A Graph- and Monoid-Based Framework for
Price-Sensitive Routing in Local Public
Transportation Networks

Ricardo Euler
Zuse Institute Berlin, Germany
euler@gzib.de

Ralf Borndorfer

Zuse Institute Berlin, Germany
borndoerfer@zib.de

—— Abstract

We present a novel framework to mathematically describe the fare systems of local public transit
companies. The model allows the computation of a provably cheapest itinerary even if prices depend
on a number of parameters and non-linear conditions. Our approach is based on a ticket graph
model to represent tickets and their relation to each other. Transitions between tickets are modeled
via transition functions over partially ordered monoids and a set of symbols representing special
properties of fares (e.g. surcharges). Shortest path algorithms rely on the subpath optimality
property. This property is usually lost when dealing with complicated fare systems. We restore it by
relaxing domination rules for tickets depending on the structure of the ticket graph. An exemplary
model for the fare system of Mitteldeutsche Verkehrsbetriebe (MDV) is provided. By integrating
our framework in the multi-criteria RAPTOR algorithm we provide a price-sensitive algorithm for
the earliest arrival problem and assess its performance on data obtained from MDV. We discuss
three preprocessing techniques that improve run times enough to make the algorithm applicable for
real-time queries.

2012 ACM Subject Classification Mathematics of computing — Graph algorithms; Applied com-
puting — Transportation

Keywords and phrases shortest path, public transit, optimization, price-sensitive, raptor, fare,
operations research

Digital Object Identifier 10.4230/0OASIcs.ATMOS.2019.12

Funding Our research was supported by the Federal Ministry of Transport and Digital Infrastruc-
ture(BMVI) under the project no. 19E17001C.

Acknowledgements We thank Niels Lindner and Pedro Maristany de las Casas for many fruitful
discussions on the subject as well as MDV and InfraDialog GmbH for providing the data for this
study.

1 Introduction

Recent progress in the field of routing algorithms for public transportation has led to several
very fast algorithms [2]. Usually, these algorithms determine the best itinerary with respect
to travel time in mere milliseconds. This led to the desire to optimize additional criteria
such as the number of transfers or the reliability of the connection. For most users of
public transportation systems the price of a journey is one of the most important criteria
for assessing its quality. Unfortunately, public transportation fare systems are notoriously
complex and therefore algorithmically hard to deal with. The ticket price can depend on a
variety of variables such as the set of fare zones, the distance traveled, the number of stops
visited, surcharges for night buses or ferries, etc. To reduce this complexity, previous research
? Ricardo Euler and.Ralf Borndﬁrfey
5v icensed under Creative Commons License CC-BY
19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS

2019).
Editors: Valentina Cacchiani and Alberto Marchetti-Spaccamela; Article No. 12; pp. 12:1-12:15

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5112-4191
mailto:euler@zib.de
mailto:borndoerfer@zib.de
https://doi.org/10.4230/OASIcs.ATMOS.2019.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

12:2

Price-Sensitive Routing in PT Networks

has usually focused only on specific aspects such as zone- or distance-based prices and/or
dealt with them heuristically. In this study, we present a novel and flexible framework to
model the price structures of (regional) public transportation companies that is able to take
all of the aforementioned criteria into account. The framework can be used to compute
price-optimal journeys by applying typical multi-criteria shortest path algorithms such as
RAPTOR or Dijkstra. When comparing itineraries by price, the subpath optimality principle
is usually lost. An example could be taking a detour into a new fare zone to avoid paying
a special connections surcharge (e.g. for using ferries). It is possible that, at a later point
in the journey, the surcharge has to be paid anyway (e.g. the target station can only be
reached via a ferry). In that case, the detour was a suboptimal decision. To avoid this
problem, we base dominance relations between labels not on price, but on paths in a directed
ticket graph modeling the relations between tickets. Transitions between different tickets are
modeled as directed arcs and usually depend on a number of additional fare attributes such
as fare zones or the distance traveled. We model these fare attributes as (positive) partially
ordered monoids.

1.1 Related Literature

For an exhaustive overview of shortest path algorithms in road and public transportation
networks please refer to [2]. It has previously been observed that shortest path problems
can be generalized to ordered monoids [10] and semirings [8]. In the study of public transit
routing, prices are taken into account to varying degrees. Miiller-Hannemann and Schnee
study fare systems that entail distance- and relation-based prices [9], i.e., fare systems that in
Germany are usually associated with long-distance public transportation. They approximate
fares by assigning a fixed price to every edge. Their approach, however, does not take into
account fares based on fare zones and short-distance city tickets. Both of these are usually
more prominent in local public transportation. Delling et al. [6][5] use their RAPTOR
algorithm to compute itineraries that touch the smallest number of fare zones. The idea of
restoring subpath optimality by relaxing rules for label domination is discussed in a different
context in [3]. The ticket graph approach bears similarity to the finite automata used to find
language-constrained shortest paths (Barrett et al [1]). It is different, however, in that it
serves to evaluate paths instead of restricting the set of feasible paths. Furthermore, our
approach also covers fares based on numerical attributes that are not expressed as part of a
formal languages. We originally presented the idea of using a ticket graph in [4, German
language].

1.2 Our Contribution

In this paper, we make two novel contributions. The first is a framework based on graphs
and monoids to mathematically model public transportation fare systems. The aspects
of fare systems that can be modeled include (but are not limited to): zone-based fares,
distance-based fares, surcharges for special vehicles or daytime, and discounted short-distance
tickets that do not allow transfers. Our second contribution is a formal definition of label
domination rules for public transportation tickets while retaining the subpath optimality
property. We prove that these rules do in fact yield lowest-price itineraries.

1.3 Overview

In Chapter 2, we present a framework for public transportation fare systems and show
how it can be used to model several aspects of fare systems. The algorithmic treatment of
fares is laid out in Chapter 3. Chapter 4 discusses how our framework can be used in the

R. Euler and R. Borndorfer

context of the RAPTOR algorithm. We propose three different speed-up techniques and an
evaluation of the framework’s performance for the network of MDV, a public transit company
in Saxony, Germany. Chapter 5 concludes the paper with some final remarks. The proofs of
all propositions can be found in the appendix.

2 A Formal Framework for Fare Systems

We are given a (directed) routing graph G = (V, A), in which arcs represent either public
transport connections, footpaths or transfers between lines and/or modes of transportation.
Every path p in G is associated with a ticket ¢ and every ticket has a corresponding price
7(t) € Q. In order to efficiently compute cheapest paths, we need a model that is able
to locally describe the development of a path’s ticket once arcs are added to it as well as
a provably correct way of comparing those tickets. This is done in the following way: We
denote the set of all available tickets by T and define a ticket graph F = (T, E') where an edge
e € E models how the ticket changes when following an arc in the routing graph. Each edge
in E carries a Boolean function determining the conditions under which the path transitions
to a different ticket. For example, when visiting the fifth stop on a path, a short-distance
ticket to could be lost and a more expensive ticket ¢; would be applicable. The edge (to, 1)
would then carry a condition on the number of stops visited.

The transition along an edge e € E usually depends on multiple factors, e.g., the set of
fare zones visited thus far, the distance traveled (in meters), surcharges for special trains, etc.
These factors are picked up when relaxing an arc in the routing graph. We generalize them
in two kinds of mathematical objects: abstract symbols from a symbol set S and elements of
a partially ordered positive monoid (H,+, <).

» Definition 1 (Partially ordered monoid). Let (H,+) be a monoid and let < be a par-
tial order on H that is translation-invariant with respect to the monoid operation +, i.e.,
hi <hs=hi+x<hy+aVhy,hy,x € H. We call (H,+,<) a partially ordered monoid.
We call (H,+, <) positive, if e < h¥ h € H where e is the neutral element of (H,+).

A common example for fare systems is the power set 27 of a set of fare zones Z combined
with & numerical fare attributes in QF. In this case, H = 2% x Q*. For h; = (z1,71),
ho = (z2,72) € H, we define hy + ho = (21 U 29,71 + r2) and hy < hy if and only if 27 C 29
and r < ry. Translation invariance in (H, +, <) is inherited from the translation invariance
in (22,U,C) and (QF, +, <).

Every arc a € A of G is annotated with a fare attribute A(a) = (A*(a), A"(a)) € S x H
that is picked up when relaxing the arc. Every vertex v € V is annotated with a start state
S(v) = (8'(v),S8"(v)) € T x H giving an initial ticket and element from the monoid.

Using this notation we can define the fare state of a path.

» Definition 2 (Fare State). We call an element f € T x H a fare state. The set of all fare
states is denoted by F :=T x H. We use f' and f to denote its components.

A fare state contains all information necessary for calculating the price of a journey (the
ticket associated with the path) as well as all information necessary to decide domination
between paths. We now want to enable the tracking of the fare states along paths in G. To
do so, we formalize the notion of the fare transition function on arcs in the ticket graph.
The definition is intentionally left rather general to capture a large number of possible
ticketing conditions.

12:3

ATMOS 2019

12:4

Price-Sensitive Routing in PT Networks

» Definition 3 (Fare Transition Function). We call a function Tr : E x S x H — {0,1} a
fare transition function for the ticket graph F if

Ve=(t1,to) e E:Vse S:Vhe H: Z Tr(e,s,h) € {0,1}.

ecot(t1)

Hence, a fare transition function allows only one well-defined transition from any fare
state f € F. We use the notion of fare transition functions to define the update of tickets
when relaxing an arc of the routing graph.

» Definition 4 (Ticket Update Function). We introduce a ticket update function
Up: F x A— F in the following way. Let f = (f*, f") € F,a € A. Then, we define
f=Up(f) by

= 1"+ Aa) (1)

N {head(e) if Je € 6T (fY) with Tr(e, A%(a), f*) =1

ft= (2)

ft otherwise.

We now have a tool at our disposal to track the tickets along a path in G in the ticket graph
F. Each path in G can be associated with a sequence of fare states in F.

» Definition 5 (Path-Induced Fare Sequence). We call a sequence of fare states (fi,..., fn)
path-induced if there is a path p = (vy,...,v,) with the following properties:

1. f1 = S(Ul)

2. fz = Up(fi—l; (vi_l,vi))Vi = 2, o5 n

We call the fare state f(p) := fn the fare state of the path p.

Combining all the above definitions we arrive at the notion of conditional fare networks
which can precisely capture a fare system.

» Definition 6 (Conditional Fare Network). Let G = (V, A) be a routing graph and let the
following be given:

1. the space of fare attributes S x H as product of a set of symbols S and a partially ordered,
positive monoid (H,+, <),

a set of tickets T,

a cycle-free ticket graph F = (T, E) with transition function Tr: E x S x H — {0,1},
arc attributes A(a) € S x H VYa € A,

start fare states S(v) e T x H Yv eV and

a price function ™ : T — Q4 that is monotonously non-decreasing along directed paths
in F, i.e., if there is a directed t; — to-path in F for t1,ts € T, then w(t1) < w(ta).

We call the siz-tuple (F,A,S,S,Tr,m) a conditional fare network N of G.

A

Note that cycle-freeness in F and the monotonicity condition on 7 as well as the positivity
of H ensure that no price-decreasing cycles exist in G. We consider those assumptions
natural enough that most reasonable price system should satisfy them.

Soon, we will see that dominance relations between paths need to be based on their
fare states instead of their price. Thus, we can drop the monotonicity condition on 7 while
still retaining optimality. In this case, however, price-based target pruning (confer Section
4.2), which proved essential in ensuring acceptable performance for our shortest path search,
cannot be applied.

Having introduced conditional fare networks, we now define the price-sensitive earliest
arrival problem.

R. Euler and R. Borndorfer

®)
&)
®

@
@—.

Figure 1 Ticket graph for MDV. There is a total number of fourteen different tickets.

» Definition 7 (Price-Sensitive Earliest Arrival Problem). Let a public transportation network
be given as a graph G = (V, A) and let (F, A,S,S,Tr,7) be a conditional fare network of G.
Let for all a € A a time-dependent FIFO travel time function c(a) : I — I be given, where T
is the set of time points. Finally, let Ps; be the set of all s,t-paths in G for some s,t € V.
Then, the price-sensitive earliest arrival problem (PSEAP) is defined as finding a Pareto-set
of s,t-paths Py, C Ps in G, such that

Vp' € PLyEp € Poy i m(p) < m(p™) Aclp) < c(p™) A(m(p) <7(p*) Velp) < c(p®)). (3)

In our following theoretical discussion, we will ignore the arrival time aspect of PSEAP and
focus only on the fare framework. The correctness results carry over to the full version of
PSEAP.

» Example 8 (The Fare System of MDV). The fare systems of MDV divides its operational

area into 67 fare zones Z. A ticket Z; is applicable if the itinerary touches i zones from Z.

Once a total of seven fare zones have been touched a maximum price M is reached that
does not change. Two fare zones, Halle and Leipzig, are cities and are more expensive than
other zones. They offer special tickets H and L. They, however, count as normal zones
for all itineraries that pass through multiple fare zones. Several smaller cities are part of

larger fare zones, but allow for discounted tickets (77 and T3) when traveling in the city only.

They do not count as fare zones of their own. For Halle and Leipzig there are discounted
tickets for short trips (Kg and K,), which do not allow for transfers and are valid for a
maximum number of four stations on the itinerary. Discounted tickets exist also for other

zones (K), but these are cheaper and depend on the length of the itinerary (4 km maximum).

Figure 1 depicts the associated ticket graph F. The monoid (H,+g,<pg) is defined by
H := (24 N2 {0,1}), where Z captures the fare zones, N? the distance traveled in meters
and the number of stations and {0, 1} the existence of transfers. Addition 4+ and partial
order <y are induced from the respective operations in 22 and N? and the logical or V on
{0,1}. Note that there is no connection between, e.g., Zo and Z4. This is due to the fact
that we can touch only one fare zone at any station. Also, there are no discounted trips
that cover more than three fare zones and hence there is no arc between K and Zs. This

highlights that the structure of the routing graph influences the structure of the ticket graph.

A list of all fare transition functions can be found in the appendix.

12:5

ATMOS 2019

12:6

Price-Sensitive Routing in PT Networks

Transfer Penalties, Footpaths and Surcharges

Footpaths are modeled as arcs with the arc attribute (S, e), where Sy € S is a symbol that
cannot activate a ticket transition and e € H is the neutral element of the monoid. The
fare attribute is set to e so as to not modify the current fare state. The transition from a
footpath to a public transportation vehicle requires some care. Assume we walk from station
vg to v1 along arc ag = (vg, v1) to take a vehicle along a; = (v1,v2) to reach vy. Some fare
systems use the number of stations a path touches to calculate prices. Here, this number
would obviously be two. Counting a station when relaxing ag is a mistake if the optimal
journey would be to continue on foot. Counting both v; and vy when relaxing a; is also
wrong since this would overcount the number of stations for every itinerary that reaches v,
via a vehicle. Hence, the graph model needs to be extended by splitting up stations into
vertices for every route and a vertex that is connected to footpaths. These vertices are then
connected via transfer arcs and boarding arcs. We can also have arc attributes different
from (Sp,e) on transfer arcs. This allows us to make the applicable ticket dependent on the
number of transfers. Arc attributes on arcs representing boarding can be used to model
surcharges for the route boarded. For more details on how to build these expanded graphs,
we refer to [7].

Neutral Zones

Some fare systems that are based on fare zones contain neutral zones. Stations in a
neutral zone can be counted as part of either of its neighboring zones, whichever is cheapest
for the costumer. This is meant to mitigate sharp price increases at fare zone borders.
MDYV uses them as well as several other German railway companies (e.g. Verkehrsverbund
Bremen/Niedersachsen GmbH). Neutral zones can be incorporated by label duplication:
Assume a neutral zone neighbors n fare zones. We associate each arc a whose head(a)
represents a station in the neutral zone with n fare attributes, one for each fare zone it could
possibly be part of. When settling the vertex in a shortest path search, the current fare state
is updated once for each fare attribute thereby creating n new labels.

3 The Fare Framework in Routing Algorithms

Classical shortest path algorithms rely on dynamic programming and the subpath optimality
condition [3]. That is, every subpath of an optimal s,¢-path is in itself an optimal path.
When comparing paths in G naively by means of the price function 7, the subpath optimality
condition is usually violated. Think about taking a local detour to avoid a fare zone: Later
on, travelers may be forced to cross the zone due to the infrastructure, turning the locally
dominant detour into a suboptimal choice. On the other hand, a locally dominated subpath
might still lead to an optimal s, ¢t-path. This type of problem persists in our framework:
the transition between tickets depends on the fare attributes already collected, but also on
the structure of the reachable ticket graph and the transition functions of reachable fare
arcs. Example 9 highlights that problems can already arise even with simple examples of
ticket graphs.

» Example 9 (Label Dominance in Figure 2). Consider the routing graph (a) together with
the conditional fare network (b). Examining the paths p; = (v1,v2,v4) and ps = (v1, v3, v4),
we find their respective fare states are f(p1) = (B,1) and f(p2) = (D, 2). Extending them
by vs to pj and pj yields f(p1) = (C,3) and f(p2) = (E,4). Comparing fare states by price
would indicate that p; could be cut off at vy since w(B) > 7(D). This is a suboptimal choice

R. Euler and R. Borndorfer

A1z = (S0,0)

(a) Routing Graph.

1{s=s5}

©

Lis=s3nn<3)

]1{5:53Ah>3}

&)

(b) Ticket Graph. (c) Ticket Graph with Divergence.

Figure 2 Example of a routing graph (a) with two possible conditional fare networks (b) and (c).
For both, the underlying partially ordered monoid is (R, +, <), the symbol set is S = {Sq, S1, 52, S3}
and the start state for all vertices v; with ¢ =1,...,5is S(v;) = (4, 0). We give prices for the tickets
as w(a) =0, 7(B) = 2, n(C) = 3, n(D) = 1 and n(E) = 5. Transition functions are displayed as
indicator functions on fare arcs. Using the ticket graph (b), the upper vi,vs-path yields ticket C,
while the lower path yields ticket E. Using ticket graph (c), the upper path yields ticket B, the
lower path yields ticket C'.

as pj dominates pj since 7(C) < 7(FE). Hence, price cannot be used as dominance criterion
for fare states. A natural alternative would be to use the partial order defined by paths in
the ticket graph, instead. A ticket ¢; then dominates a ticket to if there is a tq, to-path. This
would render the tickets B and D and the tickets C' and F mutually incomparable. The
idea, however, comes with problems of its own. To see this, consider now the conditional fare
network (c). At vyg, we have f(p1) = (4,1) and f(p2) = (A4,2) and hence both paths are
equivalent and it would be sensible to keep only one of them based on the relation between
f(p1) and f"(p2). By relaxing (vy,vs), we obtain f(p}) = (B, 3) and f(ph) = (C,4), which
are incomparable, i.e., the fare states of p| and p), diverged from comparable to incomparable.
Consequently, any dominance ruling cutting off either p; or ps would be defective.

To mitigate these and similar problems, we might assume a general incomparability of
fare states. This comes down to enumerating all s,¢-paths and simply comparing them
by price. However, in a sensibly designed fare system it is usually clear which ticket is
better and taking a cheaper subpath should usually not turn out more expensive overall.
In the remainder of this chapter, we propose a more tailored approach. It generally bases
domination rules on path relationships but adds exceptions to cover cases in which it is not
safe to do so.

3.1 Dominance for Fare States

We want to define a comparison operator for fare states that restores subpath optimality
while not relaxing dominance too strongly.

To do so, we partition the ticket set T into three disjoint comparability groups: Cr (full
comparability), Cp (partial comparability), Cy (no comparability). Based on the partition
C = (Cp,Cp,Cy), we define a comparison operator for fare states.

12:7

ATMOS 2019

12:8

Price-Sensitive Routing in PT Networks

» Definition 10 (Comparability of Fare States). Let f1 = (t1,h1), f2 = (t2, he) be fare states.
We say f1 <¢ fo if and only if t1 ¢ Cn, h1 < hg and

t1 =12 lf t1 € Cp (4)
dt1,ta-path in F ift; € Cp. (5)

If and only if f1 <c f2 and either hy < hg or ty # to, we say that fy is strictly lesser than
f27 Z"e'; fl <c f2'

We denote by p/

s,t

the set of all paths Pareto-optimal with respect to <¢, i.e.,

p* € Pl = Bs,t-pathp: f(p) <c f(p"). (6)

Note that ng ¢ is not equal to PJ,. Proposition 16 shows that it is in fact a superset of the
set of all price-optimal paths, which we denote by P7,. We call paths in PSf, . State-optimal
and paths in P, price-optimal.

The partition C' has to be defined in a way that monotonicity of the update function
along all arcs a € A is not violated!, i.e.,

Vi, fo€F:fi<c fo=VaecA:Up(f1,a) <c Up(fs,a). (7)
This condition is enough to ensure that a weaker form of subpath optimality holds.

» Proposition 11 (Weak Subpath Optimality). Let G = (V, A) be a routing network and
N =(F,AS,S Tr,m) be its conditional fare network. Let p* € Psf,t be a state-optimal s,t-
path in G for some s,t € V. Then, there is a path p' = (s = vg,v1,...,Vp—1,0y =1) € ngt
with fp» = fp, such that every subpath p” = (vo,...,v),l < n of p' is a state-optimal
Vg, V1 -path.

Note that Proposition 11 doesn’t imply that every subpath of a state-optimal path is
state-optimal. It, however, implies that we can discard all state-optimal paths without this
property since a path with equal fare state still remains in sti ¢ Hence, all classical algorithms
relying on subpath-optimality can still be applied. Note also that Equation 7 need not hold
for all f1, fo € F but only for those that might occur on paths in G.

3.2 Comparability Partitions

In choosing C'r, Cp and Cy, there is some degree of freedom. We want Cr to be as big and
Cy as small as possible while still fulfilling Equation 7. It is clear that the choice does not
only depend on F and T'r but also on the structure of G and its arc attributes A. Choosing
the partition depending on G and A would require some preprocessing of G. We propose a
solution that depends only on F and Tr and needs less recomputation when changes in the
network occur. To deal with this dependency, we use the notion of a vertex’s reach.

» Definition 12 (Reach). Let F = (T, E) be a directed graph. We define the reach R(t) of a
vertex t € T as the subgraph induced by all vertices reachable from t, i.e.,

R(t) := F[{t € T : 3t,t-path}]. (8)

L Shortest path algorithms on graphs with weights from partially ordered monoids require the monoid
operation to be translation-invariant with respect to the partial order. Since the fare states and arc
attributes do not belong to the same structure, the notion of translation invariance is relaxed to a
monotonicity formulation.

R. Euler and R. Borndorfer

To simplify our notation, we introduce operators that represent path relations. If there
is a path in F between t1,ts € T,t1 # to, we write t1 — to. We write t; =t if either
t1 —> to or t1 = to.

» Definition 13 (No-overtaking Property). Let F* be a vertez-induced subgraph of F. We
say it has the no-overtaking property if for all e = (t1,t2) € F*, (s,h) € S x H and t; € T
with t1 =3t >ty the following holds:

Tr(e,s,h) =1=VYh>he H:3(t1,12) € E:Tr(t1,1a,5h) =1 and ty =>1t,. 9)

The no-overtaking property bears some resemblance to the FIFO (first-in, first-out)
property: A worse fare state, i.e., either worse fare attributes from H or a worse ticket,
cannot give rise to a better fare state when relaxing the same arc in the routing graph. Note
that the condition is necessary not only for the neighbors of ¢ but for R(t).

Subgraphs with the no-overtaking property allow for the strictest domination rules. We
use them as comparability group Cp.

» Definition 14 (Comparability Partition). Let G = (V, A) be a routing network and
N =(F,AS,S Tr,m) be its conditional fare network. We define

Cr:={t€T:R(t) traceable and has the no-overtaking property } (10)
Cp:={teT\Cp:Vee R(t):Vs€ S:Vhi,ha € H:Tr(e,s,h1) =Tr(e,s,ha)} (11)
Cy = {tGT\(OFUCp)}. (12)

To be in the set C'r, the reach of a ticket has to be traceable, i.e., contain a Hamiltonian
path. This condition is needed to avoid the divergence seen in Example 9. If a ticket has
non-traceable reach it is placed in C'p. Transition functions here must be independent of

H. This also ensures that comparable fare states do not diverge in an incomparable state.

All remaining tickets are added to Cly. Fare states containing tickets from Cx cannot be
compared at all.
The comparison operator defined by this comparability partition fulfills Equation 7.

» Proposition 15 (Monotonicity of the Comparability Partition). The partial order defined by
Definitions 10 and 14 fulfills the monotonicity condition

Vi,foeF: fi<c fo=VYaecA:Up(fi,a) <c Up(fa,a). (13)

Propositions 15 and 11 enable us to apply dynamic programming shortest path algorithms
to the PSEAP using the comparability partition from Definition 14. However, we obtain
only the set of state-optimal paths. It remains to show that this set contains the cheapest
price itinerary.

» Proposition 16 (Correctness). Let 7* := minp, , 7(p). Then, there is at least one s,t-path
p* with 7 = w(p*) and p* € P, :={p s,t-path: Bp: f(p) <o [(P)}-

» Example 17 (Dominance Rules for MDV Fares). In the graph in Figure 1 all nodes have
traceable reach. It is also easy to see that the no-overtaking property holds for all tickets
as well and hence Cp = {T1,T», Z1,Za, Z3, Z4, Z5, Zs, M, H,L, K1, Ky, K}, Cp =) and
Cn = 0. Note that changing the transition condition from Z; to Z from |h*| > 1 to |h*| =1
breaks the no-overtaking property in cases where more than one fare zone is covered by a
station. Since this is never the case, we can replace the inequalitiy by an equality while
maintaining optimality.

12:9

ATMOS 2019

12:10

Price-Sensitive Routing in PT Networks

4 Price-Sensitive RAPTOR

In this last section, we will discuss how to integrate conditional fare networks into the
RAPTOR-algorithm. Finally, we introduce some speed-up techniques and evaluate their
performance on real-world instances obtained from MDV. We will change notation slightly
and use P;, to refer to the Pareto-set optimized for transfers, arrival time and price and PSJt ¢
to refer to the Pareto-set optimized for transfers, arrival time and fare state.

4.1 Applying the Framework to RAPTOR

We use our framework to implement a price-sensitive version of the multi-criteria RAPTOR
algorithm (McRAPTOR) [6]. That is, we solved the earliest arrival problem with price as
an additional optimization criterion. RAPTOR implicitly optimizes also for the number of
transfers. To facilitate discussion, we presented the framework in a graph-based context.
However, RAPTOR, does not use a graph model but works directly on the timetable. It
operates in rounds k£ = 1,...,n. In each round, a set of marked routes is visited and labels
are propagated along them. Labels are updated in this process by reading the new arrival
time directly from the route’s arrival time array. At each station, it is checked whether the
new label improves upon the current optimal label. If so, that local label is updated and the
station is marked as a starting point for the next round. The standard RAPTOR version
labels all stations solely with arrival times.

Adapting our findings to work with RAPTOR is straightforward: Each pair of adjacent
stations (v;,v;41) on a trip can be interpreted as an arc. Hence, we store for every trip not
only an array of arrival times but also an array of all fare attributes. A label I; = (t;, f;)
(at station v;) consists of an arrival time ¢; and a fare state f;. When traversing along
a trip from station v; to wv;y1, the arrival time is updated and the fare state is set to
fix1 = Up(fi, (vi,vi41)). Dominance of labels is checked according to the theory developed
above while also taking arrival times into account. Update steps that were associated with
arcs modeling transfers are performed whenever the algorithm hops on a new route. This
requires storing an additional array with fare attributes at every station to represent transfer
costs for every trip at the station. Note that, in most cases, it is enough to store one array
for each route instead of trip, as fare attributes seldom vary among the trips of a route.
Since walking is free, fare states do not need to be updated in the footpath stage. Depending
on the data set, it might thus be possible to save money by walking a long distance in the
middle of an itinerary. This kind of journey can be excluded during postprocessing.

4.2 Speed-up Techniques
Price-based Target Pruning

In RAPTOR as well as Dijkstra’s algorithm, it is possible to prune labels that are worse than
the labels that have already been found at the target station. Naturally, the same speed-up
technique is also possible for our algorithm. Moreover, we need not use <¢ to compare fare
states. Since the labels at the target station are never updated and the price function = is
non-decreasing, a path already more expensive than the incumbent cheapest s, t-path cannot
be price-optimal. Hence, we can prune all labels with a fare state f with 7(ft) > n*, with
7* being the incumbent price at the target station.

R. Euler and R. Borndorfer

Bounded McRAPTOR

By design of fare systems the cheapest path is often among the fastest as detours are penalized
by increases in both price and travel time. Therefore, it seems beneficial for a multi-criteria
search to compute a minimal travel time itinerary early on by running a standard RAPTOR
query. The labels obtained in this first stage can then be used to prune the multi-criteria
search. Let t; be the optimal arrival time at the target station in round k of the first stage
(computed with RAPTOR). During round k of McRAPTOR, we prune every label that
has an arrival time ¢ with ¢ > ¢} + €. Note that this possibly cuts off optimal paths from
Ps’t ¢ (and P,) if € is chosen to be small. This technique, alongside an even tighter pruning
scheme, has been introduced in [5].

Problem Specific Speed-ups

Certain dimensions in H might only be relevant for some tickets in 7'. For example, many
short-distance tickets depend on the number of stations visited while this number is irrelevant
for all other tickets that can be reached from that ticket. We can therefore alter the
comparison operator <c for those tickets to ignore the number of stations. Hence, more

labels become comparable which results in a smaller Pareto-set PL3" with Pr, € PP} C P8f7 .-

4.3 Computational Results

We implemented the McRAPTOR algorithm in C++17 compiled with geec 8.1.0 and —03
optimization. All tests were conducted on Dell Poweredge M620 machines with 64 GB of
RAM. While the general structure of the MDV price system is captured in our model, our
computations deviate from the prices charged by MDYV in the following three cases: A list of
relations that is, contrary to the general rules, not eligible for the short-distance discount is
not taken into account. Neutral zones are as of yet not implemented. Instead, we add each
neutral zone to one of its surrounding zones. Stations and fare zones that a route passes
through without stopping are not represented in the available data and therefore cannot be
taken into account.

From MDV’s? GTFS3 feed, we extracted the timetable of the 22 May 2019. It contains
4,371 stations, 18,215 trips, 5347 routes and 845 footpaths. The original footpath set was

not transitively closed*. After computing the transitive closure, there were 1,029 footpaths.

40 unconnected stations as well as 960 duplicate trips were removed from the data. We then
chose a test set of 5,000 queries uniformly at random from the set of connected stations.
In Table 1, we depict results for six different versions of RAPTOR. A standard RAPTOR
query (RAPTOR) and a McRAPTOR query optimizing for fare zones (zones) were included
for comparison. All other versions optimize for price and travel time using the framework

presented above. Version fare uses price-based target pruning as presented in Section 4.2.

Employing standard target pruning (using <¢ for comparison) instead yielded extremely
poor results in exploratory computations and is therefore not included in this study (One
query found 1000 paths of which only four were in P;,). Version pss additionally uses

2 The MDV GTFS timetable is licensed under CC BY 4.0 and is publicly available under https://www.

mdv.de/informationen/downloads/.
3 Fare data is not part of the feed and was obtained separately via InfraDialog GmbH.
4 RAPTOR requires a transitively closed footpath set [6].

12:11

ATMOS 2019

https://creativecommons.org/licenses/by/4.0/
https://www.mdv.de/informationen/downloads/
https://www.mdv.de/informationen/downloads/

12:12

Price-Sensitive Routing in PT Networks

Table 1 Computation results for 5000 queries in the MDV network. All values depicted are
averages. 30 queries for which no itinerary was found were excluded. The column pareto the size of
the Pareto-set as computed by RAPTOR, while sols reports the size of P;,. We also report the
number of scanned routes (scan). For bound60 and bound30, the results of the actual multi-criteria
query are reported (second phase). Total combines the results for the first and second phase.

Criteria Technique Query Total

& 2y 2y
& ¢ § 2 oo m 2 S % g g g g

%) 5 (79})3} ~ =, =,
RAPTOR e o o o o o 158 - 6 11032 - -
zones . e e o o o o 4953 - 5066 19563 — -
fare . . ° . o ° o 6.01 2.66 48084 16457 - -
pss . e o e e e o 3.5 266 406 14842 - -

bound60 . . o D o . . 2.51 2.21 274 14322 280 25354
bound30 . . o D D . . 234 214 260 14063 266 25085

problem-specific speed-ups and bound60 (bound30) computes bounds to cut off all paths
that are more than 60 (30) minutes slower than those computed in the first phase. The
field pareto reports the average number of solutions computed by the RAPTOR/McRaptor
query. When optimizing for price and arrival time, this set is bigger than the size of P,
which is reported as sol. Note that these sets are smaller for bound60 and bound30 since
they compute restricted Pareto-sets. When taking fare zones into account (zones), the size
of the Pareto-set increased from 1.58 (RAPTOR) to a staggering 49.53. This is reflected in
a high run time of more than 5 s. The price-based target pruning used in fare results in a
significantly smaller Pareto-set P;, (6.01) on average. The average size of P}, is 2.66. This
indicates that most of the itineraries computed by zones are not interesting for a typical
costumer and the fare framework can be leveraged to avoid their computation. However,
the framework is computationally more involved and requires optimization of two additional
criteria (distance and visited stations), which leads to run times of 48 s on average. In pss,
fare zones are not compared anymore after reaching ticket M. Distance and the number of
visited stations is only considered for the tickets K, Kj and Ky, Ty and T5. This results
in an average run time of 406 ms which is even considerably faster than the zones queries.
Computing bounds in a first phase reduces run times further to 280 and 266 ms, respectively,
while not reducing the number of itineraries found too much.

5 Conclusion

We presented a novel framework for modeling fare systems of public transportation companies.
It is independent of the shortest path algorithm used and can be used to solve price-sensitive
earliest arrival queries in real-world networks. Our test case forces the implicit optimization
for distance, number of stations visited and fare zones, which resulted in slow run times and
large Pareto-sets. Both can be greatly improved by utilizing insights into the price structure
to tighten dominance rules, which lead to the framework faring even better than a purely fare
zone-based McRAPTOR. The speed-up is, however, dependent on the ticket transition rules
and thus, performance might vary significantly depending on the fare system in question.

R. Euler and R. Borndorfer 12:13

—— References

1 Chris Barrett, Riko Jacob, and Madhav Marathe. Formal-Language-Constrained Path Prob-
lems. SIAM J. Comput., 30(3):809-837, May 2000. doi:10.1137/S0097539798337716.

2 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Miiller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in Trans-
portation Networks. In Algorithm Engineering - Selected Results and Surveys, volume 9220 of
Lecture Notes in Computer Science, pages 19-80. Springer, 2016.

3 Annabell Berger and Matthias Miiller-Hannemann. Subpath-Optimality of Multi-Criteria
Shortest Paths in Time- and Event-Dependent Networks. Technical report, Institute of
Computer Science, Martin-Luther-Universitdt Halle-Wittenberg, 2009. URL: http://wcns.
uzi.uni-halle.de/download.php?down=10850&elem=2163494.

4 Ralf Borndorfer, Ricardo Euler, Marika Karbstein, and Fabian Mett. Ein mathematisches
Modell zur Beschreibung von Preissystemen im 6V. Technical Report 18-47, ZIB, Takustr. 7,
14195 Berlin, 2018. URL: urn:nbn:de:0297-zib-70564.

5 Daniel Delling, Julian Dibbelt, and Thomas Pajor. Fast and Exact Public Transit Routing
with Restricted Pareto Sets. In 2019 Proceedings of the Twenty-First Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 54-65, 2019. doi:10.1137/1.9781611975499.
5.

6 Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-Based Public Transit Routing.
Transportation Science, 49(3):591-604, 2015. doi:10.1287/trsc.2014.0534.

7 Yann Disser, Matthias Miiller-Hannemann, and Mathias Schnee. Multi-criteria Shortest Paths
in Time-dependent Train Networks. In Catherine C. McGeoch, editor, Proceedings of the
7th International Conference on Experimental Algorithms, WEA’08, pages 347361, Berlin,
Heidelberg, 2008. Springer-Verlag. doi:10.1007/978-3-540-68552-4_26.

8 Mehryar Mohri. Semiring Frameworks and Algorithms for Shortest-distance Problems. J.
Autom. Lang. Comb., 7(3):321-350, January 2002. URL: http://dl.acm.org/citation.cfm?
1d=639508.639512.

9 Matthias Miiller-Hannemann and Mathias Schnee. Paying less for train connections with
MOTIS. In Proceedings of the 5th Workshop on Algorithmic Methods and Models for Optim-
ization of Railways, volume 2 of OpenAccess Series in Informatics, page 657, January 2005.
doi:10.4230/0ASIcs.ATMOS.2005.657.

10 U. Zimmermann. Linear and combinatorial optimization in ordered algebraic structures,
volume 10 of Annaly of discrete mathematics. North-Holland, 1981.

A Fare Transition Functions for MDV

In the following, we provide the fare transition function associated with the fare transition
arcs in Figure 1. We refer to the dimensions of the partially ordered monoid (H,+p, <p) as
H:=H?* x H® x H x H*, where H? =27 H* =N, H? = N and H* = {0,1}. The set H?
represents all possible combinations of fare zones, H* and H? represent distances measured
in the number of stations and in meters, respectively, and H?, whether a trip contains a
transfer. The symbol set is S= {H, L,T1,T5, S0}, where H and L are associated with all
stations in Halle and Leipzig, respectively. The symbol 77 is associated with stations in cities
that allow the T3 price, the symbol T, with stations in cities that allow the T5 price. All
remaining stations have the symbol Sy. Let s €S and h = (h;, hg, hq, ht) € H. Then, the
fare transition function is defined by

ATMOS 2019

https://doi.org/10.1137/S0097539798337716
http://wcms.uzi.uni-halle.de/download.php?down=10850&elem=2163494
http://wcms.uzi.uni-halle.de/download.php?down=10850&elem=2163494
urn:nbn:de:0297-zib-70564
https://doi.org/10.1137/1.9781611975499.5
https://doi.org/10.1137/1.9781611975499.5
https://doi.org/10.1287/trsc.2014.0534
https://doi.org/10.1007/978-3-540-68552-4_26
http://dl.acm.org/citation.cfm?id=639508.639512
http://dl.acm.org/citation.cfm?id=639508.639512
https://doi.org/10.4230/OASIcs.ATMOS.2005.657

12:14 Price-Sensitive Routing in PT Networks

Tr(Zi, Zis1,8,h) =1 & |hy| > i Viel,...,6with Z; = M
Tr(Tj,Z1,s,h) =1&
s#TiAN(hy =1V hg >4) Vi=1,2
Tr(T;,K,s,h)=1%
s£TjA(hy = 1A hg <4) Vji=12

Tr(K, Zi,s,h) =16 [ha| =i A (hy = 1V hyg > 4) Vi=1,2,34
Tr(L,Zs,s,h)=1<s#L

Tr(H,Zs,s,h)=1& s+ H

Tr(Kr,Zs,8,h) =1 s#LA(hy=1Vhs>4)
Tr(Kp,Za,s,h)=1<s#HA(h=1Vhs >4)
Tr(Kp,L,s,h)=1<s=LA(h=1Vhs>4)

Tr(Kg, Hys,h) =1 s=HA (hy = 1V hy > 4).

B Proof of Proposition 11

Proof. Let p* = (s = vo,v1,.-.,Un—1,0p = t) € PS]it be a state-optimal s, ¢-path and let

(fo,---, fn) be the fare sequence associated with it. Assume there is another s,t-path
P = (8 = up,u1,...,u—1 = Vp_1,u; = t) with fare states (fo, f1,...,fi). Let k be the
largest integer such that v,_j = w;_g, i.e. the paths (vp_g,...,v,) and (uj—g,...u;) are

equal. Now assume f;_,_1 <¢ fn—k—1. By definition, f,_r = Up(fn—k—1, (WUn—k—1,Vn—k))
and fi—1, = Up(fi—k—1, (Wi—k—1,w—x)). We apply Equation 7 to obtain f;_» <¢ fn—x- By

repeating the process for i € {k —1,...,0}, we find fi <¢ fn. Since p* was state-optimal, it
follows that f; =¢ f,, and consequently p is also state-optimal. Since the number of paths in
G is finite, we can repeat this procedure to find the path p’. <

C Proof of Proposition 15

Proof. Let a € A and fy, f, € F such that fi <¢ fo. We write f; := Up(fi,a) and
fo := Up(fa,a). Clearly, f{ < fF implies fJ' < f#. First, assume that f{ € Cp, hence
I = fi. By applying the definition of Cp, we obtain

Tr(fi, A*(a), fI + A'(a)) = Tr(f3, A%(a), f5 + A"(a)).

Thus, fl f2 Note that the definitions of Cp and Cg imply that fl C Cp UCF since
fl € R(fl) and hence f; <¢ fo. Now, assume ff € Cp. Note that R(f}) C Cr. Hence, if
ft = ft, we obtain f; <¢ fo.

If instead f! # fL we need to show that ff — ff. Note that fi e R(f!) and R(f?) is
traceable. Hence, f%, ff and f! are on a directed path. Since F is acyclic and f = f} holds
there are four cases to consider:

1. ft = fI = fi which implies ff =» fi;

2. ft = ft = fi which implies ff =» fi;

3. fL = fl — ftand f! = ft, which creates the cycle fI = ff = fl - ft = ftin F
and is hence contradictory;

R. Euler and R. Borndorfer

4. ft =5 ft — ft and ff — fi. Note that ff = ff — f! and also that
Tr(ft, ft, A%(a), fI + A"(a)) = 1. Hence, we can apply the no-overtaking property for
the edge (ff, f1), the ticket f% and the fare attribute (A%(a), f2 + A" (a)).
Since fI + A"(a) > f' + A"(a), this yields the existence of an edge (f%, f!) € E with
Tr(f, ft, A%(a), f + A"(a)) = 1 and fI =» f*. Note that (f%, f!) is not necessarily
the only outgoing edge at fi but by definition of T'r there is only outgoing edge at f4
with transition function 7' equal to one for the fare attribute (A*(a), f2 + A" (a)). Since
also Tr(fL, ft, A%(a), f + A"(a)) = 1, it follows that fi = f. This creates the cycle
fi— ft — fi which also yields a contradiction.

Hence, we conclude that in fact flt — f§ and therefore, concluding the proof, fi <¢ fo. <«

D Proof of Proposition 16

Proof. Consider p € P, := {p s,t-path : 7(f*(p)) = n*} # 0. If there is a path p’ € Psfi
with ft(p’) = ft(p), we are done. If not, there is a path p’ € P;it with ft(p’) — ft(p). This
implies 7(f!(p')) < 7(f!(p)) and hence that a path of the same price as p is present in
P!, <

12:15

ATMOS 2019

	Introduction
	Related Literature
	Our Contribution
	Overview

	A Formal Framework for Fare Systems
	The Fare Framework in Routing Algorithms
	Dominance for Fare States
	Comparability Partitions

	Price-Sensitive RAPTOR
	Applying the Framework to RAPTOR
	Speed-up Techniques
	Computational Results

	Conclusion
	Fare Transition Functions for MDV
	Proof of Proposition 11
	Proof of Proposition 15
	Proof of Proposition 16

