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Abstract

Large scale combustion simulations show the need for adaptive meth-
ods. First, to save computation time and mainly to resolve local
and instationary phenomena. In contrast to the widespread method
of lines, we look at the reaction–diffusion equations as an abstract
Cauchy problem in an appropriate Hilbert space. This means, we first
discretize in time, assuming the space problems solved up to a pre-
scribed tolerance. So, we are able to control the space and time error
separately in an adaptive approach. The time discretization is done
by several adaptive Runge–Kutta methods whereas for the space dis-
cretization a finite element method is used. The different behaviour
of the proposed approaches are demonstrated on many fundamental
examples from ecology, flame propagation, electrodynamics and com-
bustion theory.
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Introduction

Diverse phenomena in many branches of physical chemistry, biology and elec-

trodynamics are often described by reaction–diffusion processes. Examples
include flame propagation in combustion, interactions of mobile populations
in ecosystems, and confinement of a plasma column by radiation pressure.
These problems are modeled by initial boundary value problems in which

the governing parabolic partial differential equations are coupled through a
highly nonlinear right hand side, often representing the reaction rate of the
chemical components.

The numerical solution of nonlinear partial differential equations (PDEs) is
a main subject of current mathematical research. With increasing complex-
ity of the realistic described problems, there is an increasing need of reliable
numerical tools to accurately and efficiently solve the phenomena. Adaptive

techniques elaborated in recent years automatically change and evolve with
the solution. Thus, they are often the only way for providing the computa-
tional codes necessary to solve some of these difficult problems.
In this paper we describe the implementation of the classical Rothe method,

which is based on the discretization sequence first time then space. The ap-
proach used here was inspired by the results of Bornemann [6] for the scalar,
linear and selfadjoint case with this method. He introduced a concept to
control the error in the space and time discretization simultaneously, start-

ing from a prescribed overall tolerance. Along this line, we reformulate the
parabolic initial boundary value problem as an abstract Cauchy problem in
an appropriate Hilbert space. Combining the theory of analytic semigroups

with the technique of simplified Newton methods we obtain existence and
uniqueness results for this Cauchy problem. The close connection of New-
ton’s method in function space and stiff integrators for ordinary differential
equations (ODEs) was introduced and first pointed out by Deuflhard [7].

Within this framework we are able to derive adaptive Runge-Kutta methods,
which yield variable time steps and possibly variable orders controlled by the
problem. The occurring elliptic subproblems are solved by a multilevel finite
element method using linear elements in space. In consequence, a space mesh

well suited to the problem under consideration is obtained in order to assure
an accuracy required by the time discretization. The above mentioned facts
enabled us to transmit the previous results to nonlinear systems of parabolic
PDEs. The theoretical approach is independent of the space dimension. For

solutions possessing sharp moving spatial transitions, like travelling wave-
fronts or emerging boundary and interior layers, an automatic adjustment of
both the space and the time stepsize is likely to be more successful in effi-
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ciently resolving critical regions of high spatial and temporal activity. The
programming effort of those adaptive methods cannot be overestimated and
is a main aspect of their realization. The author’s program used for the
computations is based on the research code KASTI1 implemented by Borne-

mann [6] for scalar, linear equations. It was significantly enlarged to handle
the nonlinear system case.
Most discretization methods of time-dependent problems for PDEs de-

scribed in the literature are extensions of the well-known method of lines.

First the space variables are discretized on an a priori selected, fixed space
mesh, so as to convert the PDE into a usually stiff system of ODEs, which
then can be solved very successfully by automatic stiff ODE solvers, how-
ever, ignoring the PDE context. An improvement is the moving finite element

method developed by Miller and his co–workers [17], where a fixed number
of nodes are still used while the nodal positions are computed together with
the solution values at the nodes. Such methods require some form of tuning

to safely govern the automatic choice of the changing space nodes. Further-
more, it is not clear how to extend the moving techniques from the 1D case
to higher space dimensional problems.
Over the past several years the interest in regridding methods, nodes are

both added and deleted after several time steps, has rapidly increased. The
reader is especially referred to Bieterman and Babuska [4], Adjerid and Fla-
herty [1], Furzeland, Verwer and Zegeling [10]. In contrast to those, the
algorithm proposed by us is equipped with an space–time error control and

has almost none tuning parameters. This benefits especially in complicate
problems, as is demonstrated in the numerous numerical examples presented.
The contents of the paper reads briefly as follows. In Section 1 we formulate

the class of nonlinear problems under consideration. Section 2 deals with

the analysis of the semilinear equation connected with the abstract Cauchy
problem. Applying the theory of analytic semigroups we give an Newton-
type uniqueness theorem. In Section 3 we derive the discretization, adaptive
in time an space. Section 4 includes an extensive numerical testing on a set

of six practical relevant nonlinear models to show the performance of the
different methods used. Our conclusions and a summarizing discussion are
contained in Section 5.
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� Problem Formulation

We aim to solve semilinear parabolic initial boundary value problems. In
a bounded domain Ω ⊂ Rn with boundary ∂Ω = ΓD

⋃
ΓC , the problem

formulation is

∂u(t, x)

∂t
+ A(x, ∂)u(t, x) = f(u, t), x ∈ Ω, t ∈ (0, T ] ,(1.1)

u(t, ·)|ΓD
= ξ(t, ·), t ∈ (0, T ] ,(1.2)

C(·, ∂)u(t, ·)|ΓC
= ζ(t, ·), t ∈ (0, T ] ,(1.3)

u(0, ·) = u0 .(1.4)

Here, A(x, ∂) denotes an elliptic differential operator of second order, and
C(x, ∂) the corresponding Cauchy boundary operator. We put

A = A(x, ∂) := −∇ · (a(x)∇) + b(x) · ∇ + c(x), x ∈ Ω ,

and

C = C(x, ∂) := −n(x) · (a(x)∇)− σ(x), x ∈ ΓC ,

where n is the outer unit normal on ∂Ω. Assuming the boundary functions
sufficiently smooth, we can, by a simple transformation, achieve that ξ, ζ ≡ 0.
Furthermore, with Γ0 a closed subset of ∂Ω, we introduce a Hilbert space of

weak solutions
H1

D(Ω) = {u ∈ H1(Ω)| u|ΓD
= 0} .

In the following, we consider the bilinear form a(·, ·) on H1
D(Ω)×H1

D(Ω):

a(u, v) =
∫
Ω
(a∇u · ∇v + b · ∇uv + cuv)dx+

∫
ΓC

σuvds ,

for all u, v ∈ H1
D(Ω). For further investigation the ellipticity and boundedness

of the form a(·, ·) will be important. Therefore, we demand

|a(u, v)| ≤ c1||u||1||v||1(1.5)

and
a(u, u) ≥ c2||u||21(1.6)

for all u, v ∈ H1
D(Ω), with c1, c2 > 0. The boundedness of a(·, ·) in (1.5)

implies the existence of a bounded operator A : D(A) ⊂ L2(Ω) → L2(Ω)
which obeys

a(u, v) = (Au, v), u ∈ D(A), v ∈ H1
D(Ω) .(1.7)
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The smooth boundary ∂Ω guarantees, that

D(A) = H2(Ω) ∩H1
0 (Ω)(1.8)

for the homogeneous Dirichlet boundary condition and

D(A) = H2(Ω) ∩ {Cu = 0 on ∂Ω}(1.9)

if ΓC = ∂Ω.

� Analysis of the semilinear equation

The main aspect of the approach done here, is to reformulate problem (1.1)
as the following semilinear abstract Cauchy problem in L2(Ω)

ut + Au+Bu = f(u, t) +Bu =: g(u, t)

u(0) = u0 .
(2.1)

In our applications, e.g. Theorem 1 below, the operator −B is an approxi-
mation of the Jacobian fu of f , evaluated at t̄ fixed,

−B ≈ fu(u(t̄), t̄) .

So, we assume B to be a linear bounded operator of the form Bu = d(x)u.

This “formal linearization” extracts the linear part of f and allows a better
inside in (1.1). This reformulation is widespread in the derivation of semi-
linear methods, e.g. [8], [11], [26]. For this, we first look at (1.1)–(1.4) and
proceed by perturbation arguments to (2.1). We shall employ the standard

technique using the theory of analytic semigroups, e. g. [20]. However, all
estimates are to be done more finely. Doing this, we get more clearness about
the appearing constants than usually.

Lemma 1. The operator −A, given by (Au, v) := a(u, v) is the infinites-

imal generator of an analytic semigroup T (t) of contractions satisfying

||T (t)|| ≤ e−c2t .(2.2)

Proof : The Lemma follows from Corollary 1.3.8 and Theorem 7.2.7 in
[20, p.12]. The Rayleigh quotient of A gives

Reλmin = min
u∈D(A)

a(u, u)

||u||20
≥ min

u∈D(A)

c2||u||20
||u||20

= c2 .(2.3)
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From this, (2.2) follows.

In the case D(A) is (1.8) we can improve the estimate (2.3) with Poincare’s

inequality, which gives Reλmin ≥ c2(1 + 1/d2). If D(A) is (1.9) , the same
argument, namely that ||∇u|| is a norm on D(A), gives an improvement,
but with unknown constants. So, restriction to a somewhat smaller domain
ω ⊂ Ω can improve the coercivity of the operator. Advantage of this can be

taken in the following considerations. A nice application are the observations
done in the computations of the unsteady moving flame front in Section 4.5.
It is defined on R. The dependence of the schemes from the necessary re-

stricted computational domain, as described above, was reported e.g. in [21].

In view of (2.1) and Lemma 1, we assume in addition to (1.5), (1.6)

(Bu, u) ≥ K0||u||20 ∀u ∈ D(A).(2.4)

For the operator H := −(A+B) we obtain

a(u, u) + (Bu, u) ≥ (c2 +K0)||u||20 .(2.5)

In consequence, we get

Corollary 1. The operator H := −(A+B) satisfying (2.5) with K0 >
−c2 generates an analytic semigroup of contractions, i.e.

||S(t)|| ≤ e−(K0+c2)t ≤ 1 .

Remark : In the case K0 ≤ −c2, a remedy is the classical Garding Trans-
formation v(t) := e−Kotu(t) applied to (2.1). This yields

vt + (A +K0)v = e−K0tf(eK0tv, t)(2.6)

and the operator −(A +K0I) generates a semigroup of contractions and

||S(t)|| ≤ e−c2t .(2.7)

Now, we give a Newton–type uniqueness theorem for equation (1.1). It was
first introduced by Deuflhard [7] for ODE’s. With the help of the semigroup

theory, we can use his arguments in a similar way. The estimates of the expo-
nential function in the ODE–case are replaced by the above derived estimates
of the generators of a semigroup. The given exposition served to clarify the
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occuring constants. During the sketched proof of Theorem 1, equations of
the form (2.1) occur and can be handled by (2.6) to reensure the bounds
(1.5) and (1.6) for the perturbed operator. For clearness of presentation
and without loss of generality, we restrict ourselves to the autonomous case

f(u(t), t) = f(u(t)).

Theorem 1. (extension of Theorem 1, Deuflhard [7]) For (1.1) we as-
sume that f ∈ C1(D(A)) and u0 ∈ D(A). The function f(u) − Au in (1.1)
should be bounded

||f(u0)− Au0|| ≤ L0(2.8)

and it’s Jacobian should be Lipschitz continuous

||fu(v)− fu(w)|| ≤ L1||v −w|| ∀v, w ∈ L2(Ω) .(2.9)

Then, existence and uniqueness of the solution of (1.1) is guaranteed in [0, τ ]

for
τ unbounded, if μτ̄ ≤ −1(2.10)

τ ≤ τ̄ψ(μτ̄ ) , if μτ̄ > −1 ,(2.11)

where τ̄ := (2L0L1)
−1
2 , μ := −(c2 +K0) and

ψ(s) :=

⎧⎪⎨
⎪⎩

ln (1+s)
s s �= 0

1 s = 0 .
(2.12)

Proof : The main point in the proof is to solve the variation of constants
formula in semigroup context,[20, p.148] for (1.1)

F (u) = u(t)− T (t)u0 −
∫ t

0
T (t− s)f(u(s))ds = 0(2.13)

by Newton’s–Method

ui+1(t) +
∫ t
0 T (t− s)Bui+1(s)ds = T (t)u0+

+
∫ t
0 T (t− s){f(ui(s))−Bui(s)}ds ,

(2.14)

where B := fu(u
i). The rest of the proof is to guarantee that (2.14) is a

contraction and can be copied from [7]. This will ensure the convergence of
Newton’s method to a unique solution of (2.13).
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Remark : A similar result can be obtained, starting with the Voltera–
equation

F (u) = u(t)− u0 −
∫ t

0
f(u(s))ds = 0

instead of (2.13), e.g. [20]. However, representation (2.13) fits better in our
derivation of the numerical scheme.

The above existence results are obtained by using Newton’s method for the

formula (2.13). If (1.1) represents a system of equations, a great simplification
in numerical calculations can be achieved, using an approximation B of the
Jacobian of −f(u) occuring in the Newton method (2.14). The influence of
this approximation on the existence interval (2.10), (2.11) of (1.1) is shown

in the following Corollary.

Corollary 2. (extension of Theorem 2 of Deuflhard [7]) With all as-
sumptions of Theorem 1 and in addition for the perturbation of the Jacobian

||B + fu(u0)|| ≤ δ0 and (Bu, u) ≥ K0||u||20(2.15)

with K0 > −c2 ,

fulfilled, the bounds (2.10), (2.11) remain valid with τ̄ replaced by

τ̂ :=
τ̄

1 + δ0τ̄
.

Proof : Using standard semigroup techniques, the same arguments as in
[7] can be used to proof the Corollary.

� Derivation of the Discretizations

3.1 Time discretization in Hilbert space

For further investigation, it is convenient to use again the abstract Cauchy
problem in L2(Ω) (2.1)

ut + Au+Bu = f(u, t) +Bu =: g(u, t)(3.1)

u(0) = u0(3.2)

By perturbation theory, the operator H := −(A +B) generates an analytic
semigroup S(tH) := exp(tH). In contrast to the preceding chapters we use
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the operator H explicitly as an argument of the semigroup. For the deriva-
tion of the schemes, it’s not necessary for S(tH) to be contractive.

The formal solution of (3.1) is given by

u(τ ) = S(τH)u0 +
∫ τ

0
S((τ − s)H)g(u(s), s)ds, τ ∈ (0, T ] .(3.3)

As done in the existence theorem above, we start from (3.3) to construct a

numerical scheme for (3.1). For this, we will consider adaptive Runge–Kutta
methods, which are included in the class of semi–implicit methods. They
have been extensively studied by Strehmel and Weiner [26], see also refer-
ences therein.

First, let R
(i)
0 (z) be a rational approximation of sufficiently high order ri

to exp(z), this means

S(z) = R
(i)
0 (z) +O(zri+1) for z → 0, z ∈ C .(3.4)

The approximation R
(i)
0 is said to be

• strongly A–stable if

|R(i)
0 (z)| < 1 for Re(z) < 0, and |R(i)

0 (−∞)| < 1;

• L–stable if it is strongly A–stable with

R
(i)
0 (−∞) = 0 .

Furthermore, we define

R
(i)
1 (z) := (R

(i)
0 (z)− I)

1

z
,

R
(i)
l+1(z) := (lR

(i)
l (z)− I)

1

z
, l = 1, 2, . . .

(3.5)

We note that the functions R
(i)
l possess the same denominator as R

(i)
0 , such

that the factor z−1 cancels out. So, no problem occurs, if in the following H
becomes singular. The numerical analogue of the abstract solution formula

(3.3) via the adaptive s–stage Runge–Kutta method is given by

u(1) := u0

u(i) := R
(i)
0 (ciτH)u0 + τ

∑i−1
j=1 Aijgj, i = 2, 3, . . . , s+ 1

u1 := u(s+1)

(3.6)
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with

Aij =
pi∑
l=0

R
(i)
l+1(ciτH)λ

(i)
lj c

l+1
i .

Here, gj := g(u(j), cjτ ) where u(j) describes an approximation of the solu-
tion u at t = cjτ . The vector c := (0, c2, . . . , cs, 1) satisfies the condition

0 < ci ≤ 1, i = 2, . . . , s. The constants λ
(i)
lj and pi determine the method.

Remark : During the construction of such methods the first step is to
approximate the function g(u(t), t) from (3.3) in each stage i = 2, 3, . . . , s+1
by a polynomial in t. By partial integration and approximation of the expo-
nential function afterwards, we arrive at (3.6).

In our context, we must solve an elliptic problem for each stage . Therefore,
we restrict ourselves to 1– and 2–stage methods and set c2 = c3 = 1.

1. In the case s = 1 we get with λ
(2)
01 = 1 the so–called adaptive Euler

method
u(2) = R

(2)
0 (τH)u0 + τR

(2)
1 (τH)g1 .(3.7)

2. For s = 2 we get the following one–parameter scheme:

u(1) = u0

u(2) = R
(2)
0 u0 + τR

(2)
1 g1

u(3) = R
(3)
0 u0 + τ{(R(3)

1 κ+R
(3)
2 (1− 2κ))g1+

+(R
(3)
1 (1− κ) +R

(3)
2 (2κ− 1))g2} ,

(3.8)

where κ ∈ R and for simplicity R
(i)
l := R

(i)
l (τH).

Our aim is to derive a method which minimizes the demand of storage and

the effort of work. To this end, we look for an embedded formula

u(3) = u(2) + η2 ,(3.9)

where η2 can be directly computed. In order to achieve such a structure, first
we write the rational approximation R

(3)
0 (z) to ez as

R
(3)
0 (z) = R

(2)
0 (z) +Q

(2)
0 (z) .(3.10)

We want to compute the correction term η2 in the additive representation
(3.9). We start with the semi–implicit Euler method first introduced by
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Deuflhard [8],
u(1) = u0

u(2) = R
(2)
0 (z)u0 + τR

(2)
1 (z)g1

(3.11)

where R
(2)
0 (z) = 1

1−z
. This method has the consistency order p = 1. Once

chosen the denominator to be a part of (1 − z), we can obtain only two

approximations by (3.10), namely

Q
(2)
0 (z) := Q

(2)
A (z) = −1

2

z2

(1− z)2
,

Q
(2)
0 (z) := Q

(2)
L (z) = −1

2

z2

(1− z)3
,

(3.12)

to get a strongly A–stable or L–stable method with minimal approximation

order r3 ≥ 2, [25]. Applying the adaptive Euler method (3.7) in the third
stage we find

u(3) = R
(3)
0 (z)u0 + τR

(3)
1 (z)g1

=
(
R

(2)
0 (z) +Q

(2)
0 (z)

)
u0 + τ

(
R

(2)
1 (z) +Q

(2)
0 (z) · 1

z

)
g1 .

(3.13)

Therefore

η
(1)
2 := Q

(2)
0 (z)

(
u0 +

τ

z
g1

)
.(3.14)

We remark, that this method can be described as a special 2–stage Rosen-
brock method (ROW–method) of consistency order p = 2 when the exact
Jacobian B := −fu(u0) is used, [13].
Further, for the method (3.8) we get

u(3) = R
(3)
0 (z)u0 + τ

{
(R

(3)
2 (z)(1− 2κ))g1+

+(R
(3)
1 (z)(1− κ) +R

(3)
2 (z)(2κ− 1)g2

}
= R

(3)
0 (z)u0 + τ

(
R

(3)
1 (z)(κ− 1) +R

(3)
2 (z)(1− 2κ)

)
(g1 − g2)+

+τR
(3)
1 (z)g1

= u(2) +Q
(2)
0 (z)

(
u0 +

τ

z
g1

)
+

+τ
(
R

(3)
1 (z)(κ− 1) +R

(3)
2 (z)(1− 2κ)

)
(g1 − g2) .

(3.15)

We are interested in two special cases : κ = 0 leads to a method of order 2
with

η
(2)
2 := η

(1)
2 + τ (R

(3)
2 (z)−R

(3)
1 (z))(g1 − g2)(3.16)
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and κ = 1 proposed by [26] yields

η
(3)
2 := η

(1)
2 − τR

(3)
2 (z)(g1 − g2) ,(3.17)

where again order 2 is achieved. Both methods only use an approximation
of the Jacobian, i.e. B ≈ −fu(u0), and with this, they are a W–method.

Remark : In the context of PDEs, in each time step, we have to solve
a large linear system. By backward error analysis, the inevitable errors can

be seen as a perturbation of the exact Jacobian fu(u0). At first sight, clas-
sical Rosenbrock methods seem therefor unappropriate. Nevertheless, we
have tested the adaptive Euler method in the numerical applications with
reasonable success.

3.2 Derivation of the Schemes from Newton’s Method

Throughout this chapter, we again restrict ourselves to the autonomous case.

We start with the abstract solution formula (3.3) of problem formulation
(2.1).

u(t) = S(t)u0 +
∫ t

0
S(t− s)g(u(s))ds(3.18)

Again, S(t) is the semigroup generated by −(A + B), where −B is some
approximation of the Jacobian.

The scheme is derived by a polynomial approximation in s of g(u(s)), a
rational approximation of the semigroup S(t) and finally, one step of a sim-
plified Newton method. During our approach to the 1– and 2–stage formulas,
which are used in the calculations, we try to approximate g(u(s)) by a con-

stant and linear polynomial P in s respectively, depending on u0 and u(τ ).
A first simple approximation in [0, τ ] reads

P0(s) = g(u(τ )) .(3.19)

In consequence, we get in (3.18)

S(τ )u0 +
∫ τ

0
S((τ − s)g(u(s))ds(3.20)

≈ S(τ )u0 +
∫ τ

0
S((τ − s)dsg(u(τ ))(3.21)

= S(τ )u0 + (S(τ )− I)H−1g(u(τ ))(3.22)

≈ R
(j)
0 u0 + τR

(j)
1 g(u(τ )) .(3.23)

11



The resulting implicit equation

F1(u) := u− R
(j)
0 u0 − τR

(j)
1 g(u) = 0(3.24)

is solved by one step of a simplified Newton method. It is started with the
only information available at this moment u0 = u0. Using the identity as
approximate Jacobian of (3.24) we end up with

u1(τ ) = R
(j)
0 u0 + τ R

(j)
1 g(u0) .(3.25)

The derived algorithm is called adaptive Euler scheme and is identical to our
first method (3.7). Let us now approximate g(u(s)) by a linear polynomial
P in s

P (s) = − s

τ
(g(u0)− g(u(τ ))) + g(u0) .(3.26)

We look at P in the simplest case S(t) ≈ I in (3.18). Of course, for this P
the trapezoidal rule is exact∫ τ

0
P (s)ds =

τ

2
(g(u0) + g(u(τ ))) .(3.27)

We introduce for the end points the parameter κ, such that

P (0) = κg(u0) + (1− κ)g(u(τ ))

P (τ ) = κg(u(τ )) + (1− κ)g(u0) .
(3.28)

In consequence, we get instead of (3.26) the new linear polynomial

P1(s) =
s

τ
(1− 2κ) (g(u0)− g(u(τ ))) + κg(u0) + (1 − κ)g(u(τ )) ,(3.29)

which also satisfies (3.27). Replacing g(u(s)) by P (s) in (3.18), we get anal-

ogously to (3.24) the implicit equation

F2(u) := u− R
(j)
0 u0 − τ{(κR(j)

1 + (1 − 2κ)R
(j)
2 )g(u0)+

((1− κ)R
(j)
1 + (2κ − 1)R

(j)
2 )g(u)} .

The approximations R
(j)
1 and R

(j)
2 are obtained by partial integration and the

recurrence relation (3.5). Afterwards, a step of a simplified Newton method
is done starting with u1 and the identity as Jacobian. Thus, we get the

second stage of our adaptive Runge–Kutta scheme (3.8)

u2(t) = R
(j)
0 u0 + t{(κR(j)

1 + (1 − 2κ)R
(j)
2 )g(u0)+

((1− κ)R
(j)
1 + (2κ − 1)R

(j)
2 )g(u1)} .
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3.3 Stepsize Bounds for the Discretizations

The results of the previous sections are now used to derive stepsize estimates
for the proposed schemes. The idea, introduced by Deuflhard in [7], is to
interpret the derived algorithms as one step of a simplified Newton method.

The analysis for the semi–implicit Euler scheme can be carried over to our
adaptive Runge-Kutta schemes. For this, we will apply only linear analysis
for the restriction of the feasible time step τ , which becomes more clear
during the proof of the next theorem.

To characterize our several methods we define the following special stability
functions:

R
(2)
0,L(z) :=

1

1− z
(3.30)

R
(3)
0,A(z) := R

(2)
0,L(z) +Q

(2)
A (z) =

1− z − 1

2
z2

(1− z)2
(3.31)

R
(3)
0,L(z) := R

(2)
0,L(z) +Q

(2)
L (z) =

1− 2z +
1

2
z2

(1− z)3
(3.32)

Theorem 2. We assume that f ∈ C1(D(A)) and u0 ∈ D(A). The func-

tion f(u)− Au should be bounded

||f(u(j))− Au(j)|| ≤ L0 , j = 1, 2,(3.33)

and it’s Jacobian should be Lipschitz continuous

||fu(v)− fu(w)|| ≤ L1||v −w|| ∀v, w ∈ L2(Ω) .(3.34)

For the perturbation of the Jacobian we assume

||B + fu(u
(j))|| < δ0 , j = 1, 2.(3.35)

Then, existence and uniqueness of the solutions of the above studied 1–
and 2–stage adaptive Runge–Kutta–methods is guaranteed as follows:
The methods (3.7), (3.8) converge to unique solutions u(2) and u(3), if

τ unbounded, for μτ̂ ≤ α(R
(2)
0 , R

(3)
0 , κ),(3.36)

τ ≤ τ̂

μτ̂ − α
, for μτ̂ > α(R

(2)
0 , R

(3)
0 , κ) ,(3.37)
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with τ̂ := τ̄/(1 + β(R
(2)
0 , R

(3)
0 , κ)δ0τ̄ ), where

α(R
(3)
0,A) = α(R

(3)
0,L) = −2 ,(3.38)

β(R
(3)
0,A) = β(R

(3)
0,L) = 1

α(R
(2)
0,L, R

(3)
0,A, 0) = α(R

(2)
0,L, R

(3)
0,L, 0) = −1

2

√
6 ,(3.39)

β(R
(3)
0,A) = β(R

(3)
0,L) =

1

6

√
6

α(R
(2)
0,L, R

(3)
0,A, 1) = −1

2

√
42 ,(3.40)

β(R
(2)
0,L, R

(3)
0,A, 1) =

1

14

√
42

α(R
(2)
0,L, R

(3)
0,L, 1) = −3

2

√
10 ,(3.41)

β(R
(2)
0,L, R

(3)
0,L, 1) =

1

10

√
10.

Proof : The general approach proving the Theorem is demonstrated by
the example of the adaptive Euler scheme. According to (3.24) we make the
identification

F (u) := u− R
(3)
0 u0 − τR

(3)
1 g(u) ,(3.42)

C := I ≈ Fu(u
(1)) = I − τR

(3)
1 (fu(u

(1)) +B) .(3.43)

As in [7] we have to check

||u(3) − u(1)|| ≤ 2

1 − τμ
τL0 =: γ ,(3.44)

||C−1(Fu(x)− Fu(y))|| ≤ τL1||R(3)
1 || ≤ 2

1− τμ
τL1 =: ω ,(3.45)

and

||C−1(C − Fu(u
(1)))|| ≤ τδ0||R(3)

1 || ≤ 2τδ0
1 − μτ

:= δ̄0 < 1 .(3.46)

It is easy to see, that the inequalities remain unchanged for R
(3)
0 = R

(3)
0,A or

R
(3)
0 = R

(3)
0,L. The modified Kantorovitch condition

γ · ω
(1 − δ̄0)2

<
1

2

14



yields
2τ

1− μτ
≤ τ̄(1 − 2τδ0

1− μτ
) ,

which is equivalent to

τ <
τ̂

2 + μτ̂

with τ̂ := τ̄ /(1 + δ0τ̄ ). Thus, (3.38) holds true.

For the 2–stage schemes, two independent simplified Newton methods must
be studied. Selecting the stronger restriction of τ , exactly the same argu-
ments as in the proof for the adaptive Euler scheme show, that (3.39)–(3.41)
is also true.

3.4 Stepsize Selection

Following our derivation, we get for the above described methods the simple
error estimates

ε
(i)
2 := ||u(3) − u(2)||0 = ||η(i)2 ||0, i = 1, 2, 3 .(3.47)

The semi–implicit Euler method has the order 1, i.e.

||u(τ )− u(2)||0 ≤ cτ 2 .(3.48)

Hence, the corresponding new time steps are

τ
(i)
2 =

√√√√TOL

ε
(i)
2

τ, i = 1, 2, 3 .(3.49)

3.5 Computation of the Stability Bounds

In Theorem 2 we obtained a stepsize bound due to the stability criterion

(3.36), (3.37). These bounds depend on the quantities μ and τ̂ . The calcu-
lation of τ̂ is already too difficult, even in the case of ODE’s, and seems too
costly compared with the information gained. So, we restrict ourselves to an
estimation of μ to check the overall assumption μτ > −1.

In all proposed schemes, we have to solve the linear system

(I − τH)y = τ (f(u(1))− Au(1))(3.50)

with y := u(2) − u(1).
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Equation (3.50) is looked at as the first step of an inverse Power Method

[12], with shift
1

τ
:

(
1

τ
I −H)(τy) = τ (f(u(1))−Au(1)) .

Since the occurrence of a negative eigenvalue μ1 causes a step size reduction,
we can assume, that after the shift, μ1 is the eigenvalue with smallest absolute
value. For the calculation of

1

λ
=
yT (I − τH)−1y

yTy

an additional solution of a linear system (3.50) is needed. It can be shown

by the Bauer–Fike Theory for special cases of H and numerical experiments
have confirmed, that 2–4 SSOR steps are enough for the estimation of

μ1 =
1

λτ
− 1

τ
.

As proposed in [12], we take the first two iterates of the inverse power method
to get it’s deviation

d = y(2) − cy(1)

with

c :=
sign(y(2))i
sign(y(1))i

, |(y(2))i| = ||y(2)||∞.

In the code, proposed stepsizes τ are rejected as soon as

μ1τ > c · 1

with an appropriate chosen safety factor c, usually between 0.5 and 0.9.

3.6 Space Discretization

During the realization of one time step of the adaptive Runge–Kutta method
(3.6) we have to approximate the arising elliptic problems. They appear in

two forms

u = (I − τH)−1w, w ∈ L2(Ω)

and

u = (I − τH)−1τHw, w ∈ L2(Ω) .

16



Analogous to (1.7) −H is the weak representation of the elliptic operator
−H(x, ∂) = A(x, ∂) +B(x). Therefore, the above problems are equivalent to
the variational problems

(u, v) + τh(u, v) = (w, v), for all v ∈ H1
D(Ω)

and
(u, v) + τh(u, v) = −τh(w, v), for all v ∈ H1

D(Ω) ,
(3.51)

where h(·, ·) denotes the bilinear form associated with −H.
For our purpose, the elliptic solver has to solve (3.51) within a given ac-

curacy and return a suitable error estimation. From this viewpoint, it is

reasonable to use an adaptive FEM–method consisting of three modules:
linear solver, error estimator and refinement strategy.
For the solution of (3.51) we applied the finite element method with linear

basis functions. Using localization principles, we solve on each finite element

the same elliptic problem with imposing the current FEM–approximation as
Dirichlet boundary condition, [2]. These problems are not solved exactly,
but applying quadratic finite elements, improving the solution local inside of

each element. In consequence, we get a reasonable τ–independent local error
estimator as shown by [5].
Finally we get our computable local error estimator

[δj] , j = 1, . . . , n := number of elements(3.52)

and the corresponding global one

[δ] :=

⎛
⎝ n∑

j=1

[δj]
2

⎞
⎠

1
2

.(3.53)

Since we are equipped with local error indicators [δj], the obvious idea is to
improve the finite element solution until a given tolerance eps in an adap-
tive process through equidistribution of all element errors. We search for a
refinement strategy

Refine Ij if [δj] > cut .

In order to achieve this, we determine “cut” by

cut :=
c

n

n∑
j=1

[δj]

with some constant c which guarantees a desirable rate of refinement. In
practical computations 30% – 50% are usually refined.
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Some remarks about the linear solver remain. Clearly, in the scalar, 1–D
case the stiffness–matrix is only tridiagonal and the linear equation can be
numerically stable solved by direct Gauss–elimination without pivoting in
O(n) operations, [14], and only the local stiffness–matrices are assembled.

In the system case and higher space dimensions, the number of unknowns
quickly become very large such that solving in direct manner isn’t possible.
Hence, an iterative solver must be applied. We have used a block version of
the SSOR–algorithm, [12]. To this end, numbering of the unknowns in nodal

sequence to concentrate more information about the mutual influence of the
system components in the direct nearness of the matrix diagonal is essential.
In each refinement level, we solve for all ingredients of the algorithm, this
means for u(2), η2. According to the multilevel structure we get in a nat-

ural way good starting values for each elliptic subproblem by interpolation
from coarse to fine grid. It benefits to couple the prescribed tolerance with
a prescribed error in the linear solver. In the numerical examples, we used

an infinity norm of the corrections of 10−4 as a stopping criteria. This cor-
responds to ≈ 10 iteration steps of the linear solver. One should be aware,
that the linear solver is the most time–consuming part of the method and
needs special attention in higher dimensions.

3.7 Matching of Spatial Errors

Starting from a perturbation concept introduced by Bornemann [6] for scalar,
linear selfadjoint problems, we derive rules to handle the spatial errors. We

want to extend this concept to the nonlinear case. More precisely: We have
to determine a relation between the accuracy eps of the elliptic solver and
the parabolic accuracy TOL.
Computation of each u(j) in (3.6) requires the solution of several elliptic prob-

lems considered in the last chapter. In general, we get perturbed solutions

û(j) := u(j) + δ(j), j = 2, 3, . . . , s+ 1 ,(3.54)

with perturbation δ(j) ∈ L2(Ω). As shown above, we are able to compute
estimates [δ(j)] of ||δ(j)||0. In consequence, we cannot get exact time error

estimates, but

ε̂j := εj +Θj, j = 2, 3, . . . , s+ 1 .(3.55)

In analogy, we denote by [Θj] estimates of |Θj|.
We accept the approximation û(s+1) if the inequalities

ε̂s + [δ(s+1)] < TOL ,(3.56)
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and

[Θj] <
1

4
ε̂j, j = 2, 3, . . . , s(3.57)

are fulfilled. From inequality (3.56) follows, that we have to compute time
steps with respect to ρ · TOL instead of TOL, where 0 < ρ < 1.

Now we want to make a pass through the criterion (3.56) possible, imposing
accuracies

epsj = κ(j, s)(1− ρ)TOL(3.58)

to the elliptic solver, computing u(j).

For simplicity, let us again consider the 2–stage methods of Chapter 3.1.
Given an accuracy eps2 we first get an approximation û(2) of the adaptive
Euler scheme

û(2) = u(2) + δ(2)(3.59)

together with an estimate [δ(2)] ≤ eps2 of ||δ(2)||0. Afterwards, we compute

the correction η
(1)
2 of the method (3.13). In order to avoid additional pertur-

bations, we use the same grid chosen by the elliptic solver to compute û2. As
mentioned above, two choices of Q

(2)
0 are possible. According to

Q
(2)
L (z) =

1

1 − z
Q

(2)
A (z)(3.60)

it is useful to derive first a computable expression for

η
(1)
2 = Q

(2)
A (z)(u0 +

τ

z
g1) .(3.61)

Using the definition z = τ (A + B) = −τH and (2.1) simple conversions
lead to

η
(1)
2 = − 1

2(1 − z)

(
z2

1 − z
u0 +

z

1− z
τg1

)

= −τ
2
(I − τH)−1

(
u(2) − u0

τ
+ Au0 − f(u0, 0)

)
.

(3.62)

The corresponding approximation

η̂
(1)
2 = −τ

2
(I − τH)−1

(
u(2) + δ(2) − u0

τ
+ Au0 − f(u0, 0)

)
+ ω̂0(3.63)

has the representation
η̂
(1)
2 = η

(1)
2 + ω̂1

where

ω̂1 = − 1
2
(I − τH)−1δ(2) + ω̂0 .
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In general, δ(2) will dominate the perturbation ω̂0, and we get the inequality

||ω̂1||0 ≤ 1
2
||(I − τH)−1||||δ(2)||0 ≤ 1

2(1 − μτ )
||δ(2)||0 .(3.64)

This is in contrast to the linear theory in [6], where the operator norm
(I − τH)−1 is estimated by 1, which leads to much simpler estimates. Hence,

we can derive the estimator

[Θ2] =
1

2(1 − μτ )
[δ(2)] .(3.65)

The spatial perturbations of the correction η
(1)
2 yield perturbations of the

approximation u(2), namely

û(3) = û(2) + η̂
(1)
2 = u(3) + δ(3) .(3.66)

We end up with the estimate

[δ(3)] = [δ(2)] + [Θ2] .(3.67)

Now, we are able to determine eps2 by the following guideline:

Set [δ(2)] = eps2 in such a way that

[δ(3)] = (1− ρ)TOL(3.68)

and
ε̂2 + [δ(3)] < TOL .(3.69)

By using (3.65) and (3.67) we get

[δ(3)] =

(
1 +

1

2(1 − μτ )

)
[δ(2)] =

3 − 2μτ

2 − 2μτ
eps2 .(3.70)

This means we have to impose the elliptic accuracy

eps2 = (1 − ρ)
2 − 2μτ

3 − 2μτ
· TOL .(3.71)

In order to give a practical meaning to this equation, we estimate the un-
known constant μ by its value computed in the previous time step, see Chap-
ter 3.5. For the choice of ρ we look for a value which makes the requirements
(3.56) and (3.57) effective for a large class of realistic situations. We try to

balance the effects of each dimension, so in the 1–D case

ρ = 1
2
.(3.72)
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By analogous arguments we get for Q
(2)
L (z) in (3.61) the elliptic accuracy

eps2 = (1− ρ)
2(1 − μτ )2 + 1

2(1− μτ )2
TOL .(3.73)

To make implementation easier, we transform the corrections of the second

and third method, (3.16) and (3.17) in computable form :

η
(2)
2 = η

(1)
2 + τ

(
R

(3)
2 (z)− R

(3)
1 (z)

)
(g1 − g2)

= − τ

2(1− z)

(
z

τ
(u(2) − u0) + g1 − g2

)
,

η
(2)
3 = η

(1)
2 − τR

(3)
2 (z) (g1 − g2)

= − τ

2(1− z)

(
z

τ
(u(2) − u0

)
+ 2 (g1 − g2)+

+
1

1− z
(g2 − g1) .

(3.74)

Both corrections are special cases of (3.15) with

η2 = η
(1)
2 + τ (R

(3)
1 (z)(κ− 1) +R

(3)
2 (z))(1 − 2κ) (g1 − g2)

:= η
(1)
2 + τG(z; κ) (g1 − g2) .

(3.75)

For the corresponding approximation of the linear error, an analysis by Taylor
expansion leads to the estimate

||η̂2||0 ≤ ||η2||0 + (1
2
||(I − τH)−1||+ τ ||G(z; κ)|||| ∂

∂u
g2||)||δ(2)||0(3.76)

where again Q
(2)
A (z) is used. Clearly, the evaluation of the second term

becomes more complicate. Since in practical computation a good approx-
imation of the Jacobian is necessary such that the update η

(1)
2 realizes a

nearly second–order improvement of the approximation, the remainder term
in (3.75) yields only a change in the constant of the third order term in Tay-

lor series. In this case, the error of η2 will be dominated by the error of η
(1)
2 .

Hence we can again use the elliptic accuracy (3.71) or (3.73).

� Application of the Schemes

All the schemes developed in the previous sections were applied to a vari-
ety of systems of nonlinear parabolic equations. They differ mainly in the
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nonlinearity, i. e. the right hand side and the boundary conditions. The
equations selected here have almost established a standard test set, because
they are well known for their difficulties and therefor treated so many times
in papers on stiff integrators, moving finite elements and finite differences,

[22], [1], [21], [9]. An other aspect is, that for the given examples so many
references obtained with different methods are in the literature and we can
demonstrate the remarkable behaviour of our schemes for quite different ap-
plications.

For clearness of presentation the following abbreviations for the schemes un-
der consideration are used. The adaptive Euler scheme described in (3.11),
(3.13) with

Q
(2)
0 (z) = −1

2

z2

(1 − z)2

is denoted by m1A (first method, A–stable) and

Q
(2)
0 (z) = −1

2

z2

(1 − z)3

is denoted by m1L (first method, L–stable). Analogously we indicate the

method (3.8) , compare also (3.11), (3.15) for κ = 0 with m2A, m2L and
for κ = 1 with m3A, m3L. In Table I we give the amount of numerical
work for all methods used. They all have consistency order 2. For problems

kind of method # elliptic problems # g–evaluations

m1A ROW 2 1

m2A W 2 2

m3A W 3 2

m1L ROW 3 1

m2L W 3 2

m3L W 4 2

Table I: Features of the schemes

described below, the Jacobian is given in analytic form and we use numerical
approximations of the exact Jacobian in the bilinear forms on each time level.
Furthermore, in the case of a system of partial differential equations only one

mesh is used for all solution components. In all applications, the initial mesh
consisted of 5 equidistributed points.
In view of applications in more space dimensions, we want to get within
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technical tolerances. That is the reason why we restrict ourselves to second
order schemes, because in such cases the higher order codes do not pay off,
e.g. [19]. We don’t compare CPU–time between our and other algorithms
published. In our opinion the run time depends much on the implementation

of every component and one has to distinguish between very elaborated codes
as LIMEX,[8] and a research code used here. For example, in our code the
stiffness matrix is assembled and makes the program remarkably slower than
a clever sparse solver. On the other hand, one has to pay for the security of an

adaptive algorithm. This means, e.g. during the formation of the grid costly
decisions are made and so one has a larger overhead. With respect to this,
we think a comparison of CPU–time is not so instructive than the possibility
to use our method in more space dimension. In a forthcoming paper we will

do this and will give questions of implementation more attention.

4.1 Population Ecology Model

This system of nonlinear elliptic equations was proposed by [18] to model
certain planktonit predator–prey situations in which crowding is a factor.
With the settings
v(x, t) := number of predators, i.e. zooplankton, and
u(x, t) := essentially static number of prey,

i.e. phytoplankton
the system reads in the domain Ω = (0, 2.5) for t > 0 :

ut − 0.0125 uxx =

(
35 + 16u− u2

9
− v

)
· u

vt − vxx =
(
u− 5 + 2v

5

)
· v

(4.1)

with the boundary conditions

ux = vx = 0 for t > 0 , x = 0 and x = 2.5
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and the initial condition

u0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5 for 0 ≤ x < 1.0
4x+ 1 for 1.0 ≤ x < 1.25
−4x+ 11 for 1.25 ≤ x < 1.5

5 for 1.5 ≤ x < 2.5

v0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10 for 0 ≤ x < 1.0
4x+ 6 for 1.0 ≤ x < 1.25
−4x+ 16 for 1.25 ≤ x < 1.5
10 for 1.5 ≤ x < 2.5

The initial population (u0, v0) together with the steady state to which the

solution evolves calculated by method m1L is shown in Figure 1 and 2. The
tolerance was set to TOL = 10−2 and the initial time step was τ0 = 10−4.
The ”steady state” was reached after 10 time units. There are different
steady state solutions and to which of them the initial one (u0, v0) evolves

depends on which eigenfunction of the linearized coupled elliptic operator
the perturbation of the initial data from (5, 10) most resembles. So, we
have to prescribe that the initial condition is represented exactly on the
initial grid. This is not a severe restriction here. The problem is relatively

easy with respect to the nonlinearity and can be solved with a properly
selected number of points on a uniformly spaced grid. We choose this system
because the shape of the solution becomes complicate during time. At the
steady state, one needs 400 adapted grid points to keep the error below 10−2

while 5 points are enough to resolve the initial condition exactly. For the
same tolerance, one needs 512 uniform elements to represent the steady state
solution. This proofs especially the superiority of our approach to methods

with a fixed number of nodes. In Figure 3 the evolution of the number
of nodes is depicted, and the efficiency of the algorithms is demonstrated
in this case. The adaptive grid is constructed due to the error estimator
described in Section 3.4. In Figure 4, we see the length of the time step

during the integration of system (4.1). One immediately recognizes, that in
the transient phase all algorithms are comparable while in the steady state
only the simple adaptive Euler scheme uses greater time steps, the others
remaining restricted. Table II contains the statistics of the problem.

4.2 Troesch’s Problem

The problem arises in the investigation of the confinement of a plasma column
by radiation pressure [27]. It is an inherently unstable two point boundary
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Figure 1: Development of u – component

Figure 2: Development of v – component
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Figure 3: Evolution of grid points

Figure 4: Steplength during integration
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# steps maximum # nodes ø # nodes

m1A 107 307 146

m2A 151 363 187

m3A 148 395 181

m1L 120 311 161

m2L 148 395 181

m3L 148 395 187

Table II: Statistics of ecology problem

value problem. For this, it was attacked by many different techniques and
serves as a severe test case for any shooting method, [23]. The equation is in
Ω = (0, 1) given by

uxx − 10 sinh(10u) = 0

together with it’s boundary conditions

u(t, 0) = 0.0 , u(t, 1) = 1.0 .

To bring the equation in our context, we define a related parabolic problem

ut − uxx = − 10 sinh(10u)(4.2)

with the artificial initial condition

u(x, 0) = 0.0 .

A steady state solution is obtained for t > 0.1. In Figure 5 the initial

condition and the evolution to the steady state are pictured for method
m3L. To resolve the inconsistent initial condition, an initial time step τ0 =
10−8 and a prescribed tolerance of 10−3 is needed. After the formation of
the boundary layer, the time step can be enlarged significantly. The grid

constructed to keep the error below the given tolerance is shown in Figure 6.
Nearly all the points are concentrated on the right boundary to model the
boundary layer. This strengthens the advantage of a good a priori control
of the space discretization. All the schemes are compared in Table III. We

mention that the simplest methods m1A, m1L were not able to achieve the
prescribed tolerance, necessary to handle the inconsistency and failed. It also
demonstrates the improvement through L–stability in this case.
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Figure 5: Solution of Troesch’s Problem

Figure 6: Grids for Troesch’s Problem
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# steps maximum # nodes ø # nodes

m1a – – –

m2a 69 49 32

m3a 85 49 35

m1l – – –

m2l 55 49 33

m3l 62 49 34

Table III: Statistics of Troesch’s problem

4.3 A Problem from Electrodynamics

Both, the problem formulated below and it’s stationary version have been
treated extensively in [3]. The nonlinear elliptic system defined in Ω = (0, 1)

is :
ut − 0.024 uxx = −g(u− v)

vt − 0.17 vxx = g(u− v)

g(α) := exp(5.73α) − exp(−11.46α)

(4.3)

with the boundary conditions

ux(0, t) = 0.0 and u(1, t) = 1.0

v(0, t) = 0.0 and vx(1, t) = 0.0

and the initial condition

u(x, 0) = 1.0 and v(x, 0) = 0.0 .

This nonlinear system is a representative of a singular perturbation problem.
The coefficients of uxx and vxx are small and the right hand side g(α) changes
rapidly with a small change of α. Consequently, boundary layers are to be
expected at x = 0 and x = 1. From the very beginning, the boundary layer

structure of the problem is visible, especially at x = 1.0 where u is very
steep compared with the rest of the interval. One also sees in Figure 7 and
8 obtained by method m1L with tolerance TOL = 5 · 10−3 and the initial
step τ0 = 10−4, that the steady state curves of u and v intermingle between

0.1 and 0.9 and separate at the boundary. They coincide within the straight
line y = 0.8x except at the boundary layers. The steplengths during the
integration over the time interval [0.0, 4.5] are given in Figure 9. This figure
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Figure 7: Solution of Electrodynamic Problem, u – component

Figure 8: Solution of Electrodynamic Problem, v – component

30



nicely reflects the hard to resolve initial state, the transient state with rapidly
increasing time steps and the dynamic steady state. This can also be seen

Figure 9: Steplength during integration

in Figure 10, showing the grid at each time level. The main difficulty in this
problem is to form the line y = 0.8x from the initial data. The representation
of this simple solution shape can be done with much fewer nodes necessary to
resolve the initial boundary layers. This again demonstrates the efficiency of

our approach. It’s remarkable that in this problem method m1A was not able
to solve it within the demanded tolerance. The demanded space tolerance
leads for all methods to an average node number of 25, shown in Table IV.

4.4 The Dwyer–Sanders Flame Propagation Model

The following equations were first proposed by [9] to simulate several basic
features of flame propagation. The system governs the density u of a single
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Figure 10: Evolution of the grid

# steps maximum # nodes ø # nodes

m1a – – –

m2a 197 39 23

m3a 232 39 23

m1l 235 39 21

m2l 232 39 23

m3l 232 39 23

Table IV: Statistics of electrodynamic problem
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species and the temperature v in Ω = (0, 1) :

ut − uxx = −uf(v)

vt − vxx = uf(v)

f(v) := 3.52 · 106 exp(−4

v
)

(4.4)

The boundary and and initial conditions are

ux(0, t) = 0.0 , vx(0, t) = 0.0

u(1, t) = 0.0

v(1, t) =

⎧⎨
⎩ 0.2 +

t

0.0002
for 0 < t ≤ 0.0002

1.2 for 0.0002 ≤ t ≤ 0.006

u(x, 0) = 1.0 , v(x, 0) = 0.2 .

The time–dependent forcing function for the temperature at the right bound-
ary models a heat source which generates a steep flame front. When v reaches
it’s maximum, this front starts to propagate from right to left at a relatively

high, almost constant velocity ≈ 150. For t = 0.006 the front has nearly
reached the left boundary. Figures 11 and 12 show the density and tem-
perature computed by m1L from 0.0 to the final time 0.006 with tolerance

TOL = 10−2 and initial time step τ0 = 10−8. The small lump for early times
is genuine and resolved without any overshoots. This relatively small initial
step was necessary to resolve the influence of the heat source. The developing
in time of the initial 5–point grid is pictured in Figure 13. A uniform start

grid provides a difficult test of the error estimator in space and time, since
the method must rapidly refine near x = 1 in order to simulate the fast gen-
eration of the steep front accurately and to restrict the proposed time step
severely. One can see, that the maximum point density exactly follows the

flame front, ensuring good resolution and high economy. The statistics of all
methods is given in Table V and Figure 14. It’s worth mentioning that the
simples schemes m1A and m1L have the largest time steps. In contrast they
need more nodes to suppress spatial oscillations near the steep flame front.

In Figure 15 the quality of the time step control is demonstrated. In The-
orem 2 the maximal value of τ was given, still ensuring contractivity of the
corresponding Newton method. The lower bound was μ∗τ ≈ −1. The figure
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Figure 11: Development of the density

Figure 12: Development of the temperature
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Figure 13: Grid development

# steps maximum # nodes ø # nodes

m1A 156 56 40

m2A 197 33 27

m3A 233 33 27

m1L 164 50 40

m2L 233 33 27

m3L 233 33 27

Table V: Statistics of the Dwyer – Sanders problem

35



Figure 14: Steplength during integration

nicely reflects the fact, that all algorithms try to use the maximal time step

possible. Inspection of the figures justifies the conclusion that our algorithm
are able to resolve this difficult problem very satisfactory over the entire
space–time domain.

4.5 A Moving Unsteady Flame Front

The equations are a selected case from the bench mark test of numerical
methods in flame propagation proposed by [21]. It was the hardest case, for
which many participants failed. The flame seems to establish a steep front
propagating unchanged in time with a relatively constant speed. However,

the moving flame changes it’s shape and velocity in the course of integration.
Only high skilled algorithms were able to resolve the periodic behaviour of
the temperature and the propagation speed of the wave front. With the

settings
u(x, t) := temperature,
v(x, t) := chemical species
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Figure 15: Stepsize control during integration

the reaction–diffusion system is in Ω = R1:

ut − uxx = f(u, v)

vt − 1

Le
vxx = −f(u, v)

f(u, v) :=
β2

2Le
v exp

( −β(1− u)

1 − α(1 − u)

)
.

(4.5)

The Lewis number is set to Le = 2, the nondimensional activation energy
is β = 20 and for the nondimensional heat release we choose α = 0.8. The

boundary and and the initial conditions are

u(−∞, t) = 0.0 , ux(∞, t) = 0.0
v(−∞, t) = 1.0 , vx(∞, t) = 0.0
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u(x, 0) =

{
exp(x) for x ≤ 0
1.0 for x > 0

v(x, 0) =

{
1.0 − exp(Le · x) for x ≤ 0
0.0 for x > 0

.

We solve the system from t = 0 to t = 15.0 in the restricted domain
Ω = (−40.0, 20.0) with a accuracy of 2 ·10−3 and an initial time step of 10−3.
The solution components computed with m1A are shown in Figure 16 and
17. The participants of the benchmark [21] reported a strong influence of

the measure of the restricted domain Ω on their methods. This is a direct
consequence of Poincare’s Inequality used in Section 2. The peak in the

Figure 16: Evolution of the temperature

temperature was only resolved by m1A and m1L. The other schemes, proving
to be reliable in the above examples, seem to have some ”overstability”.
This fact allows greater time steps and damps the genuine oscillations in the

solution. The effect can also be observed when the tolerance is decreased.
The time steps of the schemes are given in Figure 18. In Figure 19 the
differences in time step control of the different methods are shown. The lower
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Figure 17: Evolution of the density

Figure 18: Steplength during integration
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bound for the steering quantity was given in Theorem 2 as μ ∗ τ ≈ −1. All
methods try to use the largest time step possible, still ensuring contractivity
of the underlying Newton method. It can be seen, that some information
contained in the smallest eigenvalue μ of the Jacobian is lost for the schemes

m2A, m2L, m3A and m3L. These methods ”see” a relatively constant μ
and therefor tend towards the stability bound −1. One can see from the

Figure 19: Stepsize control during integration

statistics in Table VI that m1A and m1L need about 25% more nodes for

the same tolerance than the other methods. This stems from their better
resolution in time. The computation times given, demonstrate the curiosity
that the additional effort of the L–stable methods doesn’t benefit here. It’s
interesting, that the formation of the peak is also reflected in the evolution

of the grids given in Figure 20. The most remarkable aspect of this example
is, that our simplest schemes, due to their step size restriction, are able to
resolve the micro–structure of this problem better than more stable methods.

4.6 A Problem from Combustion Theory

The system below was introduced by Kapila [15] to describe a single one
step reaction A → B of a reacting mixture in a region 0 < x < 1. The
solution component u is the mass fraction of the reacting reactant and v
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# steps maximum # nodes ø # nodes time/sec (SUN–SPARC 1)

m1A 733 47 39 954

m2A 295 34 32 915

m3A 304 34 31 1045

m1L 474 45 38 1040

m2L 310 33 30 951

m3L 286 33 31 969

Table VI: Statistics of the unsteady flame front problem

Figure 20: Evolution of the grid
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is the reactant temperature. The meaning of the constants are : Le is the
Lewis number, α is the heat release, δ is the activation energy, D is the
Damköhler number and R > 0.88 is the reaction rate. The model is given by
the following reaction–diffusion system

ut − uxx = −Du exp(−δ
v
)

Le · vt − vxx = αDu exp(−δ
v
)

D :=
R

αδ
exp(δ)

(4.6)

For the different parameters, we choose

α = 1.0 , R = 5.0 , δ = 20.0 and Le = 0.9 .

The boundary and the initial conditions are

ux(0, t) = vx(0, t) = 0.0
u(1, t) = vx(1, t) = 1.0
u(x, 0) = v(x, 0) = 1.0

At the very beginning, the temperature increases from unity with a ”hot

spot” at x = 0. With the time proceeding, ignition occurs and the temper-
ature at x = 0 raises rapidly from about one to near 1 + α. The formation
of a steep flame front begins traveling toward x with speed approximately
eαδ

2(1 + α)
≈ 109. Thus, the flame front moves very fast after ignition. The

problem exhibits a steady state solution once the flame propagates to x = 1.
The solution in the time interval 0 ≤ t ≤ 0.25 obtained from m2L with

TOL = 10−4 and an initial time step of τ0 = 10−8 is pictured in Figure 21
and 22. The crucial point here is to get the correct speed of the flame
front. It depends on the spatial resolution to simulate the ignition process
to a certain degree of accurateness. The coarser the grid the faster is a rel-

atively too flat flame front and many different flame speeds are published in
the literature. A very low tolerance of 10−4 for the discretization is therefor
necessary. In Figure 23 we see that the grid is able to follow the dynamics
of the problem, and the constant speed of the front is shown. A comparison

of the flame speed with other, very accurate computations, c.f. [22], gives no
significant difference. For this examples, the methods m1A and m1L were
not able to resolve the starting process and returned a much too slow and too
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Figure 21: Solution of the combustion problem, u–component

Figure 22: Solution of the combustion problem, v–component
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Figure 23: Development of the grid

# steps maximum # nodes ø # nodes

m1A – – –

m2A 776 91 56

m3A 762 90 56

m1L – – –

m2L 762 90 56

m3L 762 90 56

Table VII: Statistics of the combustion problem
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Figure 24: Steplength during integration

flat solution curve. The steplength of the other methods are given in Figure
24 and the statistics is contained in Table VII. This is a very difficult prob-
lem, but our methods are capable of finding a solution with relative ease.

In this problem the benefits of L-stability and more elaborated schemes are
evident.

� Conclusion

The aim of our project was to develop a reliable and efficient method, which
can be used to resolve e.g. unsteady flame propagations in a full adaptive
way. Furthermore, the user should be relieved from fine tuning of several pa-
rameters, steering the adaptation process, as far as possible. The techniques

elaborated in our paper go towards fulfilling this requirements.
We have applied an adaptive finite element method to a class of nonlinear
initial boundary value problems of the reaction–diffusion type with possible
rapid spatial and temporal transitions. The spatial adaptation is connected

with an equidistribution of the meaningful measured spatial error necessary
to follow steep travelling fronts and to resolve boundary and interior layers.
The second adaptation is the use of variable time stepsize in the numerical
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integration. The steplength is determined in an efficient way during the so-
lution process.
The numerical results obtained by the ROW–schemes m1A and m1L (adap-
tive Euler) show an unbalanced behaviour: They work either very well or

fail. However, L–stability of the method m1L leads to an efficient solution
of all discussed equations excepting Troesch’s problem, characterized by an
inconsistency of initial data. The W–methods m2A, m3A and m2L, m3L
do not differ considerably. Here, the addition of L–stability yields also an

improvement of the efficiency due to larger time steps. The unsteady flame
problem indicates, that their good linear stability properties are not the full
truth, as is shown in the resolution of the peak in the temperature.
We consider the presented nonlinear test problems to be an interesting set

for the design of adaptiv methods since they contain all typical difficulties of
reaction–diffusion type systems. Since our approach is able to handle systems
in two space dimensions also, this will be investigated in a next paper.
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