
New Perspectives on PESP: T -Partitions and
Separators
Niels Lindner
Zuse Institute Berlin (ZIB), Takustr. 7, 14195 Berlin, Germany
lindner@zib.de

Christian Liebchen
Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
liebchen@th-wildau.de

Abstract
In the planning process of public transportation companies, designing the timetable is among the
core planning steps. In particular in the case of periodic (or cyclic) services, the Periodic Event
Scheduling Problem (PESP) is well-established to compute high-quality periodic timetables.

We are considering algorithms for computing good solutions and dual bounds for the very basic
PESP with no additional extra features as add-ons. The first of these algorithms generalizes several
primal heuristics that have been proposed, such as single-node cuts and the modulo network simplex
algorithm. We consider partitions of the graph, and identify so-called delay cuts as a structure that
allows to generalize several previous heuristics. In particular, when no more improving delay cut
can be found, we already know that the other heuristics could not improve either. This heuristic
already had been proven to be useful in computational experiments [1], and we locate it in the more
general concept of what we denote T -partitions.

With the second of these algorithms we propose to turn a strategy, that has been discussed in
the past, upside-down: Instead of gluing together the network line-by-line in a bottom-up way, we
develop a divide-and-conquer-like top-down approach to separate the initial problem into two easier
subproblems such that the information loss along their cutset edges is as small as possible.

We are aware that there may be PESP instances that do not fit well the separator setting.
Yet, on the RxLy-instances of PESPlib in our experimental computations, we come up with good
primal solutions and dual bounds. In particular, on the largest instance (R4L4), this new separator
approach, which applies a state-of-the-art solver as subroutine, is able to come up with better dual
bounds than purely applying this state-of-the-art solver in the very same time.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Ap-
plied computing → Transportation; Mathematics of computing → Discrete optimization; Mathemat-
ics of computing → Integer programming

Keywords and phrases Periodic Event Scheduling Problem, Periodic Timetabling, Graph Partition-
ing, Graph Separators, Balanced Cuts

Digital Object Identifier 10.4230/OASIcs.ATMOS.2019.2

Funding Niels Lindner : Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany´s Excellence Strategy – The Berlin Mathematics Research Center
MATH+ (EXC-2046/1, project ID: 390685689).

Acknowledgements The authors want to thank Ralf Borndörfer for fruitful conversations.

1 Introduction

Traditionally, the planning process for public transportation companies is among the classical
application areas of mathematical optimization. A very prominent general such success story
had been established at Dutch railways [11]. At the borderline between service design and
resource planning, timetabling is kind of in a central position of the entire planning process.
This is one motivation why in the recent past there have been considered many “add-ons” to
timetabling, e.g.,

© Niels Lindner and Christian Liebchen;
licensed under Creative Commons License CC-BY

19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2019).
Editors: Valentina Cacchiani and Alberto Marchetti-Spaccamela; Article No. 2; pp. 2:1–2:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lindner@zib.de
mailto:liebchen@th-wildau.de
https://doi.org/10.4230/OASIcs.ATMOS.2019.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 New Perspectives on PESP: T -Partitions and Separators

integrating decisions of line planning, sometimes even network design,
considering the passengers’ route choice as a function of the actual timetable,
designing timetables that admit for efficient vehicle schedules and occasionally even crew
schedules,
computing delay-resistant timetables.

Nevertheless, most of these considered extensions share one limiting factor: computing
efficient timetables in a core subroutine, at least.

Regarding timetables, there are several concepts around which design principles the
timetable should follow, e.g., periodicity and symmetry [14]. In this paper, we are considering
periodic timetables, i.e., those, in which the trips of the same line and into the same direction
follow each other in a fixed time interval, which we denote the period time, or, the cycle
time. In particular in Europe, these timetables are widely in use both for railways and for
urban public transport.

To model periodic timetables, the Periodic Event Scheduling Problem, which had been
formulated by Serafini and Ukovich [27] (see Section 2), can be considered as state-of-the-
art. Notice that there are also further applications of PESP beyond periodic timetabling,
such as traffic light signalling. Solution methods for PESP include (mixed) integer linear
programming, constraint programming, satisfiability algorithms, as well as a couple of
heuristics.

The contribution of this paper is to provide two new heuristics for computing good primal
solutions for PESP instances relatively fast. On the one hand, the second heuristic does not
fit for every PESP instance. On the other hand, if it fits, sometimes it can even be used to
identify good dual bounds, too.

Interestingly, whereas several recent improvements to MIP performance touched on cycles
within the graph model (in particular trying to improve the generally relatively weak dual
bounds), both of our two heuristics deal with complementary structures, namely cutsets of a
graph, in the second heuristic within the particular framework of so-called graph separators.

In Section 3, we invite the reader to think of PESP in terms of T -partitions. In particular,
we introduce what we call delay cuts and these generalize the setting of several primal
heuristics that had been considered earlier (e.g. single-node-cuts, modulo network simplex
algorithm). By computing an optimal delay cut using a tailored MIP, we know that this
locally optimal solution in particular is locally optimal for the other heuristics, too.

In Section 4, we propose a method to overcome some degeneracy that can sometimes be
observed in a heuristic that had been dealt with in [23]. This heuristic starts, in a bottom-up
manner, with optimum timetables for each line separately. Next, one combines (matches)
those two clusters, between which in total find the largest weights and adjust the two separate
timetables by shifting them against each other in order to synchronize the two line-clusters
as good as possible. Here, sometimes it can be observed that from the moment on that one
cluster becomes relatively large compared to the other clusters (still consisting of just one
single directed line, in the extreme case), the heuristic degenerates simply to add – linearly –
one line at a time.

This is why we are proposing to turn this procedure upside-down. At the very top level
of the PESP constraint graph, we compute a separator in order to divide the instance into
two essentially balanced subproblems. The two resulting PESP instances are then ideally
much easier to solve to optimality. Keeping their relative structure within each of them,
finally combine them to a timetable for the entire network by shifting them in a best possible
way against each other. Right as in the previous approach in [23], the separator must not
contain any arc that imposes a true restriction, e.g., of technical nature. Moreover, among
the “free arcs”, we seek for a set of arcs (and their weights) between the two subproblems
that is as small as possible, in order to loose only few information.

N. Lindner and C. Liebchen 2:3

In Section 5, we report some computational results. We start by applying the separator
heuristic from Section 4. For the subproblems, we apply the concurrent solver that has been
presented recently in [1], and in which the MIP-based delay cut heuristic from Section 3 is
implemented among other algorithms. In these experiments, it can be observed that in the
result of some separation strategies, the two separated subproblems indeed can be solved with
smaller average slack than the time-equivalent benchmark solution for the original complete
problem. Unfortunately, at least on the instances that we are considereing, this lead that is
attained within the two subproblems turns out not to be enough to compensate the worse
quality that finally appears on the arcs of the cutset that link the two subproblems when
simply shifting the two pre-computed solutions of the two subproblems against each other.

2 Periodic Event Scheduling

The Periodic Event Scheduling Problem (PESP) is a mathematical optimization problem
formulated by Serafini and Ukovich [27] that lies at the heart of periodic timetabling in
public transport. The input for PESP consists of the following:

A directed graph G with vertex set V and arc set A,
a period time T ∈ N,
lower and upper bounds `, u ∈ ZA≥0 with ` ≤ u,
weights w ∈ ZA≥0.

We will only consider integer bounds and weights in this paper. A periodic timetable is a
vector π ∈ {0, 1, . . . , T − 1}V . Any periodic timetable defines a periodic slack y ∈ ZA≥0 by

yij := [πj − πi − `ij]T for all ij ∈ A,

where [·]T denotes the modulo T operator taking values in [0, T). A periodic timetable π
and its associated periodic slack y are called feasible if y ≤ u− ` holds.

In the setting of periodic timetabling for public transport, think of a period time of, say,
T = 60 minutes. The events correspond to either the set of arrivals or departures of trips of a
certain line into a particular direction. A timetable π then assigns points in time within the
period time T to each of these events. Finally, the arcs measure time distances between two
adjacent events, and thus model time durations for trips, stops, headways, and many more.

Given an input as above, the Periodic Event Scheduling Problem is now to find a feasible
periodic timetable π, in an optimization version we may in addition seek for a periodic
timetable minimizing the weighted slack

∑
ij∈A wijyij .

The PESP has a natural formulation as a mixed integer linear program, namely

Minimize wty

s.t. y = Btπ − `+ pT

0 ≤ π ≤ T − 1,
0 ≤ y ≤ u− `,

p ∈ ZA.

Here, Bt denotes the transpose of the incidence matrix B of the directed graph G. Since B
and hence Bt are totally unimodular [26, Example 19.2], we can w.l.o.g. relax π and y to be
continuous variables.

Hence, a standard approach to solving PESP instances is to apply branch-and-cut pro-
cedures, as invoked by mixed integer programming solvers. To this end, several formulations
and cutting planes have been presented [15, 17, 18, 19, 22]. Another solution strategy is to
employ Boolean satisfiability methods [7, 6].

ATMOS 2019

2:4 New Perspectives on PESP: T -Partitions and Separators

Exploiting the polyhedral structure of the problem, the modulo network simplex algorithm
[20] is a rather fast local improving heuristic. Several methods for escaping local optima
have been suggested [5]. We will unite these methods to a more global heuristic approach
in Section 3.

Since the structure of public transportation networks is usually derived from lines, in the
case when only few technical constraints have to be obeyed, a bottom-up matching approach
has been introduced in [23, 12]. The idea is to cluster lines according to the importance of
the transfers between them, increasing the number of lines as the matching heuristic proceeds.
Doing so, it could happen that one cluster of lines is getting bigger and bigger and then, in
fact, clustering only consists of a linear sequence in which the lines are added to the growing
instance. In Section 4, in order to get several bigger subproblems that contain “most” of
the information of the entire instance, we turn this approach upside-down: We develop a
top-down divide-and-conquer strategy for PESP, i.e., we try to split the set of all lines into
two parts of roughly the same size such that only a small amount of all transfers occurs
between the parts. The idea is that on the intersection relatively few information is lost,
whereas the practical tractability of the two subproblems improves significantly.

3 T -Partitions

In this section, we will present a view on periodic timetabling from the standpoint of cuts
and partitions in graphs. Establishing a correspondence between periodic timetables and
T -partitions, we translate several PESP strategies into the language of partitions. Finally, we
present an improving heuristic for PESP in terms of maximum cuts, which subsumes several
known local solving approaches in a single optimization problem. We identify the so-called
delay cuts, as they have been already part of the computational framework presented in [1],
as a useful device within the new concept of T -partitions.

3.1 Timetables and Partitions
Let (G,T, `, u, w) be a PESP instance. Then any periodic timetable π naturally partitions
the vertex set V of G into T sets, namely {i ∈ V | πi = d} for d = 0, 1, . . . , T − 1.

I Definition 1. A T -partition of a PESP instance with vertex set V and period time T is a
T -tuple V = (V0, V1, . . . , VT−1) of pairwise disjoint subsets of V such that

⋃T−1
d=0 Vd = V .

Note that the members of a T -partition might be empty. Clearly, there is a one-to-one
correspondence between periodic timetables and T -partitions, identifying the sets in the
T -partition of V with the preimages of the periodic timetable, when interpreted as a map
V → {0, . . . , T − 1}.

As periodic timetables can be thought of as maps taking values in the residue class group
(Z/TZ,+), there is a natural addition of timetables by componentwise addition modulo T .
If π, π′ are periodic timetables, we interpret π′ as T -partition and obtain the sum as follows:

I Definition 2. Given a periodic timetable π and a T -partition V = (V0, . . . VT−1), define
the periodic timetable πV via

πVv := [πv + d]T , v ∈ Vd, d = 0, . . . , T − 1.

We will now use T -partitions for optimizing a PESP instance. Let π∗ be a timetable
with minimum weighted slack. Given an initial timetable π, we can find π∗ by looking for a
T -partition V with πV = π∗. In terms of periodic slacks on the arc set A, we have:

N. Lindner and C. Liebchen 2:5

I Lemma 3. Let π be a periodic timetable and let V be a T -partition. If y and yV are the
periodic slacks associated to π and πV , respectively, then

yVij = [yij − d+ e]T , ij ∈ A ∩ (Vd × Ve), d, e = 0, . . . , T − 1.

Note that since V is a partition, this fixes yVij for every arc ij ∈ A.

Proof. Plugging in the definitions,

yVij = [πVj − πVi + `ij]T = [πj + e− (πi + d)− `ij]T = [yij − d+ e]T . J

I Definition 4. Given a periodic timetable π on a PESP instance, the improvement of a
T -partition V is

ι(π,V) :=
T−1∑
d=0

T−1∑
e=0

∑
ij∈A∩(Vd×Ve)

wij (yij − [yij − d+ e]T) .

The Maximally Improving T -Partition problem is to find for a given timetable π a
T -partition V such that ι(π,V) is maximum and yV ≤ u− `, i.e., feasible.

I Theorem 5. If π is a periodic timetable for a PESP instance I, then V solves Maximally
Improving T -Partition for π if and only if πV is an optimal solution to I.

Proof. This follows directly from Lemma 3 and the definition of Maximally Improving
T -Partition. J

3.2 Delay Cuts
Assuming that an initial solution is available, so far we only have transformed PESP into the
equivalent Maximally Improving T -Partition problem. We will now focus on special
classes of T -partitions to demonstrate the strength of this transformation. Again, we consider
a PESP instance (G = (V,A), T, `, u, w).

I Definition 6. Let S ⊆ V and d ∈ {1, . . . , T − 1}. The T -partition (V0, . . . , VT−1) with

Ve :=


S if e = d,

V \ S if e = 0,
∅ otherwise,

e = 0, . . . , T − 1,

is called a delay cut (see [1]) with delay d and will simply be denoted by ∆(S, d). The
restriction of Maximally Improving T -Partition to delay cuts is called the Maximally
Improving Delay Cut problem.

Intuitively, a delay cut ∆(S, d) delays – or shifts – all events in S by d. Delay cuts have
been called multi-node cuts in [5], where the authors provide a way to escape from local
optima produced by the modulo network simplex algorithm.

Starting with an initial timetable, an optimal timetable can be reached by decom-
posing a maximally improving T -partition (V0, V1, . . . , VT−1) into the T − 1 delay cuts
∆(V1, 1), . . . ,∆(VT−1, T − 1). From the perspective of T -partitions, delay cuts are hence
natural building blocks. However, delay cuts themselves comprise several strategies:

ATMOS 2019

2:6 New Perspectives on PESP: T -Partitions and Separators

0 7 9 5

8496

[7, 7]

[7, 7]

[6, 6]

[6, 6]

[3, 12]

[2, 11]

[2, 11] [2, 11]

[2, 11]

[3, 12]
+3

Figure 1 Fundamental delay cut: In this PESP instance with T = 10 and w ≡ 1, delaying the
two vertices at the right lower corner by 3 produces a better (in fact, optimal) timetable: The overall
slack is reduced from 7 to 4. This corresponds to the fundamental cut of the green spanning tree
when removing the red arc. The modulo network simplex inner loop replaces the red arc with the
blue arc at its lower bound.

1. Modulo network simplex moves (“inner loop”) [20]: The key insight behind the modulo
network simplex method is that there is always an optimal PESP solution coming from a
spanning tree structure: There is a spanning tree (or forest if the graph is not weakly
connected) such that all tree arcs have either slack 0 or u − `. Starting from such a
spanning tree structure, the algorithm tries to find a better solution by exchanging a tree
arc with a co-tree arc, see also [13]. The delay cut then corresponds to the fundamental cut
of the tree arc, the delay depends on the co-tree arc and whether the latter is considered
with slack 0 or u− `. An example is depicted in Figure 1.

2. Single-node cuts (“outer loop”) [20], or local improvements [21]: These cuts are simply
delay cuts ∆(S, d) with |S| = 1.

3. Waiting edge cuts [5]: If a vehicle dwells at a station where it is not terminating, then
the dwell time is usually small. In particular, the difference u− ` is close to 0 and hence
it seems reasonable to keep arrival and departure closely together and not to separate
them by a cut. Waiting edge cuts are thus delay cuts ∆(S, d) with S consisting of the
two vertices of an arc with small span u− `.

Since all these strategies rely on finding only a specific type of cut, solving Maximally
Improving Delay Cut – searching the whole cut space – generalizes the above methods: If
there is no improving delay cut, then also none of the approaches will be able to help. As the
paper [5] only provided a randomized greedy procedure, we turn Maximally Improving
Delay Cut into a genuine optimization problem.

I Lemma 7. Let π be a periodic timetable. The improvement of a delay cut ∆(S, d) is

ι(π,∆(S, d)) =
∑

ij∈δ+(S)

wij(yij − [yij − d]T) +
∑

ij∈δ−(S)

wij(yij − [yij + d]T),

where δ+(S) and δ−(S) denote the sets of arcs leaving and entering S, respectively.

Proof. This is a simple computation from the definitions of delay cuts and the improvement
of a T -partition. J

For a fixed delay d, we can transform Maximally Improving Delay Cut into a
standard Maximum Cut problem:
1. Construct the directed graph G with vertex set V := V and arc set A := A∪{ji | ij ∈ A},

i.e., we add reverse copys of each arc if the reverse arc is not already present.
2. Initialize c := 0 ∈ ZA.

N. Lindner and C. Liebchen 2:7

3. For each arc ij ∈ A, set

cij :=
{
cij + wij(yij − [yij − d]T) if [yij − d]T ≤ uij − `ij ,
−∞ otherwise.

and

cji :=
{
cji + wij(yij − [yij + d]T) if [yij + d]T ≤ uij − `ij ,
−∞ otherwise.

4. Find the cut S in G such that c(δ+(S)) is maximum.

Note that since y is given and d is fixed, this is indeed a Maximum Cut problem with
linear objective. As c does attain both positive and negative values, we are not able to
transform our problem to a standard polynomial-time solvable Minimum Cut problem.

Although Maximum Cut is NP-hard in general [9], our problem is still easy enough to
be solved on reasonably large instances within a few minutes by a MIP solver, using, e.g.,
the formulation presented in Appendix A. An implementation of this program invoking the
solver SCIP has been included into the concurrent PESP solver presented in [1], where it
proved to be successful especially when faster heuristics already got stuck in local optima.

4 Graph Separators

This section introduces a novel divide-and-conquer approach to PESP. The core idea is to
split the graph into two balanced parts, on the one hand losing as little information as
possible, and on the other hand obtaining subproblems which are (much) easier to solve than
the entire instance, see [25] for a recent application of this concept in the context of road
networks, and references therein. We can then solve the PESP restricted to each half and
combine the two solutions to a solution on the original instance. In order to avoid feasibility
issues, we restrict ourselves to cut the original network at free arcs, i.e., arcs whose slack is
allowed to take arbitrary values between 0 and T − 1. More formally, we want to find:

I Definition 8. Let (G,T, `, u, w) be a PESP instance, G = (V,A). Further let ν : 2V → R≥0
be a measure on V , and let α ≥ 1 be an imbalance parameter. A (ν, α)-separator is a subset
S ⊆ V such that

δ(S) consists only of free arcs, i.e., ij ∈ A with uij − `ij ≥ T − 1,
w(δ(S)) is minimum,
ν(V \ S) ≤ ν(S) ≤ α · ν(V \ S).

Here, δ(S) denotes the set of arcs in G with exactly one endpoint in S.

We will focus on the following two measures: At first, we consider balancing the number
of vertices, i.e., ν(X) := |X| for X ⊆ V . Secondly, being a common indicator of the difficulty
of a PESP instance, we will try to balance the cyclomatic number, i.e., the dimension of the
cycle space of the graph, which equals |A| − |V |+ 1 in the case of a connected graph. Of
course, one could think of several more balancing criteria.

Since we are only allowed to cut through free arcs, our first step in creating a separator
is to contract all non-free arcs. Note that these particular contractions are different from the
commonly known PESP contractions which yield a simplified, but equivalent instance [4].
Doing so results in a multigraph, which can be resolved to a simple graph by adding up the
weights of parallel arcs. The problem also permits to consider the underlying undirected
graph. However, we need to keep track of the contracted vertices and the multiplicity of the
arcs in order to calculate the correct measure ν, which lives on the uncontracted graph.

ATMOS 2019

2:8 New Perspectives on PESP: T -Partitions and Separators

The structurally simplest PESP instances coming from public transit essentially contain
two kinds of arcs: Line activities refer to driving a vehicle of a line between stations or
dwelling in a station, and these activities come with only small allowed slack. Transfer
activities are usually unconstrained in terms of slack, since one cannot expect all transfers in
a network to be short, and restricting too many transfers might turn the problem infeasible.
The weight on an arc is an estimate for the number of passengers using it. Recall from [16]
that using PESP one is able to model a variety of other features from practice.

In this interpretation, the contraction process hence contracts all lines to single vertices.
A separator then tries to divide the set of lines into two balanced parts such that the number
of transferring passengers between the two parts is minimum.

We finally want to remark that finding separators is an NP-hard optimization problem in
general [3]. However, it is possible to compute separators of good quality in a reasonable
amount of time, and the literature is rich [2, 8, 10, 24].

4.1 Vertex-balanced Separators
By the above contraction process, finding a (ν, α)-separator balancing the number of vertices
can be reduced to the following problem:

I Problem 9. Let (N,E) be an undirected graph with vertex multiplicities m ∈ NN and
edge weights w ∈ ZE≥0. For a given imbalance α ≥ 1, find a subset S ⊆ N such that

w(δ(S)) is minimum,
m(N \ S) ≤ m(S) ≤ α ·m(N \ S).

I Lemma 10. Let n :=
∑
i∈N mi. Problem 9 is solved by the mixed integer linear program

Minimize
∑
ij∈E

wijxij

s.t. xij ≥ zi − zj , ij ∈ E,
xij ≥ zj − zi, ij ∈ E,∑

i∈N
mizi ≥

n

2 ,∑
i∈N

mizi ≤
α · n
1 + α

,

xij ∈ [0, 1], ij ∈ E,
zi ∈ {0, 1}, i ∈ N.

Proof. See Appendix B. J

4.2 Cycle-balanced Separators
We will now focus on balancing the cyclomatic number µ of the parts of a PESP instance
(G,T, `, u, w). For a subset X ⊆ V , we will approximate the cyclomatic number by µ(X) :=
|A(G[X])| − |X|+ 1, where A[G(X)] denotes the set of arcs of the subgraph of G induced by
X. This is the exact cyclomatic number if G[X] is connected, and underestimates the true
quantity by the number of connected components minus one otherwise.

Since contracting arcs does not change the difference between number of arcs and vertices,
we do not need to remember the number of contracted vertices for computing µ. However,
collapsing parallel arcs to a simple arc decreases the cyclomatic number, so that we keep
track of the multiplicity of edges.

N. Lindner and C. Liebchen 2:9

We hence consider the following problem:

I Problem 11. Let (N,E) be an undirected graph with edge multiplicities m ∈ NE and
edge weights w ∈ ZN≥0. For a given imbalance α ≥ 1, find a subset S ⊆ N such that

w(δ(S)) is minimum,
µ(N \ S) ≤ µ(S) ≤ α · µ(N \ S).

I Lemma 12. Problem 11 can be solved by the mixed integer linear program

Minimize
∑
ij∈E

wij(1− `ij − rij)

s.t. `ij ≥ zi + zj − 1, ij ∈ E,
`ij ≤ zi, ij ∈ E,
`ij ≤ zj , ij ∈ E,
rij ≥ 1− zi − zj , ij ∈ E,
rij ≤ 1− zi, ij ∈ E,
rij ≤ 1− zj , ij ∈ E,

µ` =
∑
ij∈E

`ij −
∑
i∈N

zi + 1,

µr =
∑
ij∈E

rij −
∑
i∈N

(1− zi) + 1,

µ` ≥ µr,
µ` ≤ α · µr,
`ij ∈ [0, 1], ij ∈ E,
rij ∈ [0, 1], ij ∈ E,
zi ∈ {0, 1}, i ∈ N.

Proof. See Appendix B. J

4.3 Combining Partial Solutions
Going back to PESP instances, it is clear that restricting a feasible periodic timetable
to a subgraph results in a feasible periodic timetable, and the slack cannot increase. We
summarize the converse for (ν, α)-separators: Let S be a (ν, α)-separator for a PESP instance
I = (G = (V,A), T, `, u, w). Let I`, Ir, Im be the restrictions of I to the subgraphs induced
by S, V \ S and the shores of the cut induced by S, respectively (“left”, “right”, “middle”).

I Theorem 13. Let S be a (ν, α)-separator, producing instances I`, Ir, Im as above. Let
π`, πr be feasible periodic timetables for I`, Ir, respectively.
(1) The timetable π defined by

πi :=
{
π`i if i ∈ S,
πri if i ∈ V \ S

is feasible.
(2) Moreover, if y`, yr, y are the periodic slacks associated to π`, πr, π, respectively, then

wty = wty` + wtym + wtyr,

where ym is the slack w.r.t. π of the arcs in Im.

ATMOS 2019

2:10 New Perspectives on PESP: T -Partitions and Separators

(3) If opt(J) denotes the minimum weighted slack of a PESP instance J , then

opt(Ir) + opt(Im) + opt(I`) ≤ opt(I) ≤ opt(I`) + opt(Ir) +W · (T − 1),

where W stands for the weight of the cut, i.e., sum of the weights of all arcs in Im.

Proof. Since a (ν, α)-separator cuts only through free arcs, (1) and (2) are clear. Since the
optimal solution to I is feasible for the three parts I`, Im, Ir, we obtain the left inequality.
As we can combine optimal solutions to I` and Ir by (1) to a feasible solution to I, and the
weighted slack increases at most by W · (T − 1) by (2), this shows the right inequality. J

Therefore, these separators produce as well primal and dual bounds for PESP instances.
We will demonstrate the use of separators on large-scale timetabling instances in the next
section.

5 Experiments

5.1 Set-up
We use the library PESPlib1 as a benchmarking set. The library contains 20 hard timetabling
instances, none of which is solved to proven optimality yet. The separator strategy does not
seem to be suitable for the four bus timetabling instances: When removing all free arcs, the
remaining network decomposes in only 2 (BL4) or 3 (BL1-BL3) components that cannot be
separated further. In other words, there are only very few possible cuts. As a consequence,
only the railway instances RxLy remain, which all show a similar structure, and this is why
we will focus on the easiest instance R1L1 and the hardest instance R4L4.

At first, we compute vertex-balanced separators, choosing imbalance parameters α ∈
{1.05, 1.1, 1.2, 1.5}. To this end, we use the fast graph partitioning software METIS [10]
to generate an initial solution and apply the MIP solver Gurobi 8.12 to the program of
Lemma 10 for 20 minutes. Secondly, we determine cycle-balanced separators with the same
imbalance parameters as in the vertex case. Since METIS cannot handle the cycle balance
constraints and its solutions usually violate it, we use only Gurobi on the MIP of Lemma 12
for 20 minutes. Of course, for both types of separators, we contract all non-free arcs in
advance, and interpret the found separator on the original network again.

Having found a separator, we solve both parts with the concurrent PESP solver from [1],
which integrates mixed integer programming, modulo network simplex and the Maximally
Improving Delay Cut heuristic from Section 3. This solver computed the currently best
bounds for all PESPlib instances, improving 10 former primal bounds in as little as 20 minutes
using 7 parallel threads. We compare these results with our separator procedure by running
each part for 10 minutes with the same number of threads. In particular, the computation
time on the original instance equals the sum of running times of the two parts. The reason
for the small running time limit is based on the good quality of the solutions produced by
the concurrent solver, and the emipirical observation that only minor improvements occur
after the first 20 minutes [1]. Afterwards, we combine the timetables of both parts in an
optimal way, i.e., we iterately shift the timetable of one of the parts by 0, 1, . . . , T − 1 and
choose the best combination.

1 https://num.math.uni-goettingen.de/~m.goerigk/pesplib
2 Gurobi Optimization LLC, https://www.gurobi.com

https://num.math.uni-goettingen.de/~m.goerigk/pesplib
https://www.gurobi.com

N. Lindner and C. Liebchen 2:11

On the dual side, we compute dual bounds for each of the parts by running the concurrent
solver for 10 minutes on 7 threads in pure MIP best bound mode with user cuts. We compare
this with a 20-minutes run on the original instance with the same parameters.

In all PESP computations, CPLEX 12.83 serves as underlying MIP solver. The experiments
were carried out on an Intel Xeon E3-1270 v6 CPU at 3.8 GHz with 32 GB RAM. For an
analysis of the impact of delay cuts, we refer to [1].

5.2 Separator Statistics
Vertex-balanced separators

In every case, Gurobi could improve the initial vertex-balanced separator found by METIS.
For R1L1, the vertex separators are all optimal with respect to the given imbalance, whereas
optimality gaps are around 70% for R4L4. In contrast to standard minimum cuts, the
smaller part sometimes consists of several connected components, which is due to the balance
constraint. However, this is no issue for solving PESP. Despite having almost equal number of
vertices, especially the cyclomatic number and the weights turn out to be heavily imbalanced.
The smallest cuts accumulate only 19% (R1L1) resp. 24% (R4L4) of the free weight of
the original instance. Table 1 resp. Table 3 contain detailed statistics about the computed
separators.

Cycle-balanced separators

As no fast initial solution is available, and the program from Lemma 12 is more difficult than
in the vertex case, the best optimality gaps that we can achieve after 20 minutes are 26%
(R1L1) resp. 86% (R4L4). The cuts are always heavier than in the vertex case, although the
difference is much smaller for the large instance R4L4. On the plus side, the solutions are
much better balanced with respect to other parameters such as number of vertices, number
of arcs and the free weight.

5.3 Objective Values
R1L1

For the original instance R1L1, the concurrent PESP solver was able to compute a periodic
timetable with weighted slack 30 861 021 (see Table 2 for details) within 20 minutes. We
typically lose a weighted slack between 10 and 18 million in the cut, so there is little space
for improvement on the two parts (left and right, see rows “cut” in column “primal objective
value” in Table 2). Indeed, the timetable that is computed on the full instance is superior to
all combined ones. The best combined timetable has weighted slack 34 669 413, coming from
a cycle-balanced separator with imbalance parameter α = 1.2. We note that the average
weighted slack on the free arcs (in particular within the cut) – which have the largest impact
on the primal objective value – is significantly higher on the combined timetables than on
the original. In particular, along the free arcs within the cut, average slack values of almost
50% of the period time have to be accepted, whereas in those parts for which the concurrent
solver computed the timetables (original, left, right), less than 25% of the period time can
be achieved as average slack.

3 IBM ILOG CPLEX Optimization Studio, https://www.ibm.com/analytics/cplex-optimizer

ATMOS 2019

https://www.ibm.com/analytics/cplex-optimizer

2:12 New Perspectives on PESP: T -Partitions and Separators

The best dual bound computed from the sum of the two parts is 15 211 531, compared to
16 868 573. Again, the weight of the cut is the biggest hindrance, although optimality gaps
are reasonably small on the parts. Due to the structure of the instance, assigning a slack of
0 to all free arcs in the cut is feasible, and we do not get any valuable lower bound from the
“middle” part.

R4L4

Compared to an original primal bound of 40 706 349 after 20 minutes, we achieve 41 230 436
by a vertex-balanced separator with imbalance α = 1.2 (see Table 4). However, all combined
dual bounds (best: 11 428 968) are better than the original one (10 968 394). Thus it seems
that the separator approach performs better on this larger instance. This is also due to the
fact that the cuts comprise less weighted slack compared to R4L4. The good dual bound
gives hope that separators might benefit to compute better lower bounds for PESP instances,
which as to our experience is currently among the biggest obstacles in solving the PESPlib
instances to optimality.

6 Conclusions

By considering T -partitions and introducing delay cuts for the PESP, we proposed a framework
that generalizes several primal heuristics that had been known previously. In [1] the use of
these cuts is already reported to contribute to the best known solutions for several instances
of the PESPlib.

Regarding the separator heuristic, which can be regarded as an the entry point for a
divide-and-conquer approach, so far, based on our first tuning of the computation of the
separators, it is not able to come up with any better primal solutions for the instances of the
PESPlib.

Nevertheless, we would not be surprised, if in the following settings the separator heuristic,
too, could provide some added value:

In contrast to the entire instance, the two resulting subproblems can be solved optimally.
Apply the separation heuristic not only on one stage, but in a recursive, true divide-and-
conquer mode.
Yet, be aware that along the edges of each separator – although being of minimal weight –
we most often observed a relatively poor quality in the final solution (almost 50% of the
period time).
We believe that diving deeper into good algorithms for graph partitioning, e.g., by using
better methods or simply more running time for the mixed integer programs, could
overcome the difficulty that the separators are still too heavy to provide a trade-off for
improving primal and dual objectives.
Add some kind of post-processing “around” the separator: Instead of only shifting the
fixed solutions of the two subproblems as a whole against each other, just keep fixed the
slack values of those edges within them which are not incident with the separator. Then,
optimize over those timetables in which the vertices that are endpoints of an edge of the
separator can be shifted relative to the subproblem that they are actually belonging to.

References
1 Ralf Borndörfer, Niels Lindner, and Sarah Roth. A Concurrent Approach to the Periodic

Event Scheduling Problem. Technical Report 19-07, Zuse Institute Berlin, 2019. To appear
in RailNorrköping2019 – 8th International Conference on Railway Operations Modelling and
Analysis.

N. Lindner and C. Liebchen 2:13

2 Daniel Delling, Daniel Fleischman, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F.
Werneck. An exact combinatorial algorithm for minimum graph bisection. Mathematical
Programming, 153(2):417–458, November 2015.

3 M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems.
Theoretical Computer Science, 1(3):237–267, 1976.

4 Marc Goerigk and Christian Liebchen. An Improved Algorithm for the Periodic Timetabling
Problem. In ATMOS, volume 59 of OASICS, pages 12:1–12:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017.

5 Marc Goerigk and Anita Schöbel. Improving the modulo simplex algorithm for large-scale
periodic timetabling. Computers & Operations Research, 40(5):1363–1370, 2013.

6 Peter Großmann. Satisfiability and Optimization in Periodic Traffic Flow Problems. PhD
thesis, TU Dresden, 2016.

7 Peter Großmann, Steffen Hölldobler, Norbert Manthey, Karl Nachtigall, Jens Opitz, and Peter
Steinke. Solving Periodic Event Scheduling Problems with SAT. In He Jiang, Wei Ding,
Moonis Ali, and Xindong Wu, editors, Advanced Research in Applied Artificial Intelligence,
pages 166–175, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

8 Michael Hamann and Ben Strasser. Graph Bisection with Pareto Optimization. J. Exp.
Algorithmics, 23:1.2:1–1.2:34, February 2018.

9 Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,
Boston, MA, 1972.

10 George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM J. Sci. Comput., 20(1):359–392, December 1998.

11 Leo Kroon, Dennis Huisman, Erwin Abbink, Pieter-Jan Fioole, Matteo Fischetti, Gábor
Maróti, Alexander Schrijver, Adri Steenbeek, and Roelof Ybema. The new Dutch timetable:
The OR revolution. Interfaces, 39(1):6–17, 2009.

12 Christian Liebchen. Optimierungsverfahren zur Erstellung von Taktfahrplänen. Master’s
thesis, Technical University Berlin, Germany, 1998. In German.

13 Christian Liebchen. A Cut-Based Heuristic to Produce Almost Feasible Periodic Railway
Timetables. In Sotiris E. Nikoletseas, editor, Experimental and Efficient Algorithms, 4th
International Workshop, WEA 2005, Santorini Island, Greece, May 10-13, 2005, Proceedings,
volume 3503 of Lecture Notes in Computer Science, pages 354–366. Springer, 2005. doi:
10.1007/11427186_31.

14 Christian Liebchen. Optimization of passenger timetables: Are fully-integrated, regular-interval
timetables really always the best? European Rail Technical Review (RTR), 48(4):13–19, 2008.

15 Christian Liebchen. The first optimized railway timetable in practice. Transportation Science,
42(4):420–435, 2008.

16 Christian Liebchen and Rolf H Möhring. The Modeling Power of the Periodic Event Scheduling
Problem: Railway Timetables—and Beyond. In Algorithmic methods for railway optimization,
pages 3–40. Springer, 2007.

17 Christian Liebchen and Leon Peeters. Integral cycle bases for cyclic timetabling. Discrete
Optimization, 6(1):98–109, 2009.

18 Christian Liebchen and Elmar Swarat. The Second Chvatal Closure Can Yield Better Railway
Timetables. In Matteo Fischetti and Peter Widmayer, editors, 8th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08), volume 9
of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2008. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

19 Karl Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. Habilitation
thesis, Universität Hildesheim, 2008.

20 Karl Nachtigall and Jens Opitz. Solving Periodic Timetable Optimisation Problems by Modulo
Simplex Calculations. In Matteo Fischetti and Peter Widmayer, editors, 8th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08),
volume 9 of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2008. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

ATMOS 2019

https://doi.org/10.1007/11427186_31
https://doi.org/10.1007/11427186_31

2:14 New Perspectives on PESP: T -Partitions and Separators

21 Karl Nachtigall and Stefan Voget. A genetic algorithm approach to periodic railway synchron-
ization. Computers & OR, 23(5):453–463, 1996. doi:10.1016/0305-0548(95)00032-1.

22 Michiel A Odijk. A constraint generation algorithm for the construction of periodic railway
timetables. Transportation Research Part B: Methodological, 30(6):455–464, 1996.

23 Julius Pätzold and Anita Schöbel. A Matching Approach for Periodic Timetabling. In ATMOS’
16, volume 54 of OASICS, pages 1:1–1:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016.

24 Peter Sanders and Christian Schulz. Think Locally, Act Globally: Highly Balanced Graph
Partitioning. In Proceedings of the 12th International Symposium on Experimental Algorithms
(SEA’13), volume 7933 of LNCS, pages 164–175. Springer, 2013.

25 Aaron Schild and Christian Sommer. On Balanced Separators in Road Networks. In Evripidis
Bampis, editor, Experimental Algorithms - 14th International Symposium, SEA 2015, Paris,
France, June 29 - July 1, 2015, Proceedings, volume 9125 of Lecture Notes in Computer
Science, pages 286–297. Springer, 2015. doi:10.1007/978-3-319-20086-6_22.

26 Alexander Schrijver. Combinatorial Optimization – Polyhedra and Efficiency. Springer, 2003.
27 Paolo Serafini and Walter Ukovich. A mathematical model for periodic scheduling problems.

SIAM Journal on Discrete Mathematics, 2(4):550–581, 1989.

A Maximum Cut MIP Formulation

I Lemma 14. Let G = (V ,A) and c be as constructed in Section 3.2. A cut S in G

maximizing c(δ+(S)) is computed by the following mixed integer linear program:

Maximize
∑
ij∈A

cijxij

s.t. xij ≤ zi, ij ∈ A,
xij ≤ 1− zj , ij ∈ A,
xij ≥ zi − zj , ij ∈ A : cij < 0,

0 ≤ xij ≤ 1, ij ∈ A,
zi ∈ {0, 1}, i ∈ V .

Here, the variables zi with zi = 1 will define the set S.

Proof. Let (x∗, z∗) be an optimal solution to the above program. Set S := {i ∈ V | z∗i = 1}.
If x∗ij = 1 for an arc ij ∈ A, then z∗i = 1 and z∗j = 0. On the other hand, z∗i = 1 and z∗j = 0
imply x∗ij ≥ 1 by the third constraint for arcs with negative cij and by maximization for
cij ≥ 0. i.e., S is a cut maximizing c(δ+(S)) =

∑
ij∈A cijx

∗
ij . Conversely, a maximum cut S∗

produces a feasible solution to the mixed integer program of the same cost. J

B Proofs of Separator MIP Formulations

Proof of Lemma 10. The constraints for the minimum cut are straightforward: A vertex
i lies in S iff zi = 1 and an edge ij lies in δ(S) iff xij = 1. We just prove the balance
constraints. In order to break symmetry, we can assume m(S) ≥ m(N)/2 = n/2, as m(S) is
larger than m(N \ S). Moreover, the condition m(S) ≤ α ·m(N \ S) directly translates to∑

i∈N
mizi ≤ α

∑
i∈N

mi(1− zi),

which is equivalent to

(1 + α)
∑
i∈N

mizi ≤ αn. J

https://doi.org/10.1016/0305-0548(95)00032-1
https://doi.org/10.1007/978-3-319-20086-6_22

N. Lindner and C. Liebchen 2:15

Proof of Lemma 12. We have zi = 1 iff i ∈ S, `ij = 1 iff ij has both endpoints in S (` for
“left”) and rij = 1 iff ij has no endpoint in S (r for “right”). The balance constraints are
straightforward. J

C Tables

Table 1 R1L1 separator statistics: The first column contains the type of the separator, the
imbalance α ∈ {1.05, 1.1, 1.2, 1.5} and the optimality gap. Further columns: n – number of vertices,
m – number of arcs, µ – cyclomatic number, w – weight, wfree – weight of all free arcs, w · (u− `) –
maximum possible weighted slack. Rows: original – R1L1 instance as in PESPlib, contracted – after
contraction of non-free arcs, left/right – parts of the separator, cut – subgraph induced by the arcs
connecting left and right.

R1L1 part n m µ w wfree w · (u− `)

original 3 664 6 385 2 722 47 172 734 2 057 406 239 600 328
contracted 106 2 230

vertex left 1 876 2 927 1 052 33 725 970 1 481 768 170 793 125
1.05 right 1 788 2 058 273 12 925 650 54 524 38 061 477
0.0% cut 1 045 1 400 516 521 114 521 114 30 745 726

vertex left 1 918 2 990 1 073 34 412 455 1 503 621 173 692 394
1.1 right 1 746 2 004 261 12 255 217 48 723 36 109 276
0.0% cut 1 055 1 391 499 505 062 505 062 29 798 658

vertex left 1 996 3 205 1 210 34 847 351 1 541 460 176 996 909
1.2 right 1 668 1 870 205 11 852 913 43 476 34 727 689
0.0% cut 1 012 1 310 459 472 470 472 470 27 875 730

vertex left 2 198 3 609 1 412 37 061 606 1 637 281 188 155 216
1.5 right 1 466 1 598 136 9 719 139 28 136 28 317 761
0.0% cut 969 1 178 366 391 989 391 989 23 127 351

cycle left 1 700 2 429 730 28 474 222 1 123 356 136 712 178
1.05 right 1 964 2 663 700 18 025 146 260 684 63 159 556
33.5% cut 949 1 293 491 673 366 673 366 39 728 594

cycle left 1 676 2 406 731 28 180 248 1 120 386 135 658 006
1.1 right 1 988 2 718 731 18 312 779 257 313 63 839 609
34.2% cut 967 1 261 447 679 707 679 707 40 102 713

cycle left 1 754 2 535 782 29 076 540 1 163 077 140 590 992
1.2 right 1 910 2 562 653 17 441 343 239 478 60 373 127
36.3% cut 979 1 288 466 654 851 654 851 38 636 209

cycle left 1 926 2 807 882 30 359 130 1 202 889 146 190 635
1.5 right 1 738 2 327 590 16 188 820 229 733 56 547 437
26.2% cut 955 1 251 447 624 784 624 784 36 862 256

ATMOS 2019

2:16 New Perspectives on PESP: T -Partitions and Separators

Table 2 R1L1 objective values: Primal obj value – weighted slack of best found timetable, free %
– contribution of free arcs to weighted slack, dual obj value – best lower bound, gap % – optimality
gap. Rows: left, right, cut – as in Table 1, combined – optimal combination of partial timetables
(primal) resp. sum of lower bounds (dual). The optimality gaps in the row combined are measured
w.r.t. the best primal objective value, i.e., of the original instance.

primal average weighted slack dual

R1L1 part obj value free % total free non-free obj value gap %

original 30 861 021 87.68% 0.65 13.15 0.08 16 868 573 45.34%

vertex left 24 894 427 88.26% 0.74 14.83 0.09 13 949 001 43.97%
1.05 right 409 562 100.00% 0.03 7.51 0.00 358 120 12.56%

cut 14 322 886 100.00% 27.49 27.49 – 0 –
combined 39 626 875 92.62% 0.84 17.84 0.06 14 307 121 53.64%

vertex left 23 376 399 87.01% 0.68 13.53 0.09 14 106 622 39.65%
1.1 right 340 302 100.00% 0.03 6.98 0.00 295 224 13.25%

cut 13 885 806 100.00% 27.49 27.49 – 0 –
combined 37 602 507 91.92% 0.80 16.80 0.07 14 401 846 53.33%

vertex left 22 842 193 86.11% 0.66 12.76 0.10 14 327 640 37.28%
1.2 right 297 141 100.00% 0.03 6.83 0.00 256 629 13.63%

cut 12 879 922 100.00% 27.26 27.26 – 0 –
combined 36 019 256 91.19% 0.76 15.97 0.07 14 584 269 52.74%

vertex left 24 857 603 86.79% 0.67 13.18 0.09 15 068 169 39.38%
1.5 right 149 989 100.00% 0.02 5.33 0.00 143 362 4.42%

cut 10 258 139 100.00% 26.17 26.17 – 0 –
combined 35 265 731 90.69% 0.75 15.55 0.07 15 211 531 50.71%

cycle left 16 382 907 85.07% 0.58 12.41 0.09 10 189 253 37.81%
1.05 right 3 193 192 89.61% 0.18 10.98 0.02 2 608 782 18.30%

cut 18 264 680 100.00% 27.12 27.12 – 0 –
combined 37 840 779 92.66% 0.80 17.04 0.06 12 798 035 58.53%

cycle left 3 288 791 91.72% 0.18 11.72 0.02 2 482 699 24.51%
1.1 right 14 370 669 84.62% 0.51 10.85 0.08 10 110 491 29.64%

cut 18 033 828 100.00% 26.53 26.53 – 0 –
combined 35 693 288 93.04% 0.76 16.14 0.06 12 593 190 59.19%

cycle left 15 029 848 86.12% 0.52 11.13 0.07 10 518 964 30.01%
1.2 right 2 985 689 89.43% 0.17 11.15 0.02 2 341 735 21.57%

cut 16 653 876 100.00% 25.43 25.43 – 0 –
combined 34 669 413 93.07% 0.73 15.68 0.05 12 860 699 58.33%

cycle left 15 523 603 84.57% 0.51 10.91 0.08 10 809 272 30.37%
1.5 right 2 862 115 90.82% 0.18 11.31 0.02 2 218 792 22.48%

cut 16 932 910 100.00% 27.10 27.10 – 0 –
combined 35 318 628 92.47% 0.75 15.87 0.06 13 028 064 57.78%

N. Lindner and C. Liebchen 2:17

Table 3 R4L4 separator statistics: See Table 1 for a legend.

R4L4 part n m µ w wfree w · (u− `)

original 8 384 17 754 9 371 65 495 305 2 219 558 297 194 946
contracted 265 8 257

vertex left 4 286 8 190 3 905 35 754 908 1 013 074 151 098 512
1.05 right 4 098 6 453 2 356 29 169 656 635 743 112 422 715
70.5% cut 1 915 3 111 1 424 570 741 570 741 33 673 719

vertex left 4 386 8 402 4 017 36 179 480 1 032 288 153 439 283
1.1 right 3 998 6 261 2 264 28 748 028 619 473 110 255 640
72.4% cut 1 891 3 091 1 419 567 797 567 797 33 500 023

vertex left 4 572 8 766 4 195 37 645 797 1 076 741 159 615 340
1.2 right 3 812 5 849 2 038 27 282 163 575 472 104 106 251
75.1% cut 1 939 3 139 1 424 567 345 567 345 33 473 355

vertex left 5 030 9 878 4 849 41 451 476 1 252 913 180 683 746
1.5 right 3 354 4 991 1 640 23 501 054 423 870 84 487 475
73.2% cut 1 826 2 885 1 273 542 775 542 775 32 023 725

cycle left 4 086 7 093 3 008 33 052 401 863 684 133 516 192
1.05 right 4 298 7 204 2 907 31 792 978 705 948 125 333 120
86.0% cut 2 097 3 457 1 596 649 926 649 926 38 345 634

cycle left 4 796 7 941 3 146 34 722 846 824 356 138 016 435
1.1 right 3 588 6 566 2 979 30 170 267 793 010 123 649 183
84.1% cut 1 898 3 247 1 560 602 192 602 192 35 529 328

cycle left 4 918 8 268 3 351 36 200 384 879 816 144 508 303
1.2 right 3 466 6 265 2 800 28 684 198 729 019 116 653 986
84.8% cut 1 863 3 221 1 574 610 723 610 723 36 032 657

cycle left 5 098 8 891 3 794 38 255 730 951 766 154 792 427
1.5 right 3 286 5 819 2 534 26 665 459 693 676 108 529 675
87.3% cut 1 756 3 044 1 490 574 116 574 116 33 872 844

ATMOS 2019

2:18 New Perspectives on PESP: T -Partitions and Separators

Table 4 R4L4 objective values: See Table 2 for a legend.

primal average weighted slack dual

R4L4 part obj value free % total free non-free obj value gap %

original 40 706 349 94.69% 0.62 17.37 0.03 10 968 394 73.05%

vertex left 15 887 937 94.18% 0.44 14.77 0.03 6 074 517 61.77%
1.05 right 10 180 187 95.79% 0.35 15.34 0.02 5 248 237 48.45%

cut 15 936 993 100.00% 27.92 27.92 – 0 –
combined 42 005 117 96.78% 0.64 18.32 0.02 11 322 754 72.18%

vertex left 16 630 820 94.15% 0.46 15.17 0.03 6 025 103 63.77%
1.1 right 9 608 412 93.71% 0.33 14.53 0.02 5 141 257 46.49%

cut 15 855 247 100.00% 27.92 27.92 – 0 –
combined 42 094 479 96.25% 0.64 18.25 0.02 11 166 360 72.57%

vertex left 16 923 159 94.45% 0.45 14.85 0.03 6 153 882 63.64%
1.2 right 8 133 392 89.08% 0.30 12.59 0.03 4 994 591 38.59%

cut 16 173 885 100.00% 28.51 28.51 – 0 –
combined 41 230 436 95.57% 0.63 17.75 0.03 11 148 473 72.61%

vertex left 20 449 436 90.50% 0.49 14.77 0.05 6 441 593 68.50%
1.5 right 6 120 307 92.89% 0.26 13.41 0.02 3 880 625 36.59%

cut 15 245 750 100.00% 28.09 28.09 – 0 –
combined 41 815 493 94.31% 0.64 17.77 0.04 10 322 218 74.64%

cycle left 12 822 538 93.21% 0.39 13.84 0.03 5 948 343 53.61%
1.05 right 11 145 363 94.12% 0.35 14.86 0.02 5 480 625 50.83%

cut 18 328 779 100.00% 28.20 28.20 – 0 –
combined 42 296 680 96.39% 0.65 18.37 0.02 11 428 968 71.92%

cycle left 13 982 046 95.43% 0.40 16.19 0.02 5 736 502 58.97%
1.1 right 11 580 126 89.07% 0.38 13.01 0.04 5 460 355 52.85%

cut 16 928 374 100.00% 28.11 28.11 – 0 –
combined 42 490 546 95.52% 0.65 18.29 0.03 11 196 857 72.49%

cycle left 14 648 967 94.74% 0.40 15.77 0.02 5 823 535 60.25%
1.2 right 10 313 092 86.04% 0.36 12.17 0.05 5 307 285 48.54%

cut 17 130 851 100.00% 28.05 28.05 – 0 –
combined 42 092 910 94.75% 0.64 17.97 0.03 11 130 820 72.66%

cycle left 16 400 078 95.60% 0.43 16.47 0.02 6 183 490 62.30%
1.5 right 9 274 273 85.59% 0.35 11.44 0.05 5 051 562 45.53%

cut 15 985 667 100.00% 27.84 27.84 – 0 –
combined 41 660 018 95.06% 0.64 17.84 0.03 11 235 052 72.40%

	Introduction
	Periodic Event Scheduling
	T-Partitions
	Timetables and Partitions
	Delay Cuts

	Graph Separators
	Vertex-balanced Separators
	Cycle-balanced Separators
	Combining Partial Solutions

	Experiments
	Set-up
	Separator Statistics
	Objective Values

	Conclusions
	Maximum Cut MIP Formulation
	Proofs of Separator MIP Formulations
	Tables

