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Abstract

MPI passive target synchronization offers exclusive and shared

locks. These are the building blocks for the implementation
of applications with Readers & Writers semantic, like for
example distributed hash tables. This paper discusses the
implementation of MPI passive target synchronization on a
non-cache-coherent multicore, the Intel Single-Chip Cloud
Computer. The considered algorithms differ in their commu-
nication style (message based versus shared memory), their
data structures (centralized versus distributed) and their se-
mantics (with/without Writer preference). It is shown that
shared memory approaches scale very well and deliver good
performance, even in absence of cache coherence.

CCS Concepts - Computer systems organization —
Multicore architectures; « Computing methodologies
—> Concurrent algorithms; « Software and its engineering
— Message oriented middleware.

Keywords process synchronization, programming models
and systems for manycores, MPI

1 Introduction

Distributed hash tables (DHTs) are a common approach
for fast data access in big data and data analytics applica-
tions. However, DHTs imply dynamic communication which
makes an implementation using two-sided communication,
i.e. with SEND and RECV operations, cumbersome. In contrast,
one-sided communication with PUT and GET operations is a
suited programming model for a DHT. It allows to specify
the communication parameters by the local process only and
does not require knowledge about the communication on
the remote side.

Concerning the process coordination, a DHT application
follows the Readers & Writers model: reads may occur con-
currently while inserts have to be done exclusively. Hence,
a resource has to be locked before it is updated. Typically,
writers are given preference to avoid readers reading old
data. This coordination scheme maps on MPI’s passive tar-
get synchronization which offers exclusive locks (one writer)
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Figure 1. Overview of the Intel SCC.

and shared locks (many readers). In addition, an MPI im-
plementation has much freedom to implement the process
synchronization for passive target OSC [17, p. 448].

This paper discusses different synchronization algorithms
on the non-cache-coherent Intel Single-Chip Cloud Com-
puter (SCC) which is an experimental many-core chip that is
comprised of 48 in-order Pentium (P54C) cores [12]. Figure 1
shows an architectural overview of the chip. Figure 1 shows
an architectural overview of the chip. While core counts
steadily increase, the management of cache coherence be-
comes a more challenging task due to that high number of
cores and high memory bandwidths [18]. Although coherent
high-end processors with 64 cores are currently available,
non-coherent architectures provide an interesting research
domain. It has been shown in previous work that such nCC
shared-memory systems can be easily programmed with
well established technologies like, e.g., MPI [7].

RCKMPI, the MPI implementation for the SCC, uses mes-
sages to implement passive target synchronization. We com-
pare this implementation against two different synchroniza-
tion schemes from the literature which are suited for the
implementation on a shared memory system: a best-effort
approach from Gerstenberger et al. [9], and a synchroniza-
tion scheme with writer preference based on the work of
Mellor-Crummey and Scott [15].

Gerstenberger, Besta and Hoefler (GBH) present a synchro-
nization scheme for MPI passive target synchronization for
the Cray XC super-computers [9]. We call their synchroniza-
tion scheme the GBH best effort approach. They implement
passive target synchronization, but without writer or reader
preference. Rather, a best-effort approach is used: Locks are



acquired without respect to other processes. If an acquisition
does not succeed, all data structures will be released and the
process will try again later with an exponential back-off.

Mellor-Crummey and Scott proposed the so-called MCS
locks [15] which are based on linked lists of wait objects that
are allocated in shared memory. Those locks have been ex-
tended to support different preference use-cases [16] which
clearly distinguishes their approach from the GBH concept.
The design of Mellor-Crummey and Scott allows to prefer
writers and is therefore suited for all use-cases where many
readers and less writers are expected.

The contributions of this paper are

e First implementation of passive target synchronization
on the non-cache-coherent SCC using shared memory,

e investigation on the scalability and their impact on
a DHT application of different synchronization algo-
rithms, and

e recommendations for both application and MPI devel-
oper regarding which synchronization scheme may be
beneficial under which application behavior.

The next section gives an overview over MPI one-sided com-
munication with the focus on passive target synchroniza-
tion. Section 3 presents related work. The different synchro-
nization schemes and their data structures are described in
Section 4, their implementation on the SCC is presented in
Section 5. Results from a micro- and application benchmarks
are presented in Section 6, followed by a discussion. Section 8
concludes the paper.

2 MPI One-Sided Communication

MPI specifies one-sided comminication (OSC) since version
2.0 of the standard. There are two main aspects which makes
OSC different from point-to-point exchange: First, only one
process (called origin) specifies the parameters of the com-
munication, like destination and size of communicated data.
From the API perspective, the target process is not involved
in the communication. The second main difference is that
communication is separated from synchronization. The latter
must be explicitly performed.

Data is exchanged via a window that exposes parts of a
process’ address space to other processes. A window object
serves as a handle for accessing all windows that have been
collectively created by a group of processes. Combined with
the process identifier (rank), the window object identifies
the destination of communication operations.

An origin communicates with operations like PUT and GET
to either replace or fetch window data. Additional operations
like ACCUMULATE or FETCH_AND_OP combine the data in the
window with the provided buffer atomically, but per element,
using pre-defined operations.
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Figure 2. Usage of MPI windows for a distributed hash table.

2.1 Passive Target Synchronization

For the implementation of a DHT, MPI’s passive target syn-
chronization is well suited. Opposite to the active variant
where both origin and target have to issue synchronization
routines, only the origin has to issue a synchronization rou-
tine in the passive variant. This enables a shared-memory
like programming style even on distributed memory ma-
chines.

The API defines locks as means for passive target syn-
chronization. Before an origin process issues communica-
tion operations (see previous subsection), it has to issue a
synchronization method, like MPI_WIN_LOCK. This opens an
access epoch at the window of a given single process. Exclu-
sive and shared locks can be acquired. With an exclusive lock,
conflicting accesses can be avoided as this lock type ensures
that concurrent modifications a target’s window do not in-
terfere. In contrast, a shared lock allows several processes
to access a window. Shared locks are suited for concurrent
read operations.

After the communication operations have been issued, the
access epoch needs to be closed with MPT_WIN_UNLOCK. The
MPI standard defines that RMA operations issued during the
epoch will have been completed both at the origin and the
target when the call that closes the access epoch returns [17,
p.447].

Additionally, the MPI standard defines MPI_WIN_LOCK_-
ALL which locks all windows of the window object. However,
the employed lock type is restricted to shared locks.

2.2 An RMA based Implementation of a DHT
application

Based on MPI’s passive target one-sided communication,
DHT’s can be implemented. In a DHT application that uses
MPI RMA functionality, each process reserves (equally-sized)
parts of its local address space as storage for a part of the dis-
tributed hash table as shown in Figure 2. Using MPI windows,
a global address space is created which allows to access the
distributed data via the window object.

In such an application, the hash function returns two in-
formation: the process and the offset at which the table’s



entry could be found. In case data needs to be looked up, the
application computes the hash and acquires a shared lock via
MPI_WIN_LOCK(SHARED, ...) for the window at the deter-
mined process. Using an MPI_GET call, the hash table entry
is fetched from the offset provided by the hash function. The
lock is released by calling MPI_WIN_UNLOCK. Special values
or markers of the fetched data may indicate the absence of a
valid table entry. For a write, an exclusive lock and MPI_PUT
is used to update the hash table (see Fig 2).

The sketched implementation solely relies on existing
MPI routines. Thus, a DHT can be realized easily for differ-
ent platforms. By tuning the MPI implementation, different
semantics can be achieved. In the following, we discuss dif-
ferent designs for the synchronization on nCC platforms
with a focus on the DHT use-case.

3 Related Work

Several research groups are concerned with the efficient im-
plementation of MPI OSC and its synchronization methods.
An early work is the discussion of MPI OSC on InfiniBand
clusters [13].

Recently, implementation schemes for NUMA-aware locks
on cache-coherent multicore machines are gaining inter-
est [3, 8, 11, 14], but non-cache-coherent architectures are
still neglected.

3.1 MPI OSC and Synchronization on the SCC

RCKMPI [23] is a tuned MPI implementation for the SCC that
is based on MPICH. It uses messages which are transferred
via the SCC’s on-chip Message Passing Buffers (MPB). One-
sided communication including all synchronization styles is
supported, but is based on messages as well.

An implementation scheme for RMA communication on
the SCC that avoids messages is discussed in [7]. In case of
MPT’s general active synchronization, Christgau and Schnor
have shown that an implementation using shared memory
and uncached memory accesses outperforms the message-
based approach significantly [5]. Similar, Reble et al. discuss
one-sided communication for the SCC, but focus on the ac-
tive target fence synchronization style which they implement
on top of an efficient barrier [19].

The authors of [1] investigate barrier synchronization
on the SCC and use the Message Passing Buffer to store the
synchronization data. In [2], they even exploit unused entries
in the rare lookup tables of the chip’s memory subsystem.
The bottom line of this research is that synchronization data
should be placed close to the spinning core.

3.2 Synchronization on Distributed Memory
Architectures

Gerstenberger et al. have published performance numbers
of a distributed hash table application running on up to

32k cores [9]. They use their own MPI-3.0 RMA library im-
plementation for Cray Gemini and Aries interconnects called
foMPI (fast one-sided MPI). Inserts are based on atomic com-
pare and swap (CAS) and atomic fetch_and_op operations
which are implemented on top of proprietary Cray-specific
APIs. The presented synchronization scheme for passive syn-
chronization is described in Section 4.2 and adapted for the
SCC (see Section 5).

Schmid et al. have proposed a scheme for Readers & Writ-
ers locking dedicated for distributed memory architectures
with RMA capabilities like the Cray XC30 [22]. The synchro-
nization data structures are organized hierarchically in a
distributed tree.

Subsuming the related work, there are no efforts in passive
target synchronization for nCC many-core CPUs with shared
memory like the SCC.

4 Design of Synchronization

This section describes three implementation designs for MPI
passive target synchronization. The first two are known
from the literature ([9, 15]), the third one describes the de-
fault implementation on the SCC. While [9] presents a best-
effort approach which scales well on the Cray Gemini which
is a distributed-memory machine, the algorithm presented
in [15] addresses scaling on shared-memory machines.

For the implementation of a DHT, shared and exclusive
locks are used which are set on a per-target basis with the
LOCK operation as depicted in Section 2.2 and Figure 2. There-
fore, we omit the discussion of the LOCKALL functionality
where possible.

4.1 General Design Principles

Since the SCC is a shared memory architecture, an immediate
scheme which actually performs synchronization operations
when according methods are invoked should be preferred [7].
This enables direct communication after synchronization. Its
counterpart, deferred synchronization, delays both the actual
synchronization operations and the communication until the
end of an access epoch. This approach allows optimizations
which are mainly suited for message based approaches, but
it is not beneficial for shared memory platforms. [10]

4.2 GBH Best Effort Synchronization

In [9], Gerstenberger, Besta and Hoefler (GBH) present a
synchronization scheme for MPI passive target synchroniza-
tion for the Cray XC super-computers. It is based on atomic
remote direct memory operations (RDMA) operations which
are supported by the hardware. The design uses two stages
of counters for each created window object: a single global
counter and per-process local counters. All of them are of
machine word size, but their bits are interpreted in different
ways. All counters are allocated in memory local to owning
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Figure 3. Counters used by the GBH scheme.

process. The global counter resides in the memory of a des-
ignated process (rank 0). The counters’ memory locations,
however, are made accessible for RDMA operations from
remote processes as well.

The global counter is used to track active LOCKALL opera-
tions and exclusive locks which are mutual exclusive. The
per-process counter indicates the number of active exclusive
and shared locks. As there can be only one exclusive access
at a time, a single bit is used to indicate such epochs. The
remaining bits of the variable are used to count the number
of active access epochs using shared locks. A value of zero
indicates no active access epochs of either type on the as-
sociated window. The separation of both values inside the
counter is illustrated in Figure 3

When an exclusive lock is to be acquired, an atomic add
operation increments the global exclusive counter part and
returns the old value including the lockall value. If its value
was zero no LOCKALL access epoch is active. Then, an atomic
compare-and-swap (CAS) operation is issued on the remote
counter variable of the target process. Its value is compared
with zero and swapped with 1 such that the exclusive access
is indicated if there is no other active access. For shared
locks, the counter’s value is incremented with an atomic
fetch-and-add (FAA) operation which returns the old value.
If the old value indicates the presence of an exclusive access,
the increment is undone. In that case, the process attempting
to acquire the lock steps back and repeats its attempt. The
same applies to an exclusive lock attempt for which the CAS
operation did not succeed due to the presence of an exclusive
lock.

The UNLOCK operation atomically sets the local counter to
zero (exclusive access) or decrements the shared lock part
atomically (shared access).

The GBH scheme is not starvation-free. Exclusive write
accesses can be delayed indefinitely by a sequence of shared
accesses. The indicator for an exclusive access (the single
bit inside the per-process counter) is reset for every failed
attempt which gives concurrent shared access the possibil-
ity to acquire the lock. In addition, there is no guaranteed
order of which the processes acquire an exclusive lock. A
newly arriving process which wants to acquire an exclu-
sive lock might overtake a process that arrived earlier but
stepped back. Thus, even attempts for exclusive locks can

be deferred indefinitely by other attempts of the same type.
However, if there is little or no contention on the lock, those
disadvantages disappear.

In contrast to the GBH approach, the following design
prefers writers. This approach is suited for all use-cases
where many readers and less writers are expected.

4.3 MCS Locks with Writer Preference

To avoid centralized spin objects which cause high inter-
connect traffic, Mellor-Crummey and Scott proposed MCS
locks [15]. Those are based on linked lists of lock objects that
are allocated in shared memory. Each process that wants to
enter a critical section by means of MCS locks appends a list
entry which consists of a boolean flag blocked and a pointer
to the next waiting process. The flag is initially set to TRUE.
A process that wants to acquire the lock repeatedly polls the
flag in its list entry until it is set to FALSE by another process.

The main advantage of using one list item per process is
that spinning is done only on a local data item and not on a
globally shared one like a single spin lock, for example. In
case of coherent shared memory systems, this reduces the
coherence traffic on the interconnect and makes processes
to spin on their local caches only.

When a process enters an MCS lock it adds its lock item
to the list by using atomic operations. If there are other pro-
cesses waiting in the list, spinning is started. When a process
wants to release an acquired lock, it sets the blocked flag of
the successor (referenced by the next pointer) to FALSE, so
the spinning of the waiting process is terminated.

Based on the original MCS locks, which do not differenti-
ate between process types, Mellor-Crummey et al. present
specialized locks that give precedence to either reading or
writing processes [16]. We have implemented MCS locks
with writer preference, since it fits best to the DHT use case
where lots of readers and rare writers are expected. We call
this lock type MCS-WP.

Independent of the precedence, the proposed lock data
structures contain lists for waiting reader and writer pro-
cesses as shown in Figure 4. In addition to the lists, there is a
state variable which is a single integer variable. For writer-
precedence, the state tracks the number of active readers and
provides flags for indicating presence of interested readers,
interested writers, and active writers.

The state is manipulated with atomic operations. Those
are used to implement {start/end}_{write/read} meth-
ods. Details can be found in Section 3 of [16]. In case of
writers precedence lock, readers can join other readers as
long as there is no interested writer. Otherwise, they queue
up in the list of readers. On the other hand, writers that
arrive after an active writer will be woken up by the leaving
writer. In that case, readers are left in the wait state.

For usage with MPI passive target synchronization, every
window i is associated with a lock data structure L; as shown
in Figure 4.
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Figure 4. MCS-lock based data structures.

4.4 Message-Based Synchronization

RCKMPI, the MPI implementation for the SCC, uses mes-
sages to implement passive target synchronization. This be-
haviour is inherited from MPICH’s CH3 device implementa-
tion but varies depending on the configuration. By default,
the LOCK synchronization and subsequent communication
operations are deferred until the end of the UNLOCK oper-
ation. The library then sends a control message from the
origin to the target process, waits for a reply, i.e. lock granted
message, issues the communication operations, and signals
the unlock operation by setting an according field in the
message header of the final communication operation.

If the access epoch constitutes only one outstanding RMA
operation, a single message that indicates lock acquisition,
the operation, and lock release is emitted. Depending on the
actual access, the origin then waits for a reply indicating
the completion of the RMA operation on the target process.
In case the access epoch did not contain communication
operations, no messages are sent at all.

However, MPICH/RCKMPI can be configured to send a
control message to the target for lock acquisition at the be-
ginning of the access epoch. Similar to the default behavior,
all RMA operations are deferred to the epoch end. Never-
theless, messages are not merged together, but the bit that
indicates a final communication operation, and therefore the
unlock step, is still piggybacked in the last message. When
the access epoch ends (by calling UNLOCK), the implementa-
tion on the origin waits for a lock granted message, performs
outstanding RMA operations (if any), and potentially waits
a for reply. If there were no RMA operations, MPICH sends
an explicit unlock message. Although this implements one-
sided communication it actually requires participation of the
target to process the synchronization messages.

Independent of the active configuration, the lock requests
from different origins are serialized at the target process.
Since the received messages are processed in the order at
which they are received by the target, there is no preference
of readers or writers (or according lock type).

Table 1 summarizes the main characteristics of the pre-
sented implementation schemes. All schemes can be used to
implement MPI’s passive target synchronization to support

Table 1. Comparison of the discussed designs.

RCKMPI GBH [9] MCS-WP [15]
communication  messages shared mem. shared mem.
synchronization  deferred immediate immediate
R&W support yes yes yes
fairness FIFO best-effort writer pref.
data structures - centralized and distributed

distributed counters counters

Readers&Writers semantics (exclusive and shared locks), but
they differ in their fairness behavior.

5 Implementation on the SCC
5.1 The Single-Chip Cloud Computer

The SCC is not a product but a research vehicle [12]. Each
of the 48 cores has two integrated 16 KB L1 caches — one for
data and instructions — as well as an external unified 256 KB
L2 cache. There is no cache coherence between the caches
of different cores.

Two cores are placed on a tile. In total, 24 tiles are arranged
in a regular 6 x 4 grid, to which four memory controllers
are attached as well. In addition to the cores, a tile also
provides a fast 16 KB message passing buffer (MPB). The
on-chip network allows to access both the MPBs as well as
the main memory by plain load and store instructions. Every
core can access all memory locations in the system via the
mesh network, making the SCC an nCC-NUMA processor.

5.2 Handling of Messages in RCKMPI

All of the of the above synchronization schemes have been
implemented in RCKMPI. The message-based variant uses
the CH3 device code from MPICH. Sending and receiving
of the CH3 messages has been optimized for the SCC in the
work of Urefla et al. [24]. Messages are exchanged essentially
by storing them in the fast on-chip SRAM-based MPB of
the core that executes the receiver. The receiver polls the
local MPB for new messages, and copies them for further
processing. This implementation, in addition with required
bug fixes [4], is considered as the baseline version.

5.3 Shared Memory Data Structures

The GBH and MCS-WP implementations do not use mes-
sages. Instead the required data structures are allocated in
shared off-chip DRAM memory. Due to the non-coherent
architecture of the SCC, those data structures are accessed
with uncached memory operations. Those are enabled by
the mmap’ing according physical memory regions into a pro-
cess’ virtual address space via a special device (similar to
/dev/mem) of the SCC-adjusted Linux kernel. It has been
shown in the past that uncached memory accesses can signifi-
cantly outperform message-based synchronization schemes [7,
21].
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Figure 5. Speedup of a strong scaling experiment for differ-
ent placements of the synchronization data structures [6].

In case of the GBH best effort and the MCS-WP synchro-
nization schemes, polling on variables is performed. While
previous research proved that polling the on-tile MPB or
even the Lookup Tables (see Section 3) reduces the traffic
on the interconnect, both approaches are hardly feasible in
our case. The MPB is of limited size and is completely used
by RCKMPI that serves as the foundation of the other im-
plementations. The LUTs have free items, but they require
special resource management which is out of the scope of
this work. Therefore, we focus on the usage of the external
DRAM as resource for the synchronization data. The exper-
imental results will therefore provide an upper bound for
the performance of the synchronization but not the optimal
values that could be achieved by using memory (like the
MPB) that is very close to a spinning core.

5.4 Data Allocation Strategy

To account the NUMA characteristics and to avoid con-
tention on the four memory controllers all data structures
are allocated in that DRAM portion which is managed by
the memory controller that is closest to the core that allo-
cates the data. The need for the distributed allocation was
already derived in our previous work on active target syn-
chronization [5]. Here, a strong scaling experiment with a
memory-bound application using stencil computations was
conducted with varying locations of the synchronization
data. While the per-process application was always allocated
at the closest memory controller, the place for the synchro-
nization data was either fixed in one of the four memory
controllers or the synchronization data was distributed. In
the latter case the data was allocated in the DRAM memory
closest to the process.

From Figure 5, it can be seen that the distributed allocation
strategy allows linear scaling of the application. Opposite to
this, a centralized location of the synchronization data for
all processes causes memory contention and results in poor
parallel application performance. This emphasizes the need
for distributed data structures.

5.5 Atomic Operations

Besides the message-based one, all synchronization schemes
require atomic operations. In the GBH scheme, the counter
variables need to be modified with FAA and CAS operations.

The MCS-WP variant also requires CAS operations, among
others, to modify the linked list and the lock state.

The SCC, however, lacks those primitive atomic opera-
tions. To implement any atomic operation on integers or
pointers the test-and-set registers (TSR), of which each core
owns only one, are employed. Reading such a register re-
turns its last value and sets it to zero atomically. Writing any
value resets the register to one. Thus, the TSR can be used
to synchronize concurrent access to a resource associated to
the core owning that TSR.

For implementing atomic operations, a TSR is acquired in
a blocking fashion before the operation is performed. The
TSR is reset immediately afterwards. Other means of syn-
chronization or atomic operations which are provided by
the system FPGA have been proven to exhibit higher la-
tencies [20]. Although previous research showed that the
TSR are prone to unfairness under high contention due to
the SCC’s NUMA characteristics [20], no such effects have
been observed in case of the active target synchronization
implementation [7]. In addition, contention on the TSR is
not assumed because access epochs and library overhead
between the required atomic operations are considered to
be much longer than the critical path in the atomic opera-
tion itself. However, for future architectures, the (hardware)
support for atomic operations might be critical for efficient
software designs.

6 Experimental Evaluation

We evaluate the different design schemes using a communica-
tion-free microbenchmark and check the impact on the DHT
application from Section 2.2 on the SCC.

6.1 Environment

The experiments were conducted on a SCC system with
cores clocked at 533 MHz and 800 MHz for the mesh net-
work and the memory controllers. A total of 32 GB of RAM
was installed on the system. Each core runs Linux 3.1.4
with platform-relevant patches applied. Software is cross-
compiled using GCC 4.4.6, and MPICH 3.1.3 was used as
the foundation MPI implementation. The MPB-based CH3
channel from RCKMPI was merged with the modifications
from [4]. The synchronization functions were overridden
to implement the approach presented in this work. The re-
sulting MPI library was compiled with optimization enabled
(-02).

6.2 Microbenchmark description

To evaluate the performance of the different synchronization
schemes, a microbenchmark is used which measures latency
for a pair of LOCK/UNLOCK operations. No communication
is performed between those two operations. The time for
performing these operations is compared for the GBH and
MCS-WP implementations as well as for the message-based



but SCC-optimized RCKMPI. Because the default RCKMPI
implementation defers the synchronization, we also measure
RCKMPI with a forced message exchange for synchroniza-
tion (cf. Section 4.4).

Each process of the microbenchmark performs 1000 pairs
of LOCK/UNLOCK calls in a tight loop. The type of the em-
ployed lock is controlled by an input parameter that specifies
the share of shared and exclusive locks each process shall
issue. According to that parameter, every process randomly
decides between the two lock types. The target process is
chosen randomly as well and may include the origin process.

The access mode (shared or exclusive) will obviously have
an influence on the results. Therefore, three different ratios
of shared and exclusive locks, i.e. readers and writers, were
measured: only shared locks (only readers), all accesses are
made with exclusive locks (only writers) and a mixture of
both where shared and exclusive accesses are equally dis-
tributed (see Figure 6-8).

Since we are interested in the scaling of the different syn-
chronization schemes, we run the benchmark with different
numbers of processes. The processes are mapped according
to the core with matching number. That is, the rows of the
SCC’s mesh network are filled before moving to the next
row. In case for 24 processes, the lower half of the chip (see
Figure 1) is filled.

From each of the 1000 LOCK/UNLOCK cycles, the required
time is measured. Finally, all samples from all processes are
gathered and the median time from all synchronization op-
erations is computed. This value is shown in the following
diagrams for different core counts. We compare MCS-WP,
RCKMPI with both immediate messaging (synchronization
message upon method call) and default behaviour (no mes-
sages), and GBH. In addition to GBH, a version without
back-off is included in the evaluation in order to analyze the
impact of the back-off on the synchronization latency. For
the version with back-off, the initial delay between two lock
acquisition attempts is 1 ps. This value is doubled for each
consecutive failed attempt. It has been shown for the SCC
that the usage of back-offs can improve the performance of
synchronization primitives [19].

6.3 Results from the Microbenchmark

In the following, we present the results from the microbench-
mark in the previous section for the three different mixtures
of locks.

6.3.1 Shared Locks Only

Figure 6 shows the latency of the different implementations
when all accesses are shared. The RCKMPI implementation
with immediate messaging has the highest latency due to
overhead from sending and processing the control messages.
The default RCKMPI implementation includes only library
overhead but no message exchange and scales therefore well.
It is slightly slower than both GBH versions due to additional
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Figure 6. Latency for shared locks.

management in the message-based code path that are not
used for the GBH and MCS implementations.

Both GBH versions exhibit nearly constant and identical
synchronization latencies because no conflicts occur in the
shared-only use-case and thus no back-off is required. Con-
sequently, the two curves overlap in the plot. Similar, the
reason for the constant time is that are not mutual exclusive.
In the GBH scheme, acquiring a shared lock only involves
incrementing the shared counter in the target’s local counter
(see Fig. 3). Due to the distribution of the synchronization
data and missing exclusive locks, which might cause more
attempts to acquire the shared lock, no contention on these
counters is observed on the SCC.

In case of the of the MCS-WP, the latency is generally
higher than for GBH. The latter only involves incrementing
a single per-process counter value, but for MCS the state
variable needs to be checked and list data has to be changed.
This causes the operations to take longer than for GBH.

From the data one can also note an increasing latency for
up to 24 processes. After that, the latency remains nearly
constant with a slight drop for 32 processes. This observation
can be attributed to the distributed synchronization data.
With up to 24 processes, the two lower memory controllers
of the chip (see Figure 1) have to handle the polling requests
of the 12 processes associated to each of them. Additional
processes are then handled by the next memory controllers,
but do not increase the load on the already utilized ones.

This is also the reason for the slight latency drop at 32
processes: Since the upper two memory controllers have to
serve fewer processes than the lower two, the median latency
reduces. Similar behavior can be identified for the switch
from 6 (only handled by MC 0) to 8 processes (MC 1 handles
additional polling accesses).

Since for 24 processes the two lower memory controllers
experience maximum usage and because of the distributed
data, no further increase of the lock latency is observed when
the number of MPI processes is raised. This is different from
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Figure 7. Latency when the processes use 50% shared and
50% exclusive locks.

the statement in [22, p. 11], that MCS locks that distinguish
between readers and writers do not scale well under heavy
read contention. We are not able to confirm this remark by
our experiments on the SCC.

6.3.2 Lock Type Mix

In Figure 7, the results for the 50% mix of shared and exclu-
sive locks is displayed. For this workload, no data — except
for two processes — could be acquired for the immediate
RCKMPI variant. The benchmark deadlocked in those cases.
Our assumption is that required responses to control mes-
sage are not sent when they are expected. This might be due
to absent message processing and might be solved by trig-
gering process through MPI_Test calls. However, a deeper
investigation was out of the paper’s scope.

The default variant of RCKMPI which does not send any
message unsurprisingly performs as in case for shared lock.

For GBH, the latency is slightly increased compared to
the previous results. The scaling, however, remains nearly
identical and still shows a constant time for the synchro-
nization for all process counts. The increased latency can
be accounted to the higher probability for an unsuccessful
attempt for lock acquisition. In such a case, the processes
perform their back-off but are able to acquire the lock in
a later attempt very soon, since the median latency only
increases by about 3 ys.

Opposite to GBH with back-off, the version without this
feature shows a latency that increases linear with the number
of processes. The effect is due to the contention. This can
be explained by a competition for both the global and the
per-process counter variables. This reduces the chance of
a lock acquisition for either process type. Especially, the
global counter must be modified both at the beginning and
at the end of the lock attempt — notably, this has to be done
also in the unsuccessful case. Since the global counter is
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Figure 8. Latency for exclusive locks.

a centralized data structure, contention on the responsible
memory controller is likely.

With the exception of the GBH without back-off and the
dysfunctional immediate RCKMPI version, the overall per-
formance and scaling is identical to the previous scenario.

For MCS-WP, an almost identical performance as in the
previous experiment is observed. While two different process
types are active, the same data structures are used and the
same operations (state manipulation and list management)
are performed. Thus, the overall performance stays the same.

6.3.3 Exclusive Locks Only

Finally, Figure 8 shows the scaling where only exclusive
locks are used.

The GBH variant without back-off clearly suffers from the
sole usage of exclusive locks and its aggressive best-effort
approach. The effect of contention on the global counter from
the previous experiment is amplified which causes increased
latency.

Contrary to that observation, the other synchronization
schemes still perform with identical scaling behavior and
similar absolute latency. For GBH with back-off, the latency
increases slightly and approaches MCS-WP. This might be
caused by an increased number of attempts to acquire the
lock.

For MCS-WP, the performance is still equivalent to the
previous experiments. Because writers just queue up at the
individual per-process queues (cf. Figure 4), the median time
to acquire the lock does not increase. Further, the completely
distributed data structures pays off as no contention occurs.

The immediate RCKMPI variant works without problems
in this experiments. However, the latency is up to about four
times higher than for the other implementations. Moreover,
linear scaling can be observed.



Table 2. Quartiles and interquartile range (absolute and relative to the median) for the LOCK/UNLOCK latency at 48 processes.

shared locks only 50% lock type mix exclusive locks only
scheme Q1 Q2 Q3 IQR  IQR/Q, Q1 Q2 Q3 IOR  IQR/Qy Q1 Q2 Q3 IQR  IQR/Q:
GBH 3.00 3.39 414 1.14 0.34 294 13.62 61.85 58091 4.33 23.52 54.86 143.40 119.88 2.18
GBH back-off 2.98 3.35 4.02 1.04 0.31 2.79 6.33 8.88 6.09 0.96 8.90 1231 19.24 10.34 0.84
MCS-WP 1639 20.13 2476 8.37 0.42 1551 20.52 30.00 14.49 0.71 14.17  16.90 22.06 7.89 0.46

6.3.4 Quartile Analysis

After looking at the scaling of the median for the different
synchornization schemes we analyze the first (Q;) and third
quartile (Q;) as well as the interquartile range (IQR) of both
GBH variants and the MCS-WP scheme. We discuss only
the stress test with 48 processes. The data allows to assess
the latency not only for the medial case (as done before) but
also for more extreme cases where processes take longer for
a complete LOCK/UNLOCK cycle. The IQR relative to the
median reveals how much the latency can vary.

The obtained data is displayed in Table 2 for the case of 48
processes. In the table, all values are given in microseconds,
except for the dimensionless relative IQR (IQR/Q5).

In case when there are exclusive locks in the workload,
GBH’s best effort approach manifests in a high absolute and
relative IQR (4.33 and 2.18). This indicates high deviations
between the waiting times of the processes.

In contrast, the back-off version pays off in case of exclu-
sive locks where all quartiles, IQRs and relative IQRs are
significantly smaller. This confirms the importance of expo-
nential back-off in the GBH strategy.

Compared to MCS-WP, the Q; values of GBH with back-
off are much better. In case of the shared-only and the mixed
workload they are even better than the Q; values of MCS-WP.

As already indicated in the previous sections, MCS-WP’s
performance is nearly constant, even for Q; and Qs. The
increase for Qs in the mixed scenario can be attributed to
failed attempts of shared locks when (preferred) writers are
present. The absolute latency is generally higher than for
GBH with back-off. Nevertheless, if writers precedence is
needed, MCS-WP delivers acceptable performance with small
relative deviations in the waiting times.

6.4 Application on the DHT

After the microbenchmark evaluation, the impact of the
synchronziation methods GBH with backoff and MCS-WP
on the DHT application is measured. We focus on the case
where a single writer updates the DHT and, at the same
time, all other reader processes fetch data from the writer’s
DHT portion. It is ensured that the writer gets the lock first
and thus the readers have to wait for the lock, which puts
traffic on the SCC’s memory system. The writer stores k €
{32,512,1024} bytes in the DHT. The measurements are
done for different numbers of n € {1, 11,47} concurrent
DHT readers.

For nequal 1 and 11, two different mappings are compared:
a close mapping where all processes are placed in the same
memory controller (MC) domain (cf. Fig. 1, cores 0-5 and
12-17), and a distant mapping were the readers use a different
MC domain (cores 6-11 and 18-23). For n = 47, all cores are
used. The writer always runs on core 0. We measure the
time in microseconds for the PUT and UNLOCK operation
in DHT_write (see Fig. 2) and present the median out of 101
measurements. The results are shown in Table 3.

Table 3. Impact of synchronization method on DHT writer.

GBH with back-off MCS-WP
n map. k=32 k=512 k=1024 k=32 k=512 k=1024
0 — 5.4 18.8 343 4.9 18.4 33.9
1 close 6.3 20.2 35.6 8.7 22.0 37.4
1 distant 6.5 19.9 35.4 6.8 22.5 38.1
11 close 13.2 46.0 86.3 18.3 51.7 90.9
11  distant 12.9 45.3 86.1 10.6 24.6 41.0
47 - 90.6 136.4 244.4 23.1 51.7 89.7

For zero and one reader as well as 11 readers using the
close mapping, the two synchronization methods have about
the same impact on the writer’s performance. MCS-WP
shows slightly higher impact due to the local but aggres-
sive spinning whereas GBH uses the back-off. However, for
the distant mapping and n = 11, MCS-WP’s impact on the
writer reduces. This can be attributed to the readers spinning
on another memory controller whereas for GBH they check
the writer’s single local counter (see Fig. 3). This effect is
emphasized for 47 readers, i.e. when the whole SCC is used.
In that case, GBH has a 2.7 to 3.9 times higher impact on
the writer than MCS-WP for k = 1024 and 32, respectively.
Note that due to the distributed data structures, the impact
of MCS-WP does not change in case of the close mapping
when going from n = 11 to n = 47 readers.

7 Discussion

From the experimental results in the last section and the
properties of the synchronization schemes, the following
aspects have to be discussed.

7.1 Synchronization Scheme for nCC Many-Cores

Although a tuned implementation for message transfer is
available on the SCC, it does not pay off in case for MPI



passive target synchronization. Besides issues with dead-
locks, which may be fixable, the observed latency is much
higher than for the presented memory-based approaches
that use uncached-memory accesses due to the immanent
data transfer and processing overhead.

Contrary, the memory-based schemes perform with low
latencies and nearly constant scaling and are therefore a
favorable choice for nCC shared memory architectures like
the SCC. Nevertheless, the attention must be payed to the
distribution of data structures and their access pattern. Cen-
tralized data should either be avoided, like with the MCS-WP
scheme, or access to its data must be rate-limited, as it is
done by the GBH scheme with back-off.

While MCS-WP does not employ any centralized data
structure, the efforts for maintaining the queue data struc-
tures and lock state appear to be higher than the counter-
based approach of the GBH scheme. However, the latency for
the synchronization is almost constant for every lock type
mix. For GBH a trend for increased latency can be observed
under heavy write contention (exclusive locks) which might
increase further for higher core counts.

Although the microbenchmark results identify GBH with
back-off as most efficient synchronization method the appli-
cation benchmark revealed that MCS-WP is more appropri-
ate for the SCC’s architecture and performs better when the
whole chip is used.

7.2 Support for LOCKALL

As depicted in Section 2, the MPI standard offers a LOCKALL
routine to acquire a shared lock on all members of the win-
dow’s process group. While this access scheme may apply
to other applications, it is not necessary for the DHT use
case and the support of LOCKALL was not in our focus. While
the GBH scheme supports the implementation of LOCKALL,
MCS-WP uses no centralized data structures which removes
the support for a LOCKALL operation. In order to support this
MPI routine, a global state needs to be added to the existing
lock variables. However, given the results from Section 6.3
and the previous discussion, the benefits of such an effort
might be questionable.

7.3 Consequences for MPI Implementations and
Users

Depending on the actual application, the need for different
synchronization scheme arises. An MPI application, such as
a DHT, may give precedence either to processes that acquire
exclusive locks (writers) or to ones that use shared locks
(readers). As shown in Section 6.3 schemes like MCS-WP that
support such a precedence exhibit similar performance com-
pared to best-effort approaches ones like GBH. Nevertheless,
an MPI library may offer those options for an improved per-
formance of the application. Since the MPI standard makes
no restriction on the actual scheme for the passive target
synchronization such options can be offered by the library.

Consequently, an application may mandate a certain scheme
that matches its data access pattern. To allow the choice of
a synchronization scheme, MPI’s Info objects can be used.
Those can be specified per window with the MPT_WIN_SET_-
INFO function call. This gives the MPI library hints on how to
optimize internal mechanisms for the application’s needs [17,
§11.2.7]. In case for the passive target synchronization, all
processes must use the same hint to ensure the same scheme
is used. However, for different window objects, different
hints can be set. That way, the user can control the prece-
dence for lock/process types and may accept restricted but
sufficient functionality, e.g missing LOCKALL support (see
above).

8 Conclusion and Future Work

In this paper, we discussed and evaluated three different syn-
chronization schemes for non-cache-coherent shared mem-
ory architectures, like the SCC. Two memory-based schemes
known from the literature have been implemented for that
platform. The evaluation shows that such schemes are well-
suited for nCC many-core architectures both in terms of
absolute performance and scalability. Despite they employ
uncached memory operations, the approaches even outper-
form competitors that rely on SCC-optimized message pass-
ing. In general, the GBH best effort scheme with back-off
performs well and is applicable to most use-cases. However,
it suffers from centralized data structures. The distributed
design of MCS-WP fits better to the architecture and has less
impact on the discussed DHT application.

It was also shown that the MCS-WP scheme which gives
precedence to writers can be used on nCC systems without
scalability or severe performance degradations. However, a
key aspect for the synchronization schemes is the avoidance
of centralized data structures. Distributed data structures are
essential for a good performance. For schemes like GBH that
also use centralized data structures in addition to distributed
ones, a back-off mechanism appears to be crucial for the
median latency.

Depending on the applications, the choice of the synchro-
nization scheme might be critical. We discussed that the MPI
standard offers the possibility to inform the library about
desired behavior. In case of a DHT, for example, support
for Readers & Writers with writer-precedence may be ben-
eficial. Hence, an info key like PASSIVE_SYNC_MODE could
be set to writer-precedence, which in turn might be real-
ized by MCS-WP. An info key value of full-support then
indicates desired support for shared and exclusive locks as
well as LOCKALL operations for which the GBH locks are a
recommended choice.

Future work may also include an analysis how the pre-
sented approaches perform on contemporary processors



built from multiple chiplets when taking their inherent NUMA-
design and hardware support for cache coherence into con-
sideration.
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