenges, it is critical to understand the limitations

of any computation with regard to its predictive power. As we typically have no statistical basis for
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drawing conclusions and little knowledge of the true properties of the entire set of instances in a given

class, our ability to generalize results from most experiments is extremely limited. At best, one can

only draw conclusions regarding effectiveness on the benchmark computation itself and then only on the

platform used in the experiment. It is important not to over-state what one can conclude.

The comparison of scalability across parallel implementations is an area where generalization is

particularly difficult. In Section 3.1, we discuss the difficulty in comparing parallel implementations due

to a lack of abstract frameworks. A particular difficult arising from this situation is that most parallel

frameworks are tightly linked to a specific sequential implementation. Thus, the efficiency and scalability

of parallel implementations is highly dependent on the baseline efficiency of the underlying sequential

implementation. Since it is not yet possible to control for baseline sequential implementation efficiency

when assessing scalability, it is almost impossible to compare different parallel implementations. As such,

care must be taken when making general claims about the scalability of parallel control mechanisms for

branch-and-bound.

Finally, we should emphasize once again that the analysis of computation results is largely a statistical

one. Without repetition of experiments or some basis for understanding the inherent variability of the

results, one must acknowledge that the results are at best only a rough estimate of reality. Although

there are cases in which one might reasonably expect the variability to be low, this should be considered

more the exception than the rule.

3.5 Reproducibility and Verifiability

Finally, we briefly mention the challenge of verifying results and ensuring reproducibility. From the ear-

liest days of scientific inquiry, one of the fundamental principles of good science has been that scientific

experiments must be verifiable (in the case of software, this means verifying correctness of the implemen-

tation) and reproducible. The fact that these principles should also be applied in empirical assessment

of algorithms is noted by Johnson [35], among others. Unfortunately, few experimental results in the

realm of computation satisfy these two minimal requirements of scientific studies. The challenge of how

to ensure verifiability and reproducilibity is a very tricky one and the conversation around this topic is

only just getting started. In most cases, making the source code used for the experiments available to

others is the only way to truly ensure both verifiability and reproducibility. Providing executable code

without source may allow reproducibility, but prevents verification of correctness. Although we do not

have any answers and understand the realities surrounding this important issue, we would be remiss if

we did not make it part of the discussion surrounding challenges of empirical research.
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4 Measures of Effectiveness

The framework of Section 2 introduced the concept that the effectiveness of implementations can be

thought of as the efficacy with which an implementation consumes computational resources in both the

sequential and parallel cases. Implementations can be assessed with respect to their baseline efficiency

or their parallel scalability, with the main features in the analysis being how one designs the experiments

and how one decides what resource levels to vary and which ones should be held constant. In the case of

efficiency analysis, the resource that is typically measured is CPU time, with all other resources fixed,

including the number of cores available to the computation. In a typical (strong) scalability analysis, on

the other hand, one tries to measure the trade-off between wall clock time and the number of cores.

Many challenges associated with the assessment of efficiency and scalability are common to both

types of analysis. Although both types of analysis can be based on measures of resource consumption

in principle, direct measurement can be difficult and proxies are often used. The proxies that are

appropriate for assessment are different in each case and the methods of analysis may also be different.

In what follows, we first review the assessment of efficiency and then that of scalability.

4.1 Efficiency

Branch-and-bound implementations typically yield a number of convenient measures for use in assessing

efficiency that are readily available from the solution output log. Below, we review properties of specific

measures typically used in assessment.

4.1.1 Measuring Resource Consumption

Directly measuring the resources needed to achieve a given termination criteria is the most effective

way to determine an implementation’s efficiency. As we have mentioned, the resource that is typically

measured in assessing the efficiency of an implementation is time (CPU or wall clock), though one could

easily measure the consumption of any other resource of interest when appropriate. It should be noted

that time may itself be a proxy for what we truly care about in some cases. In practical experimental

settings, interference from other experiments running simultaneously or from the operating system itself

may cause variability in the time measurement that must be accounted for. Measuring work (atomic

operations), as discussed below, may be an alternative in cases where this a serious problem. Below, we

discuss the termination criteria typically used.

Time to Optimality. The most common measures of efficiency is the time to provable optimality.

This measure is easily understood and is a direct measure of what is often desired by users, as well as

what a branch-and-bound implementation is truly designed to do—determine an optimal solution and

construct a corresponding proof of optimality as quickly as possible. While this is perhaps the most
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common way of measuring efficiency, it has one big drawback—it does not provide a way of handling

assessment of instances whose computation doesn’t complete within the specified time limit.

Time to Fixed Gap. In many practical applications, a provably optimal solution may not be needed.

Rather, a solution of a (provably) acceptable quality is sufficient. For the purpose of assessing the quality

of the best known solution, we may use various measures based on the difference between the primal and

dual bounds, the so-called optimality gap. The value given by simply subtracting the dual bound from

the primal bound is referred to as the absolute optimality gap or absolute gap. When the primal and dual

bounds are equal, the absolute gap is zero and the optimal solution value has been found. Alternatively,

a scale invariant version of the gap may be desired. This is given by computing a normalized difference

between the primal and dual bounds, the so-called the relative primal-dual optimality gap (or just

primal-dual gap). This gap can be computed by

γ(Zp, Zd) =


0, if |Zp| = |Zd| = 0,

|Zp − Zd|
max{|Zp|, |Zd|}

, if Zp × Zd ≥ 0,

1, otherwise.

(2)

where Zp and Zd are the primal and dual bounds on the optimal solution value, respectively. The

relative primal gap and the relative dual gap can be computed by replacing Zd or Zp with the optimal

solution value or the best known primal or dual bounds, respectively. From here on, the general term

“gap” will refer to any of the above variants of the relative optimality gap. Note that in (2), we have set

the denominator of the second case to the maximum of the absolute primal and dual bounds. This has

been done so that the gap is always between 0 and 1. Other definitions of the gap set the denominator to

the minimum, instead of the maximum, or even set the denominator to an appropriate constant value.

The time to reach a given gap is a measure of an implementation’s ability to both produce a solution

of a desired quality and provide a proof of its quality. Although similar to time to optimality, time to

fixed gap is a more suitable measure for practical applications where an acceptable solution quality can

be defined.

Time to First Solution. A third alternative termination criteria, often acceptable in practical ap-

plications, is the discovery of any one feasible solution. Although no proof of quality need be provided

in this case, it may still be an appropriate criteria when feasible solutions are difficult to find or when

optimality is not as important as speed. The time to first solution primarily measures the effectiveness

of the branch-and-bound implementation’s primal heuristics. Obviously, since the efficiency according

to this measure relies mainly on the primal heuristics, large parts of the implementation are neglected.

In particular, the ability to improve the lower bound (the dual side of the algorithm) is ignored. Hence,

this measure only provides a very narrow view of an implementation’s efficiency. It is also likely that
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this is a measure subject to a much higher degree of variability than some others, as a greater degree of

“luck” is involved in locating a solution quickly.

4.1.2 Measuring Work Performed

Measures of work count the number of atomic operations required to complete a given computation.

In many cases, it can be expected that the atomic operations being measured take a constant (and

predictable) amount of time on average, so that the work preformed and the time it takes will be

linearly related. Note that there is a difference between what is considered “atomic” with respect to the

type of measurement considered in the section below and what is considered “atomic” when it comes

to the measurement of CPU time. In the latter case, what is considered atomic could vary based on

the particular operating system and compiler used, as well as details of the hardware itself, whereas the

atomic operations considered below are much higher-level and depend only on details of the algorithm

implementation. This can make the measures of work described here more appropriate for the purposes

of comparison in some cases, but this depends on the type of experiment being performed and what

hypothesis is being tested.

The assumption that atomic operations take a predictable amount of time on average may not hold

in some important cases. In particular, when the number of available cores is scaled, this will generally

increase the time per atomic operation due to the introduction of overhead, as described in Section 4.2.

Scaling the amount of memory available can also affect the time per atomic operation.

We would like to highlight that care must be taken when using the measurement of work as a proxy

for time. In the remainder of this section, we review the most typical measures of work employed in the

context of branch-and-bound.

Number of Nodes. For a branch-and-bound implementation that is fully deterministic, the number of

nodes enumerated to solve a problem to optimality is a measure of work performed by an implementation.

This measure of work can sometimes be used as a reliable proxy for the time required to solve an instance

to optimality. However, this proxy relies on the assumption that the processing time for each node is

identical. Typically, this is not true, even for deterministic sequential implementations, since different

component algorithms (see Section 3.1) will be executed at different nodes throughout the tree. This

assumption is particularly tenuous when comparing different implementations or parameter settings or

running on a different number of cores. For example, generating cuts at every node in the tree will

increase the time required to process a node, but is expected to reduce the number of nodes that need to

be enumerated. When using the number of nodes as a measure of efficiency, it is important to understand

what algorithms are executed during node processing in each implementation.

The number of nodes is an important measure when considering the effect of changes in certain

parameter settings or when considering the effect of scaling the number of cores. As described above,
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putting more effort into node processing may reduce the number of nodes produced at the cost of

increased time. Even with a single implementation, changes to parameter settings can have a big

effect on the size of the search tree for this reason. More importantly, the number of nodes produced

can generally be expected to increase when additional cores are used in parallel computation and this

increase is one component of the overhead, discussed later in Section 4.2.

Number of Bounding Problems Solved. During the processing of each node, it is typical to solve

a sequence of bounding problems. This is the case, for example, when the bound is computed by solving

a relaxation that can be strengthened once the result of the computation is known. By iteratively

strengthening the bounding problem, it may be possible to decrease the number of nodes that must be

processed overall, but this comes at the cost of increasing the amount of work done per node. Thus, one

could argue that the number of nodes processed does not give a complete picture of the effectiveness of

a given (variant of) an implementation, making the processing of a single node a less-than-ideal atomic

unit of work. Since the number of bounding problems solved is a (rough) measure of the amount of

work performed in processing each node, one could argue that the total number of boundings problems

solved is a more fine-grained measure of work. For example, if an aggressive cut generation strategy

is employed, this would result in more bounding problems (LPs) being solved at each node and fewer

nodes processed. The number of bounding problems solved in total, however, could go up or down.

Ideally, the combination of the number of nodes processed and an assessment of the number of bounding

problems solved per node should give a more complete picture of the overall effectiveness of a given

implementation.

Iteration Count. In most cases, the algorithm used to solve the bounding problem is iterative and the

efficiency of this algorithm can itself affect the effectiveness of the overall branch-and-bound algorithm.

For example, for LP bounding problems a number of pivots must be performed to find the optimal

solution. Similarly, for interior point algorithms, solution of the bounding problem typically requires a

number of function evaluations. The total number of iterations performed in solving bounding problems

over all nodes in the branch-and-bound tree is called the iteration count and can provide an even finer-

grained measure of work than the number of bounding problems solved.

4.1.3 Measuring Progress

As we mentioned earlier, measures of progress are important in assessing effectiveness when computations

cannot be fully completed within a given time limit. Rather than measuring the resources needed

to complete a computation, measures of progress are used to assess the amount of computation that

can be done with a fixed resource configuration. By its very nature, what is meant by “progress” in

branch-and-bound is not easy to define. On the one hand, one can define it in terms of the fraction of

“useful computation” that has been performed. On the other hand, the solution of NP-hard problems
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inherently involves a certain amount of backtracking, which results in little perceivable progress, other

than eliminating one particular dead end. Although the exploration of dead ends can be avoided in

principle with some guided “luck,” there is no reliable way to ensure this in general (provided P 6= NP)

and thus it is difficult to imagine that any rigorous way can be developed to determine the fraction of

“useful computation” that has been completed.

Despite the inherent difficulty in measuring the progress of a computation, it is nevertheless essential,

in many scenarios, to report some measure of progress. A particular use of a measure of progress is to

inform users of a software package about what progress has been made during a long calculation.

In the context of assessment, a reliable measure of progress would provide a way of assessing effective-

ness without performing the full computation. Interpreted in another way, by assessing implementations

using a measure of progress, we hope to be able to determine the rate of progress for each possible

resource configuration. If we had an accurate estimate of how long it takes to do some fixed fraction

of the computation, this would be enough to enable a rigorous assessment. Alas, this scheme hinges

critically on having a reliable measure of progress and such a measure does not currently exist. The

measure of progress most widely used at the moment, the optimality gap, is described below, along with

two alternative, the gap integral and tree size estimates.

Gap. The most often cited measure of progress is some variant of the optimality gap described in

Section 4.1 of which the primal-dual gap is the most commonly used. This gap seems natural as a

measure of progress, since it decreases monotonically throughout the computation and is 0 when the

computation is completed. Unfortunately, though, the evolution of the gap may be far from smooth

and it leaves much to be desired as a rigorous measure of progress. To illustrate, Figure 1 shows three

examples of the evolution of the primal and dual bounds during the solution process of three different

implementations when solving an MILP. In this figure, the blue and green curves are the functions Zp(t)

and Zd(t) whose values are the primal and dual bounds, respectively, at time t. One feature highlighted

is that the biggest changes typically come from improvements in the upper bound, while evolution of the

lower is generally, though not always, smoother. Figure 1(a) exhibits a constant, regular improvement

in the upper and lower bounds, leading to a relatively smooth (though not linear!) evolution of the

Zp(0) = 20

Zd(0) = 0

Ẑ = 10
t T = 10

(a) Implementation 1 - Bounds

Zp(0) = 20

Zd(0) = 0

Ẑ = 10
t T = 9.3

(b) Implementation 2 - Bounds

Zp(0) = 20

Zd(0) = 0

Ẑ = 10
t T = 8.6

(c) Implementation 3 - Bounds

Figure 1: Graphs exemplifying the evolution of upper and lower bounds.
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Figure 2: The gap functions corresponding to the graphs in Figure 1

gap. This is not the typical case. More often, the gap evolution in a branch-and-bound implementation

is characterized by large changes in the upper bound and long periods without any improvement, as

demonstrated in Figures 1(b) and 1(c). In those two cases, after 5 seconds of computation, the value of

the gap would suggest that the former implementation outperforms the latter. However, after the full

computation, the total run time for the former implementation is greater than that for the latter. This

small example highlights the difficulty in using gap to measure progress.

Figure 2 shows the graph of the gap function whose value at time t is γ(Zp(t), Zd(t)), where γ is

as defined in (2). The shape of the gap function reflects the evolution of the primal and dual bounds,

though some information is clearly lost. Based on these graphs, it is easy to see why the gap function

may not have much power as a measure of progress. Predicting progress using this function would require

knowing the general shape of the gap function ahead of time and this is exactly what we generally do

not know.

Despite the fact that the gap has limited predictive power, it may still be used effectively as a means

of comparing the progress made by two different algorithms in solving the same problem with the same

resources, although even this usage must be approached with some caution. Large differences in gap

may not be as significant as they appear. In Section 5, we describe a method of incorporating gap into

an overall visual summary of results that can allow it to be used more meaningfully.

Gap Integrals. Gap integrals are an alternative to the more classical measures of efficiency and also

provide an alternative to the gap itself as a measure of progress. Rather than simply measuring the

gap achieved for a fixed time limit, the gap integral is computed from a time series that captures the

evolution of the gap over a time-limited computation. Roughly speaking, the gap integral measures the

“average gap” over a given time interval. While it can be viewed as a kind of measure of efficiency, we

would like to suggest here that gap integrals may also be useful as a measure of progress.

The concept of a gap integral was first proposed by Berthold [11]. The specific type of gap integral

first proposed is known as the primal integral because it is based on the evolution of the primal gap.
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Corresponding gap integrals can be obtained based on other notions of optimality gap. We focus here

on the related primal-dual integral (PDI), which is based on the primal-dual gap given by (2).

To formally define the PDI, we interpret the primal and dual bounds in (2) as functions of time t,

as above. Then, the primal-dual integral is given by

PDI =

∫ T

0

γ(Zp(t), Zd(t))dt,

where T is either the wall clock/CPU time needed to solve the instance or the time limit (if the instance

is unsolved). Since we usually only observe discrete samples of Zp and Zd, the primal-dual integral is

typically approximated by the more practical formula

PDI =

I∑
i=1

γ(Zp(ti), Z
d(ti)) · (ti − ti−1),

where ti ∈ [0, T ] and i ∈ 1, . . . , I are the discrete times at which the primal or dual bounds are updated,

with t0 = 0 and tI = T . Thus, the PDI is a number between zero and T , with numbers closer to zero

indicating a more effective implementation.

The use of gap integrals as a measure of effectiveness was originally motivated by the observation

that two different implementations that discover the same quality of solution, but at different times in

the evolution of the algorithm, should not be judged equally in terms of effectiveness. Time to provable

optimality (or any other termination criteria) is agnostic to how the gap actually evolved during the

computation, but a gap integral rewards an algorithm for making quick progress in reducing the gap

in the beginning of the computation, even if the eventual time to optimality is no better. In many

applications, it can be argued that the implementation that finds a high-quality solution first is the

better performer, regardless of eventual time to optimality.

When one analyzes the evolution of the gap over the solution process, differences in efficiency that are

not made evident by other measures can be observed. Consider the illustrative examples of gap evolution

presented in Figure 2. All three report a similar time to optimality, but they all display very different

progress in the gap over time. Classical measures of efficiency would lead us to conclude that the third

algorithm is “best.” However, the gap integral leads to a different (and equally valid) conclusion. While

the third algorithm had difficulty both in finding a good initial feasible solutions and in improving the

dual bound, the second algorithm exhibited a much better performance from the primal heuristics and

exhibits the lowest PDI of the three. Although the gap integral produces a single summary statistic, this

number can be viewed as a summarization of a time series of data about how the algorithm progressed.

Tree Size Estimation. Methods of estimating tree size attempt to predict the final size of the tree

using data gathered during the algorithm’s execution up to a given point in time. Recent examples of

online tree search estimation have been presented by Belov et al. [10] and Anderson et al. [5]. If the final

size of the tree could be accurately predicted, then such a method would in turn provide an accurate
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measure of what fraction of total work was completed as of a given time limit. As shown in Anderson

et al. [5], it is possible to relatively accurately estimate the final size of the tree at intermediate points

during the solution process. Having such an estimate would, in turn, help to derive a reliable measure

of progress: since the number of processed nodes can be compared to the estimated total size. While

current approaches have proven valuable for triggering specific algorithmic features, such as solving

restarts, these efforts are unfortunately not accurate enough for use as a measure of progress. Further,

there is little reason to believe that such a method will be discovered that will be accurate enough

given currently accepted conjectures about the complexity of solving mathematical programs (i.e., that

P 6= NP ).

4.2 Scalability

In this section, we discuss measures for assessing strong scalability in the traditional way. As described

in Section 2.2, scalability is a measure of the trade-off between different resources or, alternatively,

a measure of the change in efficiency that arises when using different bundles of resources to solve a

problem. Most commonly, this trade-off is between the wall clock time needed for solving an instance

and the number of available cores. As such, many of the measures used for assessing efficiency can also

be used to analyze scalability, albeit in a different way.

The goal of scalability analysis is to measure how efficiently one resource (typically cores) can be

used to save another resource (typically, time). Ideally, this trade-off has a linear relationship—doubling

the number of cores cuts the required time in half. In practice, this situation is rarely achieved because

parallelization introduces additional resource consumption, commonly described as overhead.

Definition 9. Parallel overhead is resource consumption that is only incurred due to the parallelization

of an implementation.

Many of the sources of overhead are discussed in detail in Koch et al. [38] and Ralphs et al. [50]. Here

we will only provide a summary of sources and types of overhead. The most obvious type of overhead is

communication overhead, which is the work done in order to transfer data from one location to another.

A second major source is idle time. This occurs when computation on one or more cores is waiting

on data that will only be made available after a specific computation on other cores has completed.

Overhead, observed as waiting time, in parallel implementations can be introduced for multiple reasons.

• In distributed computations, data currently stored remotely might need to be transferred to local

storage for processing.

• In shared-memory computation, simultaneous access to the same block of data may be restricted

due to a memory lock to prevent memory corruption and the introduction of race conditions.
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• It may be required that a certain remote computation is completed before proceeding with the

current local computation.

• Finally, in the start or end of a computation, the available work may simply not be granular enough

or it may not be efficient to divide the computation among all available cores, leaving some of them

idle. This idle time is known as ramp-up and ramp-down time.

Each of the sources described above commonly arise from the parallelization of any algorithm, not only

branch-and-bound. A third major source of overhead that arises specifically from the parallelization of

branch-and-bound implementations is generally referred to as redundant work. Roughly, this is additional

work that could have been avoided with better global knowledge of the state of the computation.

Overhead can be measured either directly or indirectly. Both methods of measurement are challenging

for a variety of reasons. Direct measurement involves explicitly capturing data on the contributions of

various sources of overhead, such as idle time or time spent in communication (see Section 4.2.1 for more

on these). The main challenges of direct measurement of overhead are purely technical. For example,

idle time, discussed above, can occur for many different reasons, some of which are directly attributable

to parallelization and some of which are not. Some sources of idle time are easy to measure and identify

(time spent waiting for data to arrive from another location in a distributed memory environment),

while others are not (time spent waiting for data to be fetched from shared memory). Although many

parallel branch-and-bound implementations do measure and report certain sources of idle time and other

overhead, the various types of overhead might be captured and reported differently.

Alternatively, indirect assessment of overhead involves observing the change in either the efficiency,

the amount of work performed, or the amount of progress achieved for a given computation and assuming

that any increase is due to overhead. This is generally a more reliable and all-inclusive method of

measuring the overall level of overhead, but does not help in identifying the sources of the overhead.

Thus, the methods for reducing overhead remain unclear.

The assessment of scalability is primarily about measuring the amount of overhead and determining

how it changes as more resources are added. Thus, scalability is somewhat independent of the baseline

efficiency of the parallel implementation, as we illustrated earlier. This introduces a difficulty in dis-

cussing and comparing the scalability of multiple implementations, since an implementation exhibiting

good scalability may also exhibit poor efficiency, as shown in Table 1, and vice versa. Many of the

measures presented in the following sections are used to evaluate scalability while being agnostic to

the efficiency of the implementations. While these measures may be efficacious for the assessment of

scalability, one must also consider whether the reported measure can still be useful when also accounting

for efficiency. We don’t propose a solution to addressing this issue here, but mention that it is a focus

of current research.

There are many different assessment measures that can be used to indirectly measure overhead. These

measures and how they are used for assessing overhead is discussed in Sections 4.2.2–4.2.4. To measure
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overhead indirectly, we must recognize the inherent variability in the path taken by the computation. In

almost any sophisticated algorithm for solving an NP-hard problem, small perturbations in the path (due

to differences in tie-breaking, etc.) that arise at early stages of the algorithm could have unexpected large

effects, as discussed in Section 3.2.2. For any single computation, changes in total resource consumption

can fluctuate only due to effects from performance variability. We must endeavor not to conflate these

fluctuations with changes in the resource consumption due to the introduction of true overhead. A

method used to alleviate this issue is to perform repeated experiments over large test sets to draw

statistically valid conclusions from the results.

4.2.1 Measuring Overhead Directly

Direct measurement of overhead can be a difficult and work-intensive task. However, the direct mea-

surement of overhead for scalability analysis has the advantage of illuminating the precise reasons why

an implementation is or is not scalable. The types of overhead within a parallel implementation that

can be directly measured are as follows.

Ramp-up and Ramp-down Time. Ramp-up and ramp-down time can generally be measured rather

easily. Although it must be pointed out that these concepts can be defined in a number of related ways.

One definition for ramp-up time for an individual core is the time from the beginning of a computation

until that core is actively performing computation. The overall ramp-up time is then the sum of the

ramp-up times for individual cores. Ramp-down time can be defined similarly as the elapsed time from

the last computation done by a given core and the end of the full computation. Alternatively, the total

ramp-up time can be defined as the time from the start of computation until the first time all cores are

active. Also, the ramp-down time could be defined as the time from the end of the computation back

to the last time all cores were active. Regardless of the definition, the ramp-up and ramp-down times

are easily captured and generally reported. Because of the differences in the definitions, one must take

care when comparing the ramp-up and ramp-down times reported by different implementations.

Communication Time. Most work related to communication can also be effectively measured by

simply recording the time spent in relevant parts of the implementations code. In distributed parallel

implementations, subroutines dedicated to the job of packing and unpacking data to be sent and/or

received from remote locations are usually modularized and time spent in those subroutines can be

directly measured using a profiler.

Idle Time. Idle time is generally more difficult to measure and its causes are more difficult to identify.

Especially in the case of shared-memory parallelism, where the locking of data and atomic process are

necessary to avoid memory corruption and data races. It may be possible to measure the idle time and

attribute it directly to a cause in some cases. For example, in distributed parallel implementations, the
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time spent executing a blocking receive call is an explicit measure of time spent waiting to receive data

from a remote location. Given the difficulties of measuring idle time, proxies based upon the solving

statistics of a branch-and-bound implementation are typically used.

Node Throughput. Node throughput is a measure of the overall rate at which work is being per-

formed and can be used as a measure of the additional idle time introduced by the parallelization.

Throughput simply measures the number of nodes processed per second, or equivalently, the average

time it takes to process a single node. When an implementation is parallelized, the processing of a

node is expected to be the same regardless of the number of cores used. This is because frameworks

for parallelization of branch-and-bound typically only parallelize the tree search, so there should be no

computational difference in the processing of a single node when the algorithm is parallelized. Any

decrease in the node throughput can suggest that additional work is being performed as a result of the

parallelization.

Since the node throughput is an average measure, there are a number of issues that must be considered

when assessing scalability. First, as explained above, it is not always true that the time to process each

node is identical in the sequential and parallel implementations. A particularly poignant example are

the implementations of ParaSCIP [52] and FiberSCIP [54] that both perform presolving when a node is

transferred to another solver, which is typically running on a separate core. This additional presolving

step has been observed empirically to improve the efficiency of ParaSCIP and FiberSCIP. Since this

involves additional work per node, a decrease in the node throughput when increasing the number

of cores could be observed, incorrectly suggesting parallel overhead, when in reality, this is because

parallelization has introduced an algorithmic change. More fine-grained parallelism may also result in

more tasks being performed in parallel during the processing of a node. While a node is expected to be

processed faster in parallel, as compared to a sequential implementation, computational resources are

diverted from the tree search to perform alternative tasks. To the best of the authors’ knowledge, there

has been little investigation into the impact of subnode parallelization to determine its impact on the

overall node throughput.

4.2.2 Measuring Changes in Efficiency

The most common way of measuring scalability is to (indirectly) measure the total overhead by measuring

the change in measured efficiency that occurs when utilizing additional cores for the computation. This

is typically done by comparing the actual wall clock time required for a given computation on N cores

(denoted TN ) to the baseline of “perfect scaling,” as described in Section 2.2. This ideal baseline is given

by T1/N , where T1 is the sequential run time (or parallel run time on a single core). The difference

between the actual and ideal scaling is interpreted as overhead.
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To make the assessment easier, statistics that are independent of the actual running time can be

computed by scaling in two different ways. The speed-up of a parallel implementation utilizing N cores

is

SN := T1/TN ,

so that the value of SN represents the factor by which the wall clock running time of the implementation

changes when more cores were added. When the scaling of a parallel implementation is perfect, the

speed-up is SN = N (this is also called linear speed-up). As discussed earlier, it is typical to observe

that SN < N , which indicates there is some loss of efficiency (increase in overhead) when employing N

cores. The parallel efficiency

EN = SN/N

is a measure closely related to speed-up that is further scaled to obtain a number normally between

zero and one, making the statistic also independent of the number of cores. A parallel efficiency of one

represents perfect scaling and the value 1 − EN represents the fraction of the total computation time

that was attributable to overhead.

The speed-up or parallel efficiency of a parallel implementation are commonly used and easily inter-

preted statistics for assessing scalability that are used throughout the parallel computing community.

However, these measure have a number of weaknesses when employed in the assessment of parallel

branch-and-bound implementations. One of the major difficulties of this approach, the existence of

performance variability, was described earlier in Section 3.2.2. Due to the effects of this variability, it

is highly probable that the execution paths of the sequential and parallel implementations will be com-

pletely different. To exacerbate the situation, parallel branch-and-bound implementations are typically

also non-deterministic, since techniques for enforcing determinism introduce additional overhead. As

such, it is possible that two runs of the same parallel implementation with the same number of cores will

exhibit vastly different resource consumption. Consequently, it is difficult to determine whether the loss

of efficiency should be attributed to the parallel implementation or a less performant execution path.

These challenges can be overcome with proper repetition and statistical analysis of experimental data,

which is vastly more important in the parallel setting then in the sequential one.

A further limitation arising from the use of parallel efficiency as a measure of scalability is that it is

typically based on the time to optimality (or some other termination criteria). As such, this measure

can only be used with instances in which the sequential and parallel implementations can both find the

optimal solution. Hence, the instance selection plays a major role in the observed scalability. Because

the efficiency of different parallel implementations can be vastly different, it is very difficult to find a

common test set that will make this measure meaningful.
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4.2.3 Measuring Changes in Work Performed

Many of the measures of work presented in Section 4.1.2 can also be used as proxies to assess certain

aspects of the scalability of parallel implementations by comparing the total work done in executing

the parallel implementation to the work done in the sequential implementation. The most common

measure of work used for this purpose is the number of nodes processed. Changes in the number of

nodes processed are mainly due to two phenomena. First, the order in which nodes are being searched

is different, even when the search strategy itself is the same. Since multiple subtrees are being explored

simultaneously, some nodes will inevitably be discovered relatively earlier in the parallel implementation

than in the sequential implementation. This can lead to the processing of nodes in parallel that would

not have been processed in the sequential algorithm because of differences in the timing of discovery of

primal solutions.

A second, though much less impactful, reason is the lack of accurate information about bounds dis-

covered at remote compute cores for reasons described below. In deterministic parallel implementations,

locally generated bound information is usually broadcast only periodically, at specified communication

synchronization points. Non-deterministic branch-and-bound implementations broadcast bound infor-

mation on a more continuous basis, but delays are still inevitable. In both cases, there will inevitably

be periods of time when the bound information available at a given node is outdated. As a result, a

subtree search performed locally could end up processing nodes that have a dual bound greater than the

best global known primal bound. This phenomenon causes an increase in the number of processed nodes

for the parallel implementation compared to the underlying sequential implementation. The reverse

phenomenon can also be observed in non-deterministic parallel implementations. Since many nodes are

processed in parallel and the improved bounds are constantly communicated, it is possible that a node

that improves the primal bound is found earlier than in the sequential implementation [40]. This would

result in more nodes being discarded earlier and would reduce the total number of nodes processed.

The obvious challenges in using measures of work to assess scalability are similar to those described

at the end of the previous section, primarily due to the inherently high degree of variability in the

measurements. As such, one must perform testing with due care and attention to proper design of the

experiments and statistical analysis. Naturally, measures of total work for different numbers of cores

are not comparable except when the benchmark computation can be completed, so the same limitations

apply here as above with respect to test instances. One possible way to address this is to measure the

rate at which work can be preformed, as in the use of node throughput described above.

4.2.4 Measuring Changes in Progress

Earlier in Sections 2.2, we proposed that reliable measures of progress could ultimately lead to more

robust techniques for measuring the (weak) scalability of parallel algorithms. Measures of progress

are able to address some of the difficulties inherent in measuring strong scalability because they are
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meaningful at intermediate stages of computation. This eases the difficulty of constructing a test set

and allows assessment of algorithms that cannot complete a given computation within a time limit. To

be suitable in the context of scalability, a measure of progress only needs to be effective at measuring the

fraction of a computation that has been completed for computations that have already been previously

attempted with other resource configurations or other algorithms. Using information gathered over

repeated runs, we conjecture that it may be possible to compare progress made by different algorithms

or resource configurations. Thus, despite the fact that none of the measures of progress developed thus

far have proven effective in other contexts, there is some reason to maintain optimism that they will be

effective in this context.

The optimality gap, while widely used as a measure of progress, seems to be a difficult for for assessing

scalability, primarily due to the unpredictability of its evolution. Subtle changes in timing could lead to

an entirely different assessment of progress. Gap integrals, on the other hand, may hold more promise,

as they are inherently more stable in their evolution. We explained earlier how the gap integral could

be used to compare the progress of two different algorithms or two different resource configurations for

solving the same instance and this is exactly the kind of analysis that is needed to assess scalability.

Tree size estimates could similarly be used if any proved to be accurate predictors, but currently this

appears not have a very high potential.

5 Summarizing and Visualizing

The effective reporting of results is as important as the effective performance of the experiments them-

selves, yet the importance of this step is often overlooked. As we have already mentioned in Section 2,

empirical experiments can be thought of as methods of approximating the theoretical probability distri-

bution of all instances in a given class with respect to a given measure of effectiveness. The goal in the

reporting of results is to provide the reader the data necessary to draw conclusions in a form that is easy

to consume. Typically, one wishes to determine which implementation will be most advantageous for a

particular use case. This comparison of implementations is done essentially by comparing the empirical

distributions produced by the experiments. The two main tools for comparison are summarization (via

the computation of statistics associated with the distributions) and visualization of the empirical CDFs

themselves. Most techniques for doing this were initially designed for the assessment of efficiency, but

are also suitable for assessing scalability in general. Below, we discuss summarization and visualization

in the contexts of both efficiency and scalability analysis.

It is important to mention here once again that while the experiments are intended to approximate

the distribution of some measure of efficiency across an entire class of instance, it is obvious that the

quality of the approximation is highly dependent on the instance set, as discussed in Section 3.3. Ideally,

conclusions regarding differences between algorithms should be drawn using statistical methods and care
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must be taken when choosing the instance set, which should be representative of all instances from a

class. Despite best intentions, the selection of instances will more than likely introduce some unintended

bias and it would be inaccurate to state unequivocally that any of the methods below constitute a way

of drawing general conclusions beyond the extremely narrow setting of the experiments themselves.

5.1 Efficiency

5.1.1 Summarization

Historically, empirical data arising from solution of a set of test instances was simply summarized and

reported using a single summary statistic, usually the arithmetic mean. The popularity of this method

of summarization derives from the fact that this statistic is simple to compute and the resulting values

appear meaningful (and sometimes are). However, it has been recognized over time that a significant

limitation of the arithmetic mean is that it can be dominated by the results of only a few instances. As

such, differences may appear more significant than they actually are.

In an attempt to address the limitations of the arithmetic mean, the geometric mean was proposed

as an alternative for summarizing experimental results. Unfortunately, the value of the geometric mean

can also be dominated by a few instances, particularly those with comparatively small values.

The current standard for summarizing empirical results, first proposed by Achterberg [1], is the so-

called shifted geometric mean, computed by adding a positive scalar amount to each data point before

computing the geometric mean and then subtracting the same amount from the result. By “shifting”

the value, many of the issues associated with the geometric mean can be alleviated, in particular where

the reported value can be dominated by few instances with very small values. The shifted geometric

mean is defined as follows.

Definition 10. Given a set of values N := {x1, x2, . . . , xn} and a shift value s, the shifted geometric

mean is given by

SG(N) =

(
n∏

k=1

(xk + s)

) 1
n

− s.

The main motivation for using the shifted geometric mean is that test sets typically contain instances

of varying difficulty. For example, the wall clock time required by SCIP 3.2.1 (with SoPlex 2.2.1) for

solution of the MIPLIB2010 instances ranges from 0.02 to 4414.33 seconds (excepting those that take

more than 7200 seconds). The shifted geometric mean is seen as providing a more representative summary

of results from such a diverse set of instances, since it protects against bias from results that are both

too large and too small.

The use of a single summary statistic has significant limitations for reporting meaningful assessment

results. If there are instances that fail to solve within the time limit, then the use of summary statistics
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is seriously hampered. When using means, geometric or arithmetic, this issue is commonly addressed

by computing the mean using only results from instances that are solved within a given time limit and

reporting the number that are unsolved. However, this can clearly create a bias towards implementations

that are highly successful on some instances and fail completely on others. Alternatively, this issue can

be addressed by using a measure of efficiency that is better suited for handling instances that fail to

solve within the time limit (such as the gap integral) or by using a different collection of test instances.

5.1.2 Visualization

Beyond single summary statistics, the use of graphical comparison methods have gained significant

traction in recent years and for good reason. Graphical methods provide a more nuanced view of the

behavior of implementation then summary statistics, which greatly improves the ability to assess and

compare implementations. The visualization methods described below involve displaying the empirical

CDF of either the raw measures of efficiency employed in the experiments or ratios of these measures

(to provide a scale-invariant comparison).

Performance Profiles. The performance profile, popularized by Dolan and Moré [20], provides a

visualization of the empirical CDF of the ratios of a given measure of efficiency to the so-called “virtual

best” for each algorithm and each instance in a benchmark test set. Using a ratio to the virtual best

rather than the measure itself creates a scale invariant method of comparison and therefore may avoid

the potential bias introduced by the large differences in resource requirements between instances that

commonly arise in practice.

More precisely, the performance profile is based on the performance ratio given by

rp,s =
tp,s

min{tp,s | s ∈ S}
,

where p is the instance, s is the implementation and tp,s is the measure of efficiency for s in solving p.

The profile for implementation s is then given by

ρs(τ) =
1

|P |
∣∣ {p ∈ P | rp,s ≤ τ} ∣∣,

where τ is a given performance ratio. The interpretation of ρs(τ) is the fraction of problem instances

that are within a ratio of τ when solved by s. The function ρs(τ) is exactly the CDF of the performance

ratio.

An example of the use of performance profiles is shown in Figure 3, where the efficiency of three

commercial MILP solvers are compared on the MIPLIB2010 benchmark test set. While performance

profiles are often a very good tool for comparing implementations, there are also limitations to their use,

some of which are highlighted by Gould and Scott [25]. Using the example in Figure 3, there seems to

be a clear dominance of Commercial 2 over Commercial 1 and Commercial 3 with respect to wall clock



5 SUMMARIZING AND VISUALIZING 38

100 101 102

Ratio to best setting

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
in

st
a
n
ce

s

Commercial 1

Commercial 2

Commercial 3

Figure 3: The performance profiles of the wall clock time for commercial solvers.

time. Upon closer examination, however, it can be seen that the use of ratios can still distort the results

if the measures for some instances are close to zero. For example, the difference between a solution time

of .05 seconds and 0.2 seconds would probably be considered negligible to most, but the ratio of the two

running times is 4, which would be viewed as a very large ratio if evaluated without knowledge of the

underlying running times. For many of the instances from the MIPLIB2010 test set, run times are very

small for the commercial solvers. As such, one would expect some large ratios to arise, while practical

performance of the solvers is actually very similar efficiency. This issue could be remedied by using a

different test set or by using a shift value in the ratio calculation.

Another limitation arises when the test set contains instances that fail to solve within the time limit.

In this case, the classical measure of wall clock time is no longer applicable. While performance profiles

can visually indicate the fraction of instances for which a given implementation did not complete the

solution process within the time limit, it cannot give any indication of the progress made on those

instances. Including the instances that did not complete in the profile makes the profile more difficult to

read while adding very little additional information. Two different performance profiles are presented in
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Figure 4: Performance profiles of the wall clock time when executing SCIP with different emphasis

settings
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Figure 4, both evaluating the efficiency of SCIP when solving instances from the MIPLIB2010 benchmark

test set using different meta-settings. The parameter settings used for the computational experiments,

in addition to the default settings, disable the heuristics, separation or presolving, labeled as Heur off,

Sepa off and Presol off respectively. In Figure 4(a), only the instances that did not time out or abort

for all meta-settings are included. Alternatively, Figure 4(b) displays the performance profile using all

instances, so instances that time out are included. The two profiles display the same information, but

in the second one, the intercept on the right side is lower to indicate the percentage of instances that

timed out.

Cumulative Profiles. As we have seen, one of the main appeals of performance profiles is the unitless

comparison that results from the use of ratios of a given measure across a set of implementations. While

the unitless comparison is valuable, it is not suitable in all contexts. An alternative to the performance

profile is the cumulative profile, which is a plot of the fraction of instances in a test set solved within

a given time limit and thus directly visualizes the empirical CDF. More precisely, let tp,s denote the

measure of efficiency associated with instance p and implementation s. Then, the cumulative profile for

implementation s is a graphical representation of the function

fs(t) =
1

|P |
|{p ∈ P | tp,s ≤ t}|,

which is the empirical fraction of instances solved within t seconds.

The cumulative profile provides a different perspective on the assessment of efficiency and scalability

than the performance profile. In particular, the cumulative profile is a representation of the efficiency

of each algorithm in an absolute rather than relative sense. Although the cumulative profile apparently

suffers from the same difficulty in dealing with instances that fail to solve within the given time limit,

this issue can be mitigated by extending the cumulative profile by utilizing a measure of efficiency or

progress that applies to instances that do not complete within the time limit. For instances, it is possible

to combine the cumulative profile for the solved instances with the cumulative profile of the final gap for

the unsolved instances. Figure 5 presents such an example using the same data that produced Figure 4.

A different example of a cumulative profile is presented by Dinh et al. [19].

The combination of the measure of efficiency and the final gap attempts to provide an overall as-

sessment of the test set when instances time out. However, some of the limitations of both measures

are highlighted in Figure 5. First, only a subset of instances are assessed for each setting in the left

hand plot—this is potentially different subset for each setting. Thus, the instances used to produce

the wall clock time and final gap plots could be completely different for each of the evaluated settings.

A further limitation of this particular figure is related to the final gap. Specifically, the final gap is

bounded—namely to 100%—as given by equation (2). This is not necessarily a limitation on all gap

computations, but the fact that there are many ways to compute the gap is an issue that needs to be

considered when using this measure.
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Figure 5: A cumulative profile combining the wall clock time and final gap when running SCIP with

different emphasis settings

5.2 Scalability

Scalability analysis assesses the change in efficiency that occurs as the bundle of available resources are

changed. Thus, we must consider not just a single measure, but a trade-off, which gives the data has an

additional dimension. Although this apparently demands new methods of summarization and visualiza-

tion, we can adapt the methods discussed in the previous section to some extent by simply accounting for

the extra dimension in the data. Since analyzing scalability involves comparing the efficiency of a single

implementation as resource levels are varied, we can in principle apply the methodology for comparing

the efficiency of different implementations from the previous section to that of the same implementation

with differing bundles of resources. However, we face some challenges in doing this that we’ll describe

below and whose resolution is the subject of on-going work. Some work on visualization of scalability

data has already been done by Koch et al. [38], who present methods for visualizing the parallel effi-

ciency, changes in node throughput, and changes in number of nodes processed for individual instances,

However, these were for the analysis of single instances and do not constitute methods of summarization

across a test set. We describe here only more traditional methods based on strong scalability here.

5.2.1 Summarization

The experimental data produced when analyzing scalability is similar to that produced when analyzing

efficiency, but we have a separate set of data for each resource level tested. For example, we may measure

the efficiency across a test set when given 1, 4, 16, and 64 cores. The data collected from the experiments

with 4, 16 or 64 cores are of precisely the same nature as that collected for 1 core.

Summarization of scalability data involves both summarization across the test set (within a single

experiment) and summarization across multiple experiments involving a single solver. Although re-

searchers have tended to summarize the data within an experiment first and then compute scalability

statistics based on those summary statistics, richer analysis may be possible when scalability statistics
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are computed for each instance in each experiment and then these statistics are in turn used to assess

and compare the scalability of different implementations. By considering the speed-up or efficiency on a

per-instance basis, we may be able to more easily compare the scalability of multiple parallel implemen-

tations by mitigating the effect of the inherent differences in the potential for scalability of individual

instances. For example, we could visualize the parallel efficiency of the solution process for individual

instances using a performance profile to compare implementations.

5.2.2 Visualization

Speed-up Plots. The most commonly used method of presenting scalability data applies to experi-

ments in which the wall clock time is fixed and the number of cores is varied. First, summary statistics

are computed for each benchmark computation and speed-up is then computed for each number of cores

and each implementation. Finally, a plot similar to that in Figure 6 is displayed graphically comparing

implementations to each other and to the reference line for the ideal case of linear speed-up). Figure 6

compares ParaSCIP and SYMPHONY on instances from the MIPLIB2010 benchmark test set for which

neither solver aborted and (for Figure 6(a)) that were solved within 5 hours by both solvers across all

resource configurations.

Using Figure 6 as an example, we can clearly see that as the number of cores increases, the marginal

speed-up that is achieved for both ParaSCIP and SYMPHONY decreases. In comparison to perfect

scaling, which is given by the green line, this figure suggests that there is very little return from increasing

the number of cores beyond 16.

Figure 6 encapsulates many of the challenges that have been discussed in the preceding sections. First,

the speed-up of a parallel implementation is computed from the summary of an underlying measure.

In Figure 6(a), the underlying measure is the wall clock time which has been stressed as a problematic

measure for efficiency and scalability assessment. In this example, because wall clock time was used,
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Figure 6: The speed-up of ParaSCIP and SYMPHONY based of the wall clock time and primal-dual

integral, using the shifted geometric mean on instances from MIPLIB2010 that did not abort.
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it was only possible to compute the speed-up on the instances that could be solved within 5 hours.

Thus, many instances have been discarded from the analysis, which biases the results. In particular, the

instances discarded are those that are the most difficult, which also tend to be those for which it is easier

to achieve scalability and that may benefit the most from parallelization. When comparing scalability of

different implementations, the issue is even worse, since we must discard instances not solvable by any

of the implementations. One possible fix is to use a measure such as the primal-dual integral that does

not require all instances to be solved within the specified time limit. To illustrate, Figure 6(b) shows the

“speed-up” calculated from the primal-dual integral rather than wall clock time. Calculating a speed-up

based on primal-dual integral may seem rather odd, but the obvious advantage of using a gap integral

as a measure of efficiency is that the full test set can be utilized and the results are not biased by the

existence of instances that cannot be solved by one of the implementations being compared.

A second issue is that the scalability of a parallel implementation is evaluated by using a specific

test set. In the case of Figure 6, the instances used were from the MIPLIB2010 benchmark test set.

The result presented in Figure 6 suggest that both ParaSCIP and SYMPHONY fail to scale very well

with an increase in the number of cores. However, this poor scalability may not be due to the parallel

implementation but associated with the test set used to do the evaluation. As explained in Section

3.3, if the sequential algorithm is able to solve the instances in a small number of branch-and-bound

nodes, then it is almost guaranteed that a parallel branch-and-bound implementation will be unable to

achieve a scalability close to perfect. Thus, the evaluation of scalability from the speed-up plot requires

a considered choice about the test set used for the computational experiments.

Finally, the speed-up plot only provides a very high level overview of the scalability of parallel

implementations. The only analysis that can be performed from such a visualization is to assess how

different the scalability of an implementation is from perfect scaling across the entire test set. It is not

possible to gain a better understanding of the implementation and identify how to improve the scalability

or to understand how scalability varies from instance to instance. This method of visualization should

only be used to present a high-level summary, but should generally be backed up by other summary and

visualization techniques.

Performance Profiles. A more nuanced way of visualizing scalability data may be obtained by using

performance profiles. The use of a performance profile for assessing scalability may at first seem a little

strange, but there are actually multiple ways in which they can be applied and the resulting analysis

is richer than what can be derived from a simple speed-up plot. The use here differs subtly from the

typical use of this visualization technique in assessing efficiency.

While performance profiles are generally used to compare different implementations, here we suggest

using them to assess the scalability of a single underlying implementation. In this context, the comparison

is with respect to different resource configurations, typically changes in the number of cores. An example
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of using performance profiles to compare the parallel implementations of ParaSCIP and SYMPHONY

with different numbers of cores is presented in Figure 7.

One can clearly see the expected improvement in the measure of efficiency as the number of cores are

increased, but the results with different numbers of cores are not directly comparable, since more total

core hours are allocated to the computations with more cores. This may make it less obvious that there

are actually efficiency losses as the number of cores is increased if one considers the progress made per

core hour allocated to the computation.

A more insidious issue with using performance profiles for scalability assessment, however, is related

to computation of ratios with respect to the “best” implementation for each instance. While it is expected

that the implementation with the greatest number of cores will be the “best” implementation, this may

not be the case for all instances of the test set. As demonstrated in Figure 7, the 16-core implementation

appears to be the “best” implementation for approximately 50% of the instances for both ParaSCIP

and SYMPHONY. Even the sequential implementation is the “best” implementation for about 10% of

the instances for both implementations. This variation in the “best” implementation suggests that for
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Figure 7: The performance profile of the wall clock time for ParaSCIP and SYMPHONY using different

numbers of cores.
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individual instances the scalability of the parallel implementations is not perfect. While we don’t expect

perfect scalability for individual instances, the average scaling across the complete test set is difficult to

evaluate from this visualization technique alone. Unfortunately, assessing whether an implementation

scales well is obscured by the variability in the scaling for individual instances.

In regards to assessing scalability, performance profiles seem to introduce more confusion than insight

and there is clearly a need for alternative methods. We propose that some of the issues with performance

can actually be fixed, but we leave discussion of that to a future work.

6 Concluding Remarks

Assessing the effectiveness of branch-and-bound implementations is an immensely difficult task. Since

modern branch-and-bound implementations comprise of numerous algorithmic components, it is difficult

to prescribe general methods for the effective assessment of efficiency and scalability. Within this

paper, we propose an assessment framework that is based upon resource consumption. The assessment

of efficiency involves assessing the consumption of a single resource, typically time, while keeping all

other resources, such as memory and cores, fixed. While efficiency is usually associated with sequential

implementations, this concept of resource consumption can equally be applied in the parallel context.

Scalability is a concept related to parallel branch-and-bound implementations that is evaluated as the

trade-off between two or more resources. The resources typically evaluated in a scalability analysis are

time and cores.

Starting from this general framework of resource consumption, we highlight many challenges and

limitations of the current best practice for the assessment of branch-and-bound implementations. The

sophistication of implementations, the non-deterministic run time behavior—especially in the context of

parallel branch-and-bound implementations—and performance variability all represent significant chal-

lenges that must be considered when conducting empirical studies of algorithms. Further, the classical

measures of efficiency, work and progress exhibit significant limitations. This is shown to be further

accentuated when assessing scalability.

This paper aims to initiate further discussion regarding the effective assessment of branch-and-bound

implementations. We are building on a number of previous works calling for improved standards and

guidelines for empirical studies of algorithms [7,9,14,16,26,30–36,44–47]. By highlighting the challenges

of assessing branch-and-bound implementations, we hope to drive innovation in the development of

effective assessment techniques. There are many advancements that can be made in devising improved

methods for the selection of implementations and test instances. An example of developing improved

methods for test instance selection is the long running MIPLIB project [2,12,13,37]. A large impediment

to the assessment of branch-and-bound implementation is the prevalence of performance variability. A
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better understanding of performance variability and improved strategies to minimize its impact on

algorithm evaluation will make great strides to a more rigorous assessment of efficiency and scalability.
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