
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

KAI HELGE BECKER, BENJAMIN HILLER

Improved optimization models for
potential-driven network flow problems

via ASTS orientations

This research was partly funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – The
Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689) and partly carried out in the framework of MATHEON supported by the Einstein
Foundation Berlin. Moreover, the authors thank the BMBF Research Campus Modal (fund number 05M14ZAM) for additional support.

ZIB Report 19-58 (December 2019)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Improved optimization models for
potential-driven network flow problems via ASTS

orientations∗

Kai Helge Becker Benjamin Hiller

March 1, 2020

Abstract
The class of potential-driven network flow problems provides impor-

tant models for a range of infrastructure networks. For real-world ap-
plications, they need to be combined with integer models for switching
certain network elements, giving rise to hard-to-solve MINLPs. We ob-
serve that on large-scale real-world meshed networks the relaxations usu-
ally employed are rather weak due to cycles in the network. To address
this situation, we introduce the concept of ASTS orientations, a gener-
alization of bipolar orientations, as a combinatorial relaxation of feasible
solutions of potential-driven flow problems, study their structure, and
show how they can be used to strengthen existing relaxations and thus
provide improved optimization models. Our computational results indi-
cate that ASTS orientations can be used to derive much stronger bounds
on the flow variables than existing bound tightening methods. We also
show that our proposed model extensions yield significant performance
improvements for an existing state-of-the-art MILP model for large-scale
gas networks.

1 Introduction
Network operators for utility and infrastructure networks face difficult planning
and operational problems [BGS09, GHHV12, KHPS15, GMSS18]. Due to regu-
lation and increasing cost pressure, but also due to the availability of powerful
solvers, modern optimization methods are more and more applied to reduce
cost and to improve the quality of planning and operation. The complexity of
the considered optimization problems increases for several reasons, for instance
because geographically bigger networks are considered or the detail level is in-
creased. For instance, realistic network models for parts of the German gas
network have more than 4000 nodes and almost 4500 arcs [SAB+17]. For net-
works of this size, providing globally optimal solutions or at least good bounds
for assessing solution quality is still a big challenge [GMSS18].

A key submodel for infrastructure networks for fluids, e.g., water and gas [Rag13,
DLWB15, GHHV12], is the so-called potential-driven nonlinear network flow

∗This paper extends the work presented in the working papers [HB18, BH18].

1

problem. This problem features a so-called potential πu for each node u ∈ V ,
and the flow qa of an arc a ∈ A is related to the difference of the potential of its
end nodes via an arc-specific potential loss function φa. Formally, the potential-
driven network flow problem for a digraph D = (V,A), supply vector qnom, and
bounds on the flow qa and potential πu is given by

min cT(q, π, s) (1a)

qnom
v +

∑
a=uv∈A

qa −
∑

a=vu∈A

qa = 0 for all v ∈ V, (1b)

πu − πv = φa(qa) for all a ∈ A, (1c)
qa ≤ qa ≤ qa for all a ∈ A, (1d)
πu ≤ πu ≤ πu for all u ∈ V. (1e)

An important property of this model is that the flow is always directed from
higher to lower potential, i.e., the potentials induce an acylic orientation of the
arcs. In other words: The network arising from a feasible flow by orienting each
network arc in the direction of the flow over this arc contains no directed cycle.

This property is only implicit in the model for potential-driven network flows,
i.e., it is not represented by an explicit constraint, but follows from the interplay
of flow conservation and potential loss along an arc. Therefore, it is not reflected
in the relaxations used to solve these nonlinear noncovex optimization problems.
This is discussed in more detail in [HB18].

Our contribution This paper proposes to use the discrete structure arising
from the combination of flow conservation and an acyclicity requirement for
the flow to strengthen MINLP models and their relaxations that arise from
potential-driven network flow problems. These strengthened models are par-
ticularly valuable when using global optimization methods on large networks.
To this end, we introduce a combinatorial abstraction of feasible flows we call
ASTS orientation. This combinatorial structure is implicit in otherwise purely
continuous nonconvex models. Hence our approach enables to exploit the power
of discrete global optimization techniques in this context. As real networks con-
tain additional network elements that do not necessarily fit the potential-driven
network flow framework, we consider a generic MINLP featuring the potential-
driven network flow problem as a submodel. Moreover, we consider not only
fixed demand vectors, but intervals for the demand at each source/sink. This
is useful for situations where the demand is not fully fixed, e.g., due to mixing
of gas qualities [GMSS15]. Moreover, this may be applied to analyze the differ-
ence in flow directions if large classes of demand vectors are possible [HHH+15].
We provide an analysis of the structure of ASTS orientations and outline sev-
eral ways to algorithmically exploit this structure. Our computational results
indicate that this is very useful to tackle large-scale real-world networks.

Related work Potential-driven network flow problems have been considered
at least since the 1970s [Mau77, CCH+78] and are relevant for a variety of
applications areas [HJ84]. Although pure potential-driven network flow prob-
lems (1) are nonconvex NLPs, their special structure enables the development
of efficient solution techniques [CCH+78, VMC15]. For network design prob-
lems, binary variables for enabling/disabling network elements are introduced,

2

yielding MINLPs that are NP-hard [GPS+19] and significantly harder to solve
in practice [Rag13, HF13]. The same holds when the problem is extended by
models for further (switchable) network elements to model network operation
in detail [PFG+15, KHPS15, GMSS18].

For the case of the potential network flow problem (1) with potential loss
function φa(qa) = caqa|qa|, knowing the flow directions for all arcs enables the
use of algebraic methods to e.g., solve certain stochastic optimization variants of
the problem [GHHS16, GNS17]. Moreover, in many relevant cases the function
describing the potential difference between two nodes is convex and fixed flow
directions result in convex MINLP problems [Rag13]. Exploiting the structural
results presented here in enumerating ASTS orientations [BH18] will support
these lines of research.

To the best of our knowledge, there have been no attempts to exploit the
acyclicity property as is done in this paper.

2 General model for potential-driven network
flow problems

This section introduces the general model for potential-driven network flow
problems that this paper is concerned with and provides some basic notation.

Let G = (V,E) be a graph that represents the pipelines and other elements
of the network the flow on which we seek to optimize. For the purpose of
formulating our MINLP model we define D = (V,A) to be the digraph arising
by replacing each edge e = {u, v} by a forward arc a+

e = uv and a backward
arc a−e = vu, i.e., A = {a+

e , a
−
e | e ∈ E}. (We note that the theory developed

in this paper also applies to multigraphs and multidigraphs, i.e., for networks
with parallel pipelines, but for ease of notation and language we will speak of
graphs and digraphs in the following.) We denote the arc set induced by an edge
set E′ ⊆ E by A[E′] := {a ∈ {a+

e , a
−
e } | e ∈ E′}. Analogously, we define the

set E[A′] to be the edges corresponding to a set of arcs A′. To model network
elements occuring in applications, we assume the edge set E is a partition of
sets of potential-decreasing edges Edec, potential-maintaining edges Emnt, and
generic edges Egen. The operation of the potential-increasing and generic edges
is described by feasible sets F dec

e , F gen
e ⊆ R4

≥0, that relate the feasible values
of the inlet potentials πu, the outlet potentials πv and the flows qa+

e
, qa−e

on
the arcs a+

e , a−e for e ∈ Edec. The feasible sets F dec
e for e = {u, v} ∈ Edec are

characterised by

F dec
e ⊆ {(πu, πv, qa+

e
, qa−e

) ∈ R4
≥0 | qa+

e
− qa−e

> 0 =⇒ πu > πv,

qa+
e
− qa−e

< 0 =⇒ πu < πv}. (2)

For generic edges, there are no assumptions about the feasible set F gen
e . Hence

they cover all network elements not fitting our framework of potential-decreasing
and -maintaining elements, e.g., compressors in gas networks or pumps in water
networks. Potential-maintaining edges may be closed or open valves. In the
open state the potential at their ends is equal, whereas in the closed state the
flow is zero.

In practical applications the vast majority of edges is typically in Edec and
represents pipelines that can be modelled by a non-linear potential-loss function

3

φe : R→ R based on the edge flow qe := qa+
e
− qa−e

with

φe(qe) > 0 ⇐⇒ qe > 0,
φe(qe) < 0 ⇐⇒ qe < 0,
φe(qe) = 0 ⇐⇒ qe = 0,

in which case the feasible set for edge e = {u, v} is given by

F dec
e = {(πu, πv, qa+

e
, qa−e

) ∈ R4
≥0 | πu − πv = φe(qa+

e
− qa−e

)}.

The variables in our model are given by the flows qa ∈ R≥0 on the arcs a ∈ A,
the flows qu ∈ R into and out of the nodes u ∈ V , representing sources and sinks,
the potentials πu ∈ R≥0 at the nodes u ∈ V , and variables se ∈ {0, 1} that
indicate whether a potential-maintaining edge e ∈ Emnt is open or closed. We
also include upper and lower bounds for flows on arcs, flows into and out of nodes
and the potentials at nodes, namely qa, qa

, qu, qu
, πu, and πu, respectively.

This means in particular that in contrast to the models typically discussed in
the literature we allow for nodes with flexible demands (i.e., nodes are not
necessarily predetermined as sources or sinks with a given in- or out-flow) and
develop our theoretical framework in the following sections accordingly.

The (linear) costs in our MINLP are represented by a cost vector c ∈
R|V |+|A|+|V |+|Emnt| that models the costs for flows in and out of a node, costs
for flows along arcs, costs related to the potential at each node, and costs
for opening or closing an edge in Emnt. When required we will call a cycle
(u0, u1, . . . , un, u0), u0, u1, . . . , un ∈ V , a negative-cost cycle if

∑n−1
i=0 cuiui+1 +

cunu0 < 0, quiui+1 > 0 for all i = 0, 1, . . . , n − 1, and qunu0 > 0. As each edge
of the network is modelled by a forward and a backward arc in our MINLP,
there may be solutions in which the model sends a flow through an edge in both
directions. To exclude this unrealistic case for optimal solutions, we make the
assumption throughout the paper that the cost vector is such that there are no
negative 2-cycles, i.e. for all edges e ∈ E if ca+

e
+ ca−e

< 0 then qa+
e

= 0 or
qa−e

= 0.
On this basis, our MINLP looks as follows:

min cT (q, π, s) (3a)

s. t. qv +
∑

a=uv∈A

qa −
∑

a=vu∈A

qa = 0 for all v ∈ V, (3b)

(πu, πv, qa+
e
, qa−e

) ∈ F dec
e for all e ∈ Edec, (3c)

(πu, πv, qa+
e
, qa−e

) ∈ F gen
e for all e ∈ Egen, (3d)

se = 0 =⇒ qa+
e

= qa−e
= 0 for all e ∈ Emnt, (3e)

se = 1 =⇒ πu = πv for all e = {u, v} ∈ Emnt, (3f)
se ∈ {0, 1} for all e ∈ Emnt, (3g)

q
v
≤ qv ≤ qv for all v ∈ V, (3h)

0 ≤ q
a
≤ qa ≤ qa for all a ∈ A, (3i)

0 ≤ πv ≤ πv ≤ πv for all v ∈ V. (3j)

The flow part q of a MINLP solution (q, π, s) naturally induces a digraphD(E′, q) :=
(V,A(q)) for any edge subset E′ ⊆ E of the underlying graph G via

A(q) := {a ∈ A[E′] | qa > 0}. (4)

4

We say that the solution is cyclic if D(E′, q) contains a cycle and acyclic oth-
erwise. Observe that an arc with qa = 0 is never in a cycle.

3 ASTS-orientations and their basic properties
We now define the theoretical concept that is central to this paper. It captures
the discrete structure that arises from the combination of the flow conservation
constraint and the acyclicity that follows from the fact that flow is always di-
rected from higher to lower potential. Recall that an orientation of an underlying
graph G = (V,E) is a digraph D̃ = (V, Ã) with E = {{u, v} ∈ V × V | uv ∈ Ã}
and uv ∈ Ã ⇐⇒ vu /∈ Ã for all u, v ∈ V .

Definition 1 Let D̃ = (V, Ã) be a digraph with an underlying graph G, with
V+, V−, VT (V being disjoint sets of “sources”, “sinks” and “transhipment
nodes”, respectively. We call the nodes in VF := V − V+ − V− − VT “free
nodes”. A node u ∈ V is said to satisfy the source-transhipment-sink-condition
(STS-condition) with respect to (V+, V−, VT , VF) if

(i) u ∈ V+ and there exists an arc a = uv ∈ Ã, or

(ii) u ∈ V− and there exists an arc a = vu ∈ Ã, or

(iii) u ∈ VT and there exist arcs a1 = vu, a2 = uw ∈ Ã, or

(iv) u ∈ VF .

If all nodes u ∈ V satisfy the STS-condition and D̃ is acyclic, D̃ is called an
ASTS-orientation of G with respect to (V+, V−, VT , VF), and G is said to have
an ASTS-orientation.

A subgraph G0 = (V0, E0) of G is said to have an ASTS-orientation with
respect to (V+, V−, VT , VF) if there exists an orientation D̃0 of G0 such that
D̃0 = (V0, Ã0) is an ASTS-orientation of G0 with respect to (V+ ∩ V0, V− ∩
V0, VT ∩ V0, VF ∩ V0). 2

Note that ASTS-orientations are a generalization of bipolar orientations (see
e.g., [dFOdMR95] for the concept of bipolar orientations). Moreover, there
exists a bijection between the set of all ASTS-orientations of a graph G with
VF = ∅ and the bipolar orientations of the extended graph that arises from
adding to G a "supersource" s that is adjacent to all sources, a "supersink" t
that is adjacent to all sinks, and an edge {s, t}.

The following theorem characterizes graphs that allow for an ASTS-orientation.

Theorem 1 Let G = (V,E) be a graph with node set V , V+ (V , V− (V and
VT (V disjoint sets of sources, sinks and transhipment nodes, respectively, and
VF := V − V+ − V− − VT the set of free nodes.

Then the following four statements are equivalent:

(i) G has an ASTS-orientation D̃ = (V, Ã) with respect to (V+, V−, VT , VF).

(ii) (path characterization) Every node u ∈ V is on a path from a source or a
free node to a sink or a free node.

5

(iii) (block characterization) All components of G contain at least two free
nodes or two out of the three node types “source”, “sink” and “free node”,
and the leaves of the block tree of each of the components of G correspond
to blocks that have a source, sink or free node other than the cut vertex of
the block.

(iv) (completion characterization) There exists a subgraph of each component
of G that has an ASTS-orientation, and for every ASTS-orientation D̃0 =
(V0, Ã0) of some subgraph G0 = (V0, E0) of G there exists an orientation
Ã1 of the edges E \E0 such that D̃ = (V, Ã0 + Ã1) is an ASTS-orientation
of G with respect to (V+, V−, VT , VF). 2

Proof We will prove the theorem in the following order:

(i) =⇒ (ii) =⇒ (iii) =⇒ (ii) =⇒ (iv) =⇒ (i).

(i) =⇒ (ii) Let D̃ = (V, Ã) be an ASTS-orientation of G with respect to
(V+, V−, VT , VF). We choose a node u ∈ V . If u is a node without incoming
arcs, i.e., a source or a free node, we follow a directed path via outgoing arcs,
starting from V . As D̃ is acyclic we will not return to a node we have already
visited, and because G is finite, the directed path will end at a node that has no
outgoing arcs, i.e., a node that is a sink or a free node. Similarly, if u is a node
without outgoing arcs, i.e., a sink or a free node, we can follow a directed path
from u via incoming arcs until we find a source or a free node. If u is a node
with both outgoing and incoming arcs, we can construct one directed path to a
source or free node and another directed path to a sink and a free node, where
the acyclicity of D̃ ensures that the two paths are node-disjoint. Since we can
carry out this procedure for any node, all nodes are on a directed path from a
source or a free node to a sink or a free node. Now (ii) follows from considering
the graph underlying D̃.

(ii) =⇒ (iii) We show the contrapositive. Clearly, if G has components that
do not contain two free nodes or two out of the three node types “source”,
“sink” and “free node”, condition (ii) cannot be satisfied. Moreover, if a block
of a graph is a leaf of the block tree graph and all nodes other than the cut-node
of the block are transhipment nodes, a path from any of these nodes to a source,
sink or free node must contain the cut-node. Hence, no node of the block, except
possibly the cut-node itself, is on a path from a source or free node to a sink or
free node.

(iii) =⇒ (ii) Let u ∈ V be a node of G. W.l.o.g. we will assume that u is
in a component with a source and a sink and show that u is on a path from
a source to a sink.1 Now if u is a source (sink) itself, it is clearly on a path
from a source to a sink as it is connected with the sink (source) that exists in
its component of G. Therefore, in the following let u be neither a source nor a
sink. We distinguish between three cases.

1If u is in a component with a source, a free node and no sink, or in a component with
a sink, a free node and no source, or in a component with no sources, no sinks and two free
nodes, the same line of argument will work to show that u is on a path from a source to a free
node, or on a path from a free node to a sink, or on a path from a free node to a free node,
respectively.

6

Case 1: The node u is in a block of G that has both a source and a
sink. By virtue of the 2-connectedness of the block there exist two internally
disjoint paths from u to a source and two internally disjoint paths from u to a
sink. As a consequence, u must be on a path from a source to a sink.
Case 2: The node u is in a block that has either a source or a sink.
We assume w.l.o.g. that the block has a source. If the block is a leaf of the block
tree graph of G, the source is not the cut-node of the block due to condition (iii).
If the block is not a leaf of the block tree graph, we will assume for the moment
that the source is not a cut-node of the block. Now, since each component of
G has a source and a sink, the block must have a cut-node that is connected
with a sink in a different block. Then, due to the 2-connectedness of blocks,
there exist two internally disjoint paths from u to the source and from u via the
cut-node to the sink, with the latter being the case only if u is not the cut-node
itself. In either case u is on a path from a source to a sink.
Now let us consider the case where our block is not a leaf of the block tree graph
and the source is a cut-node of our block. Then the block contains at least two
cut-nodes and one of the other cut-nodes of the block must be providing us
with a path to a source or a sink in a further block, otherwise the block tree
graph of G would have a leaf without source or sink. If the cut-nodes provide
us with a path to a sink, there clearly exists, again due to the 2-connectedness
of blocks, a path from the block’s source to a sink that passes through u. If the
cut-nodes only provide us with a path to another source, there must be another
sink in a block that is accessible via the cut-node that is a source, otherwise the
component that u is a node of would not have a sink. As a consequence, u is
again on a path from a source to a sink.
Case 3: The node u is in a block without source and sink. Then u
cannot be in a block that is a leaf of the block tree graph and therefore the
block in which u is located contains at least two cut-nodes (one of which may
be u itself). All cut-nodes must be on a path from u to a source or from u
to a sink, otherwise the block tree graph of G would have a leaf without both
source and sink. Moreover, due to the fact that all components of G have both
a source and a sink, one of the cut-nodes must be on a path from u to a source
and a different cut-node must be on a path from u to a sink. As a consequence,
since a block is 2-connected, u must be on a path from a source to a sink.

(ii) =⇒ (iv) By assumption every node is on a path from a source or free
node to a sink or free node. Clearly, by orienting one such path from the source
or the free node to a sink or the free node, we obtain an ASTS-orientation of a
subgraph of G. Now let D̃0 = (Ã0, V0) be any ASTS-orientation of some proper
subgraph of G. We will procede in two steps.
In the first step we will extend D̃0 to an ASTS-oriented digraph whose under-
lying graph is still G and that contains all sources, sinks and free nodes in V ,
provided the latter is not the case yet. In the second step we will show that,
provided the graph underlying our ASTS-oriented digraph contains all sources,
sinks and free nodes is a proper subgraph of G, we can always find a path
on the remaining unoriented edge set of G that can be oriented to provide a
larger ASTS-oriented digraph. Statement (iv) then follows by induction on the
remaining unoriented edge set.

7

Step 1 For each component of G all edges of which are in E − E0 we enlarge
the digraph D̃0 by connecting, with the sinks in their components (or free nodes
in their components, if there is no sink in a certain component), all sources that
are not yet in the node set of our digraph, using directed paths whose internal
nodes are not in the node set of our digraph either. The prodecure is as follows:
for each source, we take an arbitrary path on G from the source to a sink (or
to a free node, if necessary), which is possible due to (ii), and orient, into the
direction away form the source, either the subpath from the source to the first
node of the existing digraph or, if this is not possible because none of the nodes
of the path is on the digraph, the entire path from the source to a sink (or to a
free node, if necessary). In a similar fashion we add all remaining sinks to our
digraph: by orienting edges that connect these sinks to the closest node of our
existing digraph or by directly connecting them with a source (or a free node, if
there is no source in the component). Finally, we add all remaining free nodes
to our digraph: if a component has a source or a sink, we can orient the edges
on a path to the nearest node on our digraph arbitrarily, either away from the
free node or towards the free node. If a component has neither a source or a
sink, we choose two free nodes, connect one with a directed path to the other,
and connect the remaining free nodes to an existing node of our digraph in an
arbitrary fashion, either away from the free node or towards it. The resulting
enlarged digraph has an underlying graph that is a subgraph of G, has a node
set that includes all sources, sinks and free nodes of G, and is ASTS-oriented
(note that we did not create any directed cycle because we did not connect any
two nodes that were already in the node set of our digraph).
Step 2 We will now show that given an ASTS-oriented digraph D̃0 with an
underlying proper subgraph G0 of G and with a node set that includes all
sources, sinks and free nodes of G, we can always find a path P with edges from
E −E0, with distinct endnodes in V0, and with all other nodes being in V − V0
that can be oriented such that the digraph that arises from adding the oriented
path to D̃0 again yields an ASTS-oriented digraph.
We pick an arbitrary edge from E−E0. If both endnodes of this edge are in V0,
this edge is our path P . Otherwise, we extend this edge to a path by adding
edges from E − E0 until we have a path P with two distinct endnodes both of
which are in V0. This is always possible because of (ii) and since all sources,
sinks and free nodes are in V0 according to the construction in Step 1. We denote
the endnodes of P by u, v ∈ V0 and the inner nodes of P by V ′ ⊆ V − V0.
We now orient P as a directed path, i.e. from one endnode to the other such
that each internal node of the path is both head and tail of an arc, and denote
the arcs of the directed path by Ã′. For constructing our orientation we observe
that, as D̃0 is acyclic and u and v are nodes of D̃0, there is
(a) no directed path on D̃0 from u to v and no directed path from v to u, or
(b) there is a directed path from u to v, but not from v to u, or
(c) there is a directed path from v to u, but not from u to v.
In case (a) we choose an arbitrary orientation for our directed path. In cases (b)
and (c) we orient the path such that it has the same orientation as the existing
path. As a consequence the orientation D̃′ = (V0 ∪ V ′, Ã0 ∪ Ã′) that results
from adding the arcs and nodes of the directed path to D̃0 will be acyclic,
too. (Note that by construction of P , only the endnodes of P are in V0, and

8

therefore orienting P cannot create any cycle containing an internal node of P .)
As the STS-condition is already satisfied at the endnodes u, v ∈ V0 and we
have oriented the path P to form a directed path, the inner nodes of the path
and hence the digraph D̃′ altogether also satisfy the STS-condition. Hence the
resulting digraph D̃′ = (V0 ∪ V ′, Ã0 ∪ Ã′) is ASTS-oriented.

(iv) =⇒ (i) This is trivially the case. �

We have seen in the previous theorem that not all graphs admit an ASTS-
orientation. The block characterization of Theorem 1 implies that even if a
graph does not have an ASTS-orientation, this may be the case for a subgraph.
This raises the question of whether we can find a maximal subgraph of a given
graph G that allows for an ASTS-orientation. Indeed, successively removing
blocks from G will lead to such a maximal subgraph.
Definition 2 Let C be the set of all components of a graph G = (V,E) with
node subsets (V+, V−, VT , VF). For a component C = (VC , EC) ∈ C let V 1

C ⊆ VC

be the set of the vertices of all blocks of C that are removed from C if we
sucessively remove those blocks that correspond to leaves of the block tree graph
of C without source, sink or free node other than the cut vertex of the block,
however without removing the cut vertices that connect these blocks with the
remaining graph. If the subgraph of C induced by (VC \ V 1

C) ∪ (VC ∩ V 1
C) is a

single block without at least two free nodes or two out of the three node types
“source”, “sink” and “free node”, we define V 2

C := VC \ V 1
C , otherwise V 2

C := ∅.
The set VC,out := V 1

C ∪V 2
C is called the outer vertex set of C, the set VC,in :=

(VC \VC,out)∪(VC∩VC,out) the inner vertex set of C, the set Vout :=
⋃

C∈C VC,out
the outer vertex set of G, and the set Vin :=

⋃
C∈C VC,in the inner vertex set of G.

We refer to the edge set induced by Vout as Eout ⊆ E and to the edge set induced
by Vin as Ein ⊆ E. Further let Ain := A[Ein] ⊆ A and Aout := A[Eout] ⊆ A be
the arc sets corresponding to the inner and outer edge sets, respectively. 2

This definition is justified by the following insight.
Corollary 1 Let G = (V,E) be a graph with node subsets (V+, V−, VT , VF) and
Vin and Vout the inner and outer vertex sets of G, respectively.
(i) There is no subgraph of G that contains a vertex from Vout \ V∈ and has

an ASTS-orientation with respect to (V+, V−, VT , VF).

(ii) The subgraph of G induced by Vin is the maximal subgraph of G to have
an ASTS-orientation with respect to (V+, V−, VT , VF). 2

Proof As no vertex in Vout is, by construction, on a path from a source or a
free node to a sink or a free node, statement (i) follows from the path characteri-
zation of Theorem 1. Statement (ii) follows from (i) by taking into account that
the subgraph induced by Vin has an ASTS-orientation according to the block
characterization of Theorem 1. �

4 ASTS orientations as combinatorial relaxations
for potential-driven network flow problems

In the following we will consider the relationship between ASTS-orientations
and the solutions of MINLP (3) on subsets A′ ⊆ A of the arc set. Addressing

9

the more general case of subsets A′ ⊆ A will allow for a more flexible application
of our theoretical framework. We may, for example, wish to disregard arcs in
A[Egen] due to their specific properties, or computational reasons may suggest
considering subgraphs of the original graph separately.

Definition 3 For a digraph D = (V,A) for MINLP (3) and a corresponding
inner vertex set Vin, an arc subset A′ ⊆ Ain is called a region. The vertex set
V ′ ⊆ V of the region is the vertex set induced by A′, i.e. V ′ := V [A′], and the
sources, sinks, transshipment nodes and free nodes of a region are given by:

qA′

v
:= q

v
+

∑
a=uv∈A\A′

q
a
−

∑
a=vu∈A\A′

qa, (5a)

qA′

v := qv +
∑

a=uv∈A\A′
qa −

∑
a=vu∈A\A′

q
a
, (5b)

V ′+ := {v ∈ V ′ | qA′

v
> 0}, (5c)

V ′− := {v ∈ V ′ | qA′

v < 0}, (5d)

V ′T := {v ∈ V ′ | qA′

v
= qA′

v = 0} and (5e)
V ′F := V ′ − V ′+ − V ′− − V ′T . (5f)

2

The following lemma justifies our definition of sources, sinks and transship-
ment nodes of a region by showing that these function as sources, sinks and
transshipment nodes for a region when considering the solutions of MINLP (3).

Lemma 1 Let G = (V,E) be a digraph for MINLP (3) and A′ a region with
sources, sinks, transshipment nodes and free nodes V ′+, V ′−, V ′T and V ′F , respec-
tively.

Then in any feasible solution (q, π, s) to MINLP (3)

(i) for all u ∈ V ′+ there exists an arc a = uv ∈ A′ with qa > 0 for some
v ∈ V ′,

(ii) for all u ∈ V ′− there exists an arc a = vu ∈ A′ with qa > 0 for some
v ∈ V ′, and

(iii) for all u ∈ V ′T there exists an arc a1 = vu ∈ A′ with qa1 > 0 for some
v ∈ V ′ iff there exists an arc a2 = uw ∈ A′ with qa2 > 0 for some w ∈ V ′.2

Proof Let u be in V ′+. With (5c), (5a) and the node demand bounds (3h) and
the flow bounds (3i), we obtain

0 < qA′

u
= q

u
+

∑
a=uv∈A\A′

q
a
−

∑
a=vu∈A\A′

qa

≤ qu +
∑

a=uv∈A\A′
qa −

∑
a=vu∈A\A′

qa,

which, due to the flow conservation (3b) is equal to

= −
∑

a=uv∈A′

qa +
∑

a=vu∈A′

qa.

10

Now statement (i) follows with qa ≥ 0 for all a ∈ A. Statement (ii) follows
analogously. For u ∈ V ′T we proceed from (5e) in the same fashion as above, but
once with (5a) and once with (5b). Using the node demand bounds (3h), the
flow bounds (3i) and the flow conservation (3b) we obtain two inequalities that
imply

∑
a=vu∈A′ qa =

∑
a=uv∈A′ qa. Then statement (iii) again follows from

qa ≥ 0 for all a ∈ A. �

We can now relate the solutions of MINLP (3) to the ASTS-orientations
on regions of the arc set. The following theorem shows that under suitable
conditions there exist ASTS-orientations that are compatible with the flow on
regions. This result provides the reason why studying ASTS-orientations is
useful when considering the potential-based network flow problem of MINLP (3).

Theorem 2 Let D = (V,A) be a digraph for MINLP (3), G = (V,E) be the
underlying graph, and Ain ⊆ A and Aout ⊆ A be the arc sets corresponding to
the inner and outer edges sets, respectively. Further, let A′ ⊂ Ain be a region
of D with vertex set V ′, sources V ′+, sinks V ′−, transshipment nodes V ′T and free
nodes V ′F , and let V ′in and V ′out be the inner and outer vertex sets of the region,
respectively, with corresponding arcs sets A′in and A′out. If

(a) Agen ∩ (A′ ∪Aout) = ∅ and

(b) [Amnt ∩ (A′ ∪ Aout)] \ {a ∈ A | qa = 0} does not contain a negative-cost
cycle

there exists for every solution (q, π, s) to MINLP (3) another solution to MINLP
(3) with the same or a lower objective function value such that

(i) qa = 0 for all a ∈ Aout ∪A′out,

(ii) for each component (VC , AC) of (V ′in, A′in), there exists an ASTS-orientation
D̃C = (VC , ÃC) of the corresponding underlying undirected component
(VC , EC) with respect to (V ′+ ∩ VC , V

′
− ∩ VC , V

′
T ∩ VC , V

′
F ∩ VC) with

a1 ∈ ÃC =⇒ (qa1 ≥ 0 and qa2 = 0) ∀e ∈ EC and {a1, a2} = {a+
e , a

−
e }.

(6)
2

Proof In a first step we consider all cycles in our solution (q, π, s), i.e., the
cycles in the digraph D(A′ ∪ Aout, q) induced by q. For cycles with length 2,
we can construct, due to our assumption about the cost function in Section
Section 2, a solution q′ to (3) with lower or equal objective function value such
that q′

a+
e

= 0 or q′
a−e

= 0 for all e ∈ E. Regarding cycles with length greater
than 2, if such a cycle is in A′ ∪ Aout, it does not contain any arc from Agen
by the assumptions of the present theorem. Due to property (2) of the feasible
set F dec

e and constraint (3c), the arcs on the cycle cannot contain arcs from
Adec either. Accordingly each arc on the cycle is in Amnt, which by assumption
does not contain any cycles with negative total cost. Therefore we can reduce
the flow along each cycle such that the flow on one arc of the cycle becomes 0,
without increasing the objective function value and without affecting feasibiliy
regarding the potential bounds, since flows on arcs in Amnt do not affect the

11

potential. As a consequence, this new solution q′′ to MINLP (3) is acyclic on
A′.

Second, by construction of Aout and of A′out, no node in Vout \ Vin and no
node in V ′out \ V ′in is on a path from a source or a free node to a sink or a free
node. Hence we can reduce the flows on arcs in Aout and on arcs in A′out to 0,
obtaining a solution q′′′ to MINLP (3) with lower or equal objective function
value for which statement (i) of the theorem holds. Note that q′′′ is still acyclic
on A′.

Third, let (VC , AC) be a component of (V ′in, A′in) and (VC , EC) its underlying
graph. Then (VC , EC) has an ASTS-orientation by construction of (V ′in, A′in) due
to Corollary 1. We consider the subgraph (V>0,C , E>0,C) of (VC , EC) defined
by the non-zero flows on the component (VC , AC), i.e.,

E>0,C := {e ∈ EC | ∃a ∈ {a+
e , a

−
e } : q′′′a > 0},

V>0,C := VC [E>0,C].

If V>0,C = ∅, any arbitrary ASTS-orientation of (VC , EC) trivially satisfies (6),
so let us assume V>0,C 6= ∅ for the remainder of this proof. Let D̃>0,C =
(V>0,C , Ã>0,C) := D(E>0,C , q

′′′) be the digraph induced by q′′′. Since q′′′
a+

e
=

0 or q′′′
a−e

= 0 for all e ∈ E the digraph D̃>0,C is in fact an orientation of
(V>0,C , E>0,C). We observe that (6) holds on the subgraph Ã>0,C . Moreover,
this orientation is certainly acylic as q′′′ is acyclic. For all v ∈ V>0,C ∩ V ′+,
Lemma 1 and (4) imply that v has an out-arc on Ã>0,C . Analogously Lemma 1
and (4) imply that all v ∈ V>0,C ∩ V ′− have in-arcs on Ã>0,C . Finally, it follows
from Lemma 1 and (4) that all v ∈ V>0,C ∩ V ′T have both out- and in-arcs on
Ã>0,C . Hence Ã>0,C is an ASTS-orientation of the subgraph (V>0,C , E>0,C)
with respect to

(V>0,C ∩ V ′+, V>0,C ∩ V ′−, V>0,C ∩ V ′T , V>0,C ∩ V ′F).

Fourth, as we know that (VC , EC) has an ASTS-orientation by construction
of (V ′in, A′in) and we have just constructed an ASTS-orientation on the sub-
graph (V>0,C , E>0,C) of (VC , EC), we can extend this orientation to an ASTS-
orientation (VC , ÃC) of (VC , EC) with respect to

(VC ∩ V ′+, VC ∩ V ′−, VC ∩ V ′T , VC ∩ V ′F)

due to the completion characterization of Theorem 1. Since qa+
e

= qa−e
= 0 for

all edges e ∈ EC \E>0,C , i.e., the edges oriented during this extension process,
(6) now holds on all of (VC , ÃC). �

Remark 1 The previous Theorem has shown that under suitable conditions
every solution to MINLP (3) corresponds to an ASTS-orientation. Clearly, the
converse is not true since node, flow or potential bounds may prevent an ASTS-
orientation from having a corresponding solution to MINLP (3). 2

5 Decomposition results for ASTS orientations
The graphs underlying network optimization problems are often highly struc-
tured. In this section we explore various ways to exploit structure to describe the

12

set of ASTS orientations for a large region of the network by the sets of ASTS
orientations for smaller regions. This is useful algorithmically as the number
of ASTS orientations and hence the computational effort to handle them grows
exponentially2 with the number of arcs involved.

5.1 Decomposition based on pre-oriented edges
Computational results on real-world data indicate that the flow direction for a
large share of the edges can be determined using standard preprocessing tech-
niques. This suggests to consider ASTS orientations for the remaining edges
only. To study this, we need some further concepts.

Definition 4 Let G = (V,E) be a graph and −→A ⊆ A[E] be orientations for a
given subset (i.e., a1 = uv ∈

−→
A =⇒ 6 ∃a2 = vu ∈

−→
A). The graph G0 = (V 0, E0)

that arises from removing the oriented edges from G, i.e., E0 := E \ E[−→A],
V 0 := V [E0], is called the residual graph of G with respect to −→A . We denote the
components of G0 by Gi = (Vi, Ei). The set of nodes Vi in Vi that are incident
to arcs in −→A , i.e., the set

Vi := {u ∈ Vi | ∃a = uv ∈
−→
A or ∃a = vu ∈

−→
A}, (7)

is called the boundary of the component Gi. An orientation D̃i = (Vi, Ãi) of Gi

induces, by virtue of

Ai := {uv | u 6= v ∈ Vi, ∃u-v-path on D̃i}, (8)

a digraph Di = (Vi, Ai) on the boundary Vi, called the skeleton of D̃i, that
indicates the mutual reachability of nodes in the boundary of Gi in the orien-
tation D̃i. 2

Remark 2 Note that a skeleton may have, for some u, v ∈ V , both arcs uv and
vu. Clearly, such a skeleton is not a skeleton of an ASTS-oriented D̃i. 2

The next concept describes ASTS-orientations on the components Gi that
are compatible with the arcs in −→A . The idea here is that the existing arcs in −→A
contribute to satisfying the STS-condition at the nodes of G. As a consequence,
when taking into account the arcs in −→A we need fewer restrictions on the ori-
entations of the components Gi to produce an ASTS-orientation of G. For a
transhipment node in some component Gi with an emanating arc in −→A , for ex-
ample, the STS-condition is already satisfied when there is an arc on Di going
towards the transhipment node, i.e., it is sufficient to classify the transshipment
node as a sink on Di if we would like to satisfy the STS-condition at this node
on D. Similarly, to provide another example, a source on G with an emanating
arc in −→A can be classified as a free node on its component Gi if we would like
to ensure that the STS-condition is satisfied on D. In this way we can reduce
the problem of constructing an ASTS-orientation on a graph with a set of pre-
oriented edges −→A to the general problem of constructing an ASTS-orientation
on a graph.

2Observe that ASTS orientations can be used to solve the NP-hard longest path problem.

13

Definition 5 Let G = (V,E) be a graph with node subsets (V+, V−, VT , VF)
and let −→A be a given subset of edge orientation as above, Gi = (Vi, Ei) the
components of the residual graph of G with respect to −→A , and Vi the boundaries
of Gi. An orientation D̃i = (Vi, Ãi) of Gi is called an ASTS-orientation relative
to −→A if it is an ASTS-orientation of Gi with respect to (V i

+, V
i
−, V

i
T , V

i
F) given

by

V i
+ := (V+ ∩ Vi) \ Vi ∪ {u ∈ Vi ∩ (V+ ∪ VT) | ∃a = vu ∈

−→
A, 6 ∃a = uw ∈

−→
A}
(9a)

V i
− := (V− ∩ Vi) \ Vi ∪ {u ∈ Vi ∩ (V− ∪ VT) | ∃a = uv ∈

−→
A, 6 ∃a = wu ∈

−→
A}
(9b)

V i
T := (VT ∩ Vi) \ Vi, (9c)
V i

F := Vi − V i
+ − V i

− − V i
T . (9d)

2

We can now give a characterization of ASTS-orientations on G that respect
the given subset −→A of oriented edges.

Theorem 3 Let G = (V,E) be a graph with node subsets (V+, V−, VT , VF) and
−→
A , Gi, Vi be as in the preceding definition. Moreover, let D̃i = (Vi, Ãi) be
orientations of the components Gi. Then the overall digraph D̃ = (V,−→A ∪

⋃
Ãi)

is an ASTS-orientation of G with respect to (V+, V−, VT , VF) if and only if

(i) Each D̃i is an ASTS-orientation relative to −→A ,

(ii) the graph on V that arises when the arcs in −→A are added to the union of
the skeletons of the orientations D̃i, i.e., the graph

D := (
⋃
Vi ∪ V \

⋃
Vi,
−→
A ∪

⋃
Ai), (10)

is acyclic, and

(iii) the nodes in V \
⋃
Vi, i.e., the nodes of G that are only incident to arcs

in −→A , satisfy the STS-condition with respect to (V+, V−, VT , VF). 2

Proof With the concepts defined above, the proof is a mere technical exercise.

=⇒ Let the overall digraph D̃ = (V,−→A ∪
⋃
Ãi) be an ASTS-orientation. We

will show that the three conditions of the proposition are true.

(i) Since all nodes of D̃ satisfy the STS-condition, so do all nodes of the ori-
entations D̃i that are not incident to any arc in −→A , i.e., all nodes in Vi \ Vi.
For the nodes in Vi, i.e., the nodes on the boundaries of the components Gi,
we will look at the four sets V i

+ ∩ Vi, V
i
− ∩ Vi, V

i
T ∩ Vi and V i

F ∩ Vi separately.
Nodes in V i

+ ∩ Vi are, by definition, also in V+ ∪ VT , i.e., they have an outgoing
arc on D̃. However, they have, also by definition, no outgoing arc in −→A . Hence
the outgoing arc must be in Ãi, i.e., nodes in V i

+ ∩ Vi are sources on D̃i. With
a similar line of argument we can see that all nodes in V i

− ∩ Vi are sinks on

14

D̃i. As nodes in V i
T are not in the boundary of Gi, the set V i

T ∩ Vi is empty,
and, finally, nodes in V i

F ∩Vi are free nodes, i.e., they satisfy the STS-condition
automatically. Altogether, we have established that all nodes in

⋃
Vi satisfy the

STS-condition. As D̃ is acyclic, the subgraphs D̃i must be acyclic, too. Hence
the digraphs D̃i are ASTS-orientations with respect to (V i

+, V
i
−, V

i
T , V

i
F).

(ii) By definition of the skeletons D̃i, the nodes of D are reachable by the same
nodes in

⋃
Vi as they are on D̃. As a consequence, the acyclicity of D̃ implies

the acyclicity of D.
(iii) As D̃ is an ASTS-orientation, the nodes that are only incident to arcs in
−→
A satisfy the STS-condition. Moreover, as (V,−→A) is a subgraph of D̃, it must
be acyclic.

⇐= We assume the three conditions are true. Then D̃ is acyclic because the
orientations D̃i and the graph D are acyclic (conditions (i) and (ii)). We can
see directly from the definition of the sets V i

+, V
i
−, V

i
T and V i

F that the nodes in⋃
Vi \ Vi satisfy the STS-condition on D̃ due to condition (i), while the nodes in

V \
⋃
Vi satisfy the STS-condition on D̃ due to condition (iii) of the proposition.

It remains to show that the nodes in
⋃
Vi satisfy the STS-condition on D̃. We

will look at the nodes in the sets V+∩Vi, V−∩Vi, VT ∩Vi and VF ∩Vi separately.
The nodes in V+∩Vi are in V i

+ if they have an arc in −→A going towards them, but
no emanating arc in −→A . Due to condition (i), these nodes have an emanating arc
on D̃i, i.e., they satisfy the STS-condition on D̃. The nodes in V+∩Vi are in V i

F

if they have an emanating arc in −→A . In this case they satisfy the STS-condition
on D̃ automatically. For the nodes in V−∩Vi a similar line of arguments applies.
The nodes in VT ∩ Vi are in V i

+, V i
−, or V i

F depending on the arcs in −→A that are
incident to them. If they have an arc in −→A emanating from them, but no arc in−→
A towards them, they are in V i

−. Then condition (i) ensures that they have an
arc going towards them on D̃i. Accordingly, they satisfy the STS-condition on
D̃. Analogously, condition (i) ensures that also the nodes in VT ∩ Vi that are in
V i

+ fulfill the STS-condition on D̃. The remaining nodes in VT ∩ Vi are in V i
F

because they have both an arc in −→A that emanates from them and an arc in−→
A going towards them, which is why they satisfy the STS-condition on D̃ ab
initio. Finally, the nodes in VF trivially satisfy the STS-condition on D̃. �

5.2 Decomposition into blocks
The components arising from a set of pre-oriented edges −→A according to Defi-
nition 4 may still be rather large. However, as graphs for real-world networks
are rather sparse they may be decomposed further. A natural next step is to
consider decompositions into blocks.

Theorem 4 Let G = (V,E) be a graph with node set V , V+ (V , V− (V
and VT (V disjoint sets of sources, sinks and transhipment nodes, respectively,
and VF := V − V+ − V− − VT the set of free nodes. Furthermore, let Vc be the
set of all cut vertices of G, B the set of all blocks of G, and D̃B = (VB , ÃB)
orientations of the blocks B ∈ B. Then the digraph D̃ = (V,

⋃
B∈B ÃB) is an

ASTS-orientation of G with respect to (V+, V−, VT , VF) if and only if

15

(i) for all B ∈ B the orientations D̃B are ASTS-orientations with respect to

((V+ ∩ VB) \ Vc, (V− ∩ VB) \ Vc, (VT ∩ VB) \ Vc, (VF ∩ VB) ∪ Vc), and

(ii) the cut vertices Vc of G satisfy the STS-condition with respect to (V+, V−, VT , VF).2

Proof =⇒ If D̃ = (V,
⋃

B∈B ÃB) is an ASTS-orientation with respect to (V+, V−, VT , VF),
the digraphs (VB , ÃB) are acyclic. As the nodes in V+, V− and VT satisfy the
STS-condition on D̃, the nodes in (V+∩VB)\Vc, (V−∩VB)\Vc and (VT ∩VB)\Vc

satisfy the STS-conditions on D̃B for sources, sinks and transshipment nodes,
respectively, and condition (ii) holds. The nodes in ((VF ∩ VB)∪ Vc) satisfy the
STS-condition for free nodes trivially.

⇐= Due to condition (i), for all B ∈ B the digraphs D̃B are acyclic, hence the
tree property of the block tree implies that (V,

⋃
B∈B ÃB) is acyclic, too. As

the nodes in (V+ ∩ VB) \ Vc, (V− ∩ VB) \ Vc, (VT ∩ VB) \ Vc and (VF ∩ VB) \
Vc satisfy the STS-conditions for sources, sinks, transshipment nodes and free
nodes, respectively, for all B ∈ B, so do all nodes in V \ Vc. The remaining
nodes in Vc satisfy the STS-condition due to condition (ii). �

The previous theorem provided a block decomposition for any ASTS-orientation
of a given graph G. However, when solving MINLP (3) it is sufficient to con-
sider only those ASTS-orientations that exist according to Theorem 2 and are
compatible with a solution to MINLP (3) in the sense of (6). Moreover, the fact
that decomposing a graph into blocks reveals the global tree structure of the
graph (as captured in the block tree of the graph) provides additional informa-
tion about the flows through cut vertices. Via a suitable definition of sources,
sinks, transshipment nodes and free nodes relative to a block, this information
further reduces the number of ASTS-orientations we need to consider for finding
a solution to (3).

More precisely speaking, the flow through a cut vertex into a block B is
entirely determined by the nodes in the blocks of the branch of the block tree
that is connected with the node after removing B from the block tree. The
following definition provides the necessary concepts.

Definition 6 In the setting of Theorem 2 let (VC , AC) be a component of A′in,
V C

c ⊂ VC the set of all cut vertices of (VC , EC), BC the set of all blocks of
(VC , EC), TC the block tree of (VC , EC), and for all blocks B = (VB , EB) ∈ BC

let TC
B := TC − {B} be the forest we obtain by removing from TC the node

that respresents the block B. For a cut vertex v of a block B, i.e. v ∈ V C
c ∩VB ,

we define GC
B,v to be the subgraph of (VC , EC) that is the union of all blocks

in the component of TC
B that contain v. We call the node set V (GC

B,v) the flow

16

determining nodes relative to v and

V C
+,B := ((V ′+ ∩ VB) \ V C

c) + {v ∈ V C
c ∩ VB |

∑
u∈V (GC

B,v
)

qA′

u
> 0}, (11a)

V C
−,B := ((V ′− ∩ VB) \ V C

c) + {v ∈ V C
c ∩ VB |

∑
u∈V (GC

B,v
)

qA′

u < 0}, (11b)

V C
T,B := ((V ′− ∩ VB) \ V C

c) + {v ∈ V C
c ∩ VB |

∑
u∈V (GC

B,v
)

qA′

u
=

∑
u∈V (GC

B,v
)

qA′

u = 0},

(11c)
V C

F,B := VB − V C
+,B − V C

−,B − V C
T,B . (11d)

the sources, sinks, transhipment nodes and free nodes relative to B. 2

The following theorem shows that when restricting ourselves to ASTS-orientations
that exist according to Theorem 2 we can further reduce the number of orien-
tations that are worth considering in two ways: there are blocks for which
we do not need to consider ASTS-orientations (statement (i)) and the number
of ASTS-orientations that results from focussing on blocks is a subset of the
ASTS-orientations that exist according to Theorem 2 (statement (ii)).

Theorem 5 In the setting of Theorem 2 let B = (VB , EB) ∈ BC be a block of a
component C = (VC , EC) and let D̃ := (VC , ÃC) be an ASTS-orientation of C
that exists due to Theorem 2.

(i) If B is without any source and sink and has at most one free node, i.e.,

V C
+,B ∪ V C

−,B = ∅ and |V C
F,B | ≤ 1, (12)

then qa = 0 for all arcs a ∈ A[EB].
(ii) For all B ∈ BC that do not satisfy (12) there exist ASTS-orientations

D̃B = (VB , ÃB) with respect to (V C
+,B , V

C
−,B , V

C
T,B , V

C
F,B) such that

⋃
B∈BC ÃB is

equal to ÃC except for arcs with flow zero, i.e.

{a ∈
⋃

B∈BC

ÃB | qa 6= 0} = {a ∈ ÃC | qa 6= 0}. (13)

Moreover, the union of the ASTS-orientations D̃B is an ASTS-orientation with
respect to (V ′+ ∩ VC , V

′
− ∩ VC , V

′
T ∩ VC , V

′
F ∩ VC) of the union of all blocks that

do not satisfy (12), and this ASTS-orientation satisfies (6). 2

Proof (i) Equations (12) imply that there cannot be any flows on the arcs
of B except for cycles. This, however, is not possible because it would violate
the fact that D̃ is acylic and satisfies (6) by assumption.

(ii) Let B be a block of (VC , AC) that does not satisfy (12). We consider
the subgraph (V>0,B , E>0,B) of B defined by the non-zero flows on B, i.e.,

E>0,B := {e ∈ EB | ∃a ∈ {a+
e , a

−
e } : qa > 0},

V>0,B := V [E>0,B],

and define the orientation D̃>0,B to be the subgraph of D̃ induced by V>0,B . If
V>0,B = ∅, any ASTS orientation on B with respect to (V C

+,B , V
C
−,B , V

C
T,B , V

C
F,B)

17

trivially satisfies (13). Such an orientation must exist due to Corollary 1 since B
does not satisfy (12). Hence we assume V>0,B 6= ∅ in the following. If we can
show that D̃>0,B is an ASTS orientation ofB with respect to (V C

+,B , V
C
−,B , V

C
T,B , V

C
F,B),

we can extend this orientation to an ASTS orientation of B due to the com-
pletion characterization of Theorem 1, which is possible by Corollary 1 since B
does not satisfy (12). As all orientations D̃B constructed in this fashion certainly
satisfy (13), we will have proved the first claim of Statement (ii).

We now show that D̃>0,B is indeed an ASTS orientation of B with respect
to (V C

+,B , V
C
−,B , V

C
T,B , V

C
F,B). For a block B, orientation D̃>0,B is trivially acyclic

since D̃ is acyclic. Regarding the STS-condition, we now consider the nodes in
V>0,B that are not cut-vertices of B. Let v ∈ V C

T,B be such a node. Since v is not
a cut-vertex of B, (11c) implies v ∈ V ′T ∩ VC . Therefore, as v ∈ V>0,B , it must
have both an outgoing and an incoming arc with postive flow in the solution
of MINLP (3) due to Lemma 1. Hence it must have both an outgoing arc and
an incoming arc on D̃, because of Eq. (6). But since these arcs have positive
flow, their underlying edges are in E>0,B . Accordingly, they are also arcs of
D̃>0,B . As we have choosen v to be in V C

T,B , this means that v satisfies the STS-
condition. Analogously we can show that all nodes in V>0,B that are not cut-
vertices of B satisfy the STS-condition with respect to (V C

+,B , V
C
−,B , V

C
T,B , V

C
F,B).

Now let v be a node in V>0,B that is a cut-vertex of B. We consider the case
v ∈ V C

T,B . Being in V>0,B , the node v must have an outgoing or an incoming arc
in AB with positive flow. Further, (11c) implies due to the tree structure of the
block tree that v has, in any solution to MINLP (3), a net flow balance of 0 with
respect to B. As a consequence, due to the flow conservation (3b), v must have
both an outgoing and an incoming arc in AB with positive flow. Hence, due
to (6), v must have both an outgoing and an incoming arc on D̃. Since these
arcs have positive flow, they are also arcs of D̃>0,B , by construction. Hence,
as v was assumed to be in V C

T,B , it satisfies the STS-condition. Analogously
it can be shown that all nodes in V>0,B that are cut-vertices of B satisfy the
STS-condition with respect to (V C

+,B , V
C
−,B , V

C
T,B , V

C
F,B) and we have proved the

first claim of Statement (ii).
Regarding the second claim of Statement (ii), we observe that the union of

the ASTS orientations D̃B we have constructed is certainly acyclic due to the
tree structure of the block tree. Moreover, all nodes in VC that are not cut-
vertices of (AC , EC) are in V C

+,B iff they are in V ′+∩VC , are in V C
−,B iff they are in

V ′−∩VC , are in V C
T,B iff they are in V ′T∩VC , and are in V C

F,B iff they are in V ′F∩VC ,
i.e., they certainly satisfy the STS-condition on the union of the orientations
D̃B . Finally, we observe that the orientations D̃B satisfy (6) by our construction
above. Hence all that remains to be shown is that the cut-vertices of (VC , EC)
satisfy the STS-condition with respect to (V ′+ ∩VC , V

′
− ∩VC , V

′
T ∩VC , V

′
F ∩VC).

We consider a node v ∈ V ′T ∩ VC . We have to show that v has an incoming
and an outgoing arc on the union of the orientations D̃B . If there exists a block
B with v ∈ V C

T,B or one block B1 with v ∈ V C
+,B1

and another block B2 with
v ∈ V C

−,B2
, this is trivially the case. Moreover, the cases v ∈ V C

+,B for all B
with v ∈ VB and v ∈ V C

−,B for all B with v ∈ VB can be disregarded due to the
definition of V ′T . What remains is the case in which v is a node of blocks Bi

such that there exists an i with v ∈ V C
F,Bi

.
W.l.o.g we consider the case in which v ∈ V C

+,Bj
for all j 6= i. Since all

orientations D̃Bj are ASTS orientations and v thus satisfies the STS-conditions

18

with respect to v ∈ V C
+,Bj

, this implies that v has an outgoing arc on all D̃Bj
.

Moreover, by (11a), in our solution to MINLP (3) the node v has outgoing arcs
with positive flow in all arc sets ABj

. We can assume that v has no incoming
arc on any D̃Bj

because otherwise we have finished. Accordingly, v cannot have
an incoming arc with positive flow in any ABj

due to (6), which we know is
satisfied by all orientations D̃B . Hence in our solution to MINLP (3)

qvu > 0 for all vu ∈ ABj
for all j 6= i. (14)

Now let us recall that we assumed v ∈ V ′T ∩ VC , i.e., by (5e) the node v has
a flow balance of zero within the component C. In conjunction with (14) the
flow conservation (3b) requires an arc uv ∈ ABi

with quv > 0. As all D̃B satisfy
(6), this means that there exists an arc with head v on D̃Bi , i.e., v has both
an incoming and an outgoing arc on the union of the orientations D̃B . Since
v ∈ V ′T ∩ VC , we have proved that v satisfies the STS-condition with respect to
(V ′+ ∩ VC , V

′
− ∩ VC , V

′
T ∩ VC , V

′
F ∩ VC).

As one can show analogously that all cut-vertices of (VC , EC) satisfy the
STS-condition with respect to (V ′+ ∩ VC , V

′
− ∩ VC , V

′
T ∩ VC , V

′
F ∩ VC), we have

finished proving Statement (ii). �

Remark 3 1. The bounds for the node demands calculated in the previous
Theorem 5 (and the classification of nodes into sources, sinks, tranship-
ment nodes and free nodes building of these bounds) can be tightened
significantly boundary combining the information about node demand
bounds resulting from considering the block trees of the components of
the subgraph (V ′in, A′in) (as in the previous theorem) with node demand
bounds that can be obtained from considering the block tree of the sub-
graph (Vin, Ain).

2. Algorithmically, it is faster to calculate V C
+,B , V C

−,B and V C
T,B recursively

starting from the leaves of the block tree than to sum up the demand
bounds of all nodes of the blocks of the subgraphs GC

B,v (as in Theorem
Theorem 5). 2

6 Exploiting ASTS orientations algorithmically
Theorem 2 implies that given a suitable region A′, the MINLP (3) complemented
by the constraints

qa = 0 for all a ∈ Aout ∪A′out, (15a)
{D(A′, q) is an ASTS-orientation w.r.t. (V+, V−, VT , VF)} (15b)

is equivalent to (3) in the sense that one of the two problems is feasible iff
the other one is feasible and both problems have the same objective value. To
formulate (15b) as a MILP constraint, we first introduce binary variables xe

for the flow direction of each edge e ∈ E′in := E[A′in], where xe = 1 means
flow along a+

e and xa = 0 indicates flow along a−e . The coupling between these
binary variables and the corresponding flow variables can be achieved via the
big-M constraints

qa+
e
≤ xeqa+

e
and qa−e

≤ (1− xe)qa−e
. (16)

19

To model the requirements for an ASTS orientation, we employ a Dantzig-
Wolfe approach: We (conceptually) enumerate all ASTS orientations and require
that one of those is chosen. Of course, this approach will not work for large
networks as we expect the number of ASTS orientations to grow exponentially
in the number of arcs. For this reason, we consider a family A = {A′1, . . . , A′k}
of regions for which all ASTS orientations can be enumerated with reasonable
effort. Each region A′i is chosen such that it fulfills the requirements (a) and (b)
of Theorem 2. Observe that in general this does not guarantee that an ASTS
orientation for the entire set Ein is chosen. Let Oi, 1 ≤ i ≤ k, be the set of
ASTS orientations for the edge set E′i,in corresponding to region A′i. For each
D̃j = (Vj , Ãj) ∈ Oi we introduce a binary variable yC

D̃
, where D̃ is selected iff

yC
D̃

= 1. This requirement is formulated as∑
D̃j∈Oi : a+

e ∈Ãj

yC
D̃

= xe for all e ∈ E′i,in. (17)

Adding constraints (15a), (16), and (17) for each region A′i can be used to
strengthen the MINLP model (3) or any relaxation of it. In particular, it can be
used to strengthen the classical network flow subproblem of (3), which in turn
can be used in an optimality-based bound tightening procedure (see Section 7.3).
To this end, the resulting MILP model is minimized and maximized for each
arc flow variable in turn to obtain stronger flow bounds.

The framework presented so far offers many algorithmic opportunities. De-
pending on the structure of the network and the values of the constants, one
may, for example, wish to choose the following approach:

1. Determine the global outer edges according to Corollary 1.

2. Consider the region given by A′ := A[Edec] ∪A[Emnt].

3. Decompose the inner edges of the components of the region into blocks
according to Theorem 5.

4. Decompose the blocks remaining according to Statement (ii) of Theorem 5
based on pre-oriented edges according to Theorem 3.

5. Decompose the resulting components into blocks according to Theorem 4.
For our computational proof of concept we will employ a somewhat lighter
approach in the following, which is based on the ideas of Corollary 1, Theorem 3
and Theorem 4.

1. Determine the global outer edges Eout.

2. Consider the components of the graph consisting of those edges for which
the flow bounds do not yet determine the flow direction.
Consider the edge set of each of these components as a region and deter-
mine the local inner and outer edge sets E′in and E′out. Decompose the
edge sets E′in further into blocks and consider these blocks to make up the
set of regions A.

This scheme does not capture all constraints implied by considering ASTS ori-
entations, as we do not exclude cycles through multiple regions (cf. (ii) of Theo-
rem 3). However, there is already a significant computational impact as we will
see in the next section.

20

7 Computational results
In order to investigate the computational potential of these ideas we consider gas
network optimization instances used in the literature [KHPS15, SAB+17]. We
study the improvement in the bound tightening over existing problem-specific
bound tightening techniques as well as the impact of strengthening optimization
models by information due to ASTS orientations on the running time to solve
the models.

7.1 Test instances
In order to benefit from analyzing possible ASTS orientations, the network
has to feature several cycles. We therefore use the largest networks of the
public GasLib [SAB+17], GasLib-582 (version 2) and GasLib-4197, contain-
ing many cycles. These are complemented by non-public data for a real-world
network HN-AB that has also been studied in [PFG+15, KHPS15]. Although
the networks GasLib-582 and HN-AB are of comparable size it has been ob-
served [PFG+15] that instances for HN-AB are harder to solve.

MINLP models for networks of this size (see Table 1) cannot be solved in
reasonable time by current solvers [PFG+15]. We therefore consider the MILP
relaxation [GMMS15, GMMS12] of a certain gas network MINLP that has been
successfully used to solve the GasLib-582 and HN-AB instances in [KHPS15].

In order to apply the theory we developed, we treated the network elements
pipes and control valves as potential-decreasing edges, the network elements
valves, resistors, and shortpipes as potential-maintaining edges, and compressor
elements as generic edges. To match the MINLP model to these choices, we
modified each network in the following way. First, the altitude of each network
node is set to 0, hence all pipes are horizontal. Thus the potential drop function
for a pipe is φa(qa) = cφa|φa| for some constant c, fulfilling the requirement (2).
Moreover, we replaced resistors by open valves. With this modified data, the
MILP from [GMMS15] is a relaxation of a MINLP of the type (3).

For each instance (consisting essentially of a gas demand vector) we use the
lamatto framework [Lam14] that has also been used in [GMMS12, GMMS15,
GMSS15, GMSS18] to generate the MILP relaxation. It is crucial to note that
this generation process includes a state-of-the-art bound tightening procedure
summarized in [SKMP15]. Among other bound tightening techniques, this in-
cludes optimality-based bound tightening for the flows, i.e., minimizing and
maximizing the flow over each arc subject to flow conservation constraints and
flow bounds (either from the original input or derived via other bound tight-
ening steps). This bound tightening is able to fix the flow direction on a large
share of the network arcs, but there also remain large parts of the network
where the flow direction cannot be fixed. As an objective, we chose to minimize
the total amount of compressed gas, i.e., the sum of the flow variables through
active compressor stations. The root node of each MILP model was solved with
Gurobi 8.1 [GO19]; in the following, we consider only those instances which are
not infeasible after the root node.

21

instance set # arcs # instances
decreasing maintaining increasing

GasLib-582 301 303 5 3545 (4227)
HN-AB 524 158 7 42 (43)
GasLib-4197 3657 797 12 2014 (2859)

Table 1: Statistics for the considered instance sets. The column “# instances”
gives the number of “not infeasible” instances as described above and, in paran-
theses, the number of all instances.

7.2 Implementation and computational setup
The algorithms have been coded prototypically in Python. For the enumeration
of ASTS orientations, a simple backtracking search is used. The enumeration is
stopped as soon as at least 2000 ASTS orientations have been generated. For
components with so many orientations, no orientations are considered in the
following to avoid an unreasonable blowup of the MILP model used for OBBT
as well the original MILP extended by the configuration model based on the
enumerated orientations.

To measure the tightness of flow bounds for a network arc, we define the flow
range to be the difference between the upper and the lower flow bound of that
arc. In order to have an instance-independent tightness measure, the relative
flow range is the flow range divided by twice the total inflow, i.e., the sum of the
flows entering the network. Hence the relative flow range is in the interval [0, 1].
We use this to limit computation time for OBBT: the flow bounds for a variable
are tightened only if the relative flow range is at least 2.5%. The MILP models
during OBBT are solved using SCIP 6.0 [GBE+18].

All computations were performed on machines with Intel Xeon E5-2670
CPUs with 2.5 GHz and 64 GB of RAM. The runtimes reported are for single
threaded computations that use the machine exclusively.

7.3 Strengthening flow bounds
We start our evaluation by investigating the improvement of the bounds for
the flow variables when performing OBBT using the MILP model consisting of
the classical network flow constraints (3b), (3h), and (3i) complemented by the
configuration models (17) for choosing an ASTS orientation in each selected re-
gion. As a benchmark, we compare against the bounds obtained by the lamatto
bound tightening algorithm (described in [SKMP15]), in the following refered
to as “lamatto BT”. This algorithms performs, among others, classical bound
tightening for the constraints of the network elements, as well as OBBT using
the classical network flow problem. Our bound tightening procedure, “OBBT
with orientations”, performs OBBT using the MILP model explained above for
each arc (with sufficiently high relative flow range, see above) starting from the
flow bounds obtained by “lamatto BT”.

To measure the strength of the flow bounds, we consider the distribution of
the flow range values for each instance. We compare the flow range distribution
of “lamatto BT” vs. “OBBT with orientations” by comparing their tails, i.e.,
for how many arcs the flow range exceeds certain thresholds. An example for

22

lamatto BT OBBT with orientations rel. improvement [%]
flow range
== 0.0 2739 2779 1.5
≥ 1000.0 334 223 33.2
≥ 2000.0 268 207 22.8
≥ 3000.0 190 140 26.3
≥ 4000.0 134 6 95.5
≥ 5000.0 130 0 100.0
≥ 6000.0 56 0 100.0

Table 2: Comparison of flow range distribution for GasLib-4197 instance
nomination_mild_1280.lp. The first row gives the number of arcs for which
the flow value has been fixed.

the GasLib-4197 instance nomination_mild_1280.lp is shown in Table 2. For
instance, using “lamatto BT” there remain 56 arcs with a flow range of at least
6000 units, whereas “OBBT with orientations” reduces the flow range of all arcs
below 5000 units.

We extend this kind of analysis to all instances of an instance set by con-
sidering for each instance the relative flow range as defined above. This allows
us to use fixed thresholds for all instances; these thresholds are relative to the
instance-specific total inflow. The results are shown in Table 3. It is evident
that “OBBT with orientations” is very effective in improving the bounds for
arcs with a large initial flow range. Moreover, for 1% to 2% additional arcs the
flow can actually be fixed. Note that the bounds could be tightened further by
iterating the lamatto bound tightening and our OBBT using ASTS orientations
until no further improvement is possible.

7.4 Improved models for gas network operation
To investigate the computational impact of exploiting information derived from
ASTS orientations, we consider the following three MILP variants:

“original” MILP model as generated using the lamatto framework

“original+bounds” extends the “original” model by bounds obtained via
OBBT using feasible ASTS orientations

“original+bounds+orientations” extends “original+bounds” further by the
configuration model (17) for these orientations

We use Gurobi 8.1 to solve these MILPs for each instance with a runtime
limit of 3600 seconds. As the instances are numerically challenging, we used the
Gurobi parameter NumericFocus=3. Each of the three MILP model variants
is solved 5 times using distinct seeds; “runtime” in the subsequent evaluation
refers to the average of the runtime of these 5 runs (using the time limit in
case the instance has not been solved). Apart from GasLib-4197, all instances
have been solved to optimality. Due to limited computational resources, we
preliminarily selected a subset of 104 instances from GasLib-4197.

23

min 0.25 quantile median 0.75 quantile max

== 0.0 0.0 0.0 2.2 2.2 3.3
≥ 0.1 10.9 16.4 16.4 16.4 19.3
≥ 0.2 10.9 11.5 11.5 16.4 19.3
≥ 0.3 10.9 11.5 11.5 11.5 32.5
≥ 0.4 10.9 11.5 11.5 11.5 32.5
≥ 0.5 19.0 29.4 29.4 31.7 69.1
≥ 0.6 35.3 47.6 47.6 47.6 58.3
≥ 0.7 35.3 47.6 52.4 52.4 52.4
≥ 0.8 35.3 41.2 41.2 52.4 68.8
≥ 0.9 35.3 41.2 45.2 58.3 75.9

(a) GasLib-582

min 0.25 quantile median 0.75 quantile max

== 0.0 0.0 0.0 0.0 0.9 1.1
≥ 0.1 9.8 11.8 14.6 14.6 15.0
≥ 0.2 6.7 11.8 11.8 11.8 12.1
≥ 0.3 6.7 11.8 11.8 11.8 15.4
≥ 0.4 7.3 11.5 11.8 11.8 13.0
≥ 0.5 4.1 10.3 14.5 19.1 30.2
≥ 0.6 14.7 30.2 36.2 38.2 54.8
≥ 0.7 16.7 30.2 36.2 38.2 56.5
≥ 0.8 20.6 30.2 32.5 40.6 61.9
≥ 0.9 20.6 21.2 29.2 41.9 65.0

(b) HN-AB

min 0.25 quantile median 0.75 quantile max

== 0.0 1.1 1.3 1.5 1.6 2.6
≥ 0.1 32.8 35.6 36.8 37.4 39.0
≥ 0.2 24.4 28.5 31.8 35.1 39.1
≥ 0.3 20.4 23.9 26.6 30.1 34.5
≥ 0.4 20.7 23.1 24.3 27.5 35.0
≥ 0.5 25.3 27.0 29.0 30.1 37.9
≥ 0.6 60.4 63.6 65.0 95.5 96.4
≥ 0.7 62.7 66.4 67.4 95.5 100.0
≥ 0.8 55.2 66.4 66.9 100.0 100.0
≥ 0.9 52.2 66.4 95.9 100.0 100.0

(c) GasLib-4197

Table 3: Comparison of the improvement of the relative flow range distribution
over all considered instances of each instance set. The tables show the distri-
bution of the reduction (in percentage of arcs) of the number of arcs whose
relative flow range exceeds the given threshold. For instance, in the instance
set GasLib-4197 the number of arcs with a relative flow range of at least 0.9 is
reduced by at least 52.2%, 95.9% in the median, and at most 100%.

24

The results are summarized in the performance profiles [DM02] in Fig. 1.
The performance profiles are restricted to “non-trivial” instances, i.e., those for
which at least one of the models has a runtime of at least 10 seconds.

Only roughly one quarter of the GasLib-582 instances is “non-trivial” in this
sense, showing that this instance set is rather easy to solve. The difference
between the “original” and “original+bounds” models are negligible, with the
performance of “original+bounds+orientations” being clearly inferior. This is
expected, as the additional model complexity due to the configurations models
for the orientations is overkill for the already easy instances.

For the HN-AB instance set, which is known to be harder than GasLib-582,
29 out of the 42 instances are “non-trivial”. Initially, “original” and “origi-
nal+bounds” perform rather similar and close to the virtual best solver, with
“original+bounds+orientations” being clearly outperformed. However, on harder
instances both “original+bounds” and “original+bounds+orientations” outper-
form “original” with “original+bounds+orientations” being initially inferior, but
becoming eventually superior.

All the studied GasLib-4197 are “non-trivial” and the effect observed already
for HN-AB is even more pronounced: “original+bounds” consistently outper-
forms “original”, and is itself being outperformed by “original+bounds+orientations”
for harder instances.

To summarize, our results clearly show that the harder the instances, the
more beneficial it is to use the proposed extended models. We should mention,
however, that with the current implementation the runtime gains are exceeded
by the computation times for analysing ASTS orientations and, most impor-
tantly, for performing OBBT using the orientations.

8 Conclusions and further work
We proposed ASTS orientations as a combinatorial relaxation capturing essen-
tial properties of feasible solutions of potential-driven flow problems. Incorpo-
rating the restriction to ASTS orientations into established relaxations leads
to tighter relaxations. Our computational results for large-scale gas networks
indicate that there is a significant computational advantage if the considered
instances are sufficiently hard. It is interesting to note that these substantial
improvements can already be gained by considering small subgraphs only.

The theoretical framework for ASTS orientations presented in this paper
offers further algorithmic opportunities that have not been investigated yet.
For instance, we did not yet exclude cycles encompassing several undirected
components as suggested by Theorem 3. Algorithmically, this can be done by
separating such cycles. Another line of research is to develop efficient variants
of OBBT based on ASTS orientations.

Acknowledgements This research was partly funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1,
project ID: 390685689) and partly carried out in the framework of Matheon
supported by the Einstein Foundation Berlin. Moreover, the authors thank
the BMBF Research Campus Modal (fund number 05M14ZAM) for additional
support.

25

100 101 102
0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

performance profile for minimum runtime of 10.0 s (1215 instances)

original
original+bounds
original+bounds+orientations

(a) GasLib-582

100 2 × 1000.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

performance profile for minimum runtime of 10.0 s (29 instances)

original
original+bounds
original+bounds+orientations

(b) HN-AB

100 101
0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

performance profile for minimum runtime of 10.0 s (104 instances)

original
original+bounds
original+bounds+orientations

(c) GasLib-4197

Figure 1: Performance profiles for the average running time of solving each
MILP instance 5 times using Gurobi.

26

References
[BGS09] J. Burgschweiger, B. Gnädig, and M. C. Steinbach. Optimiza-

tion models for a operative planning in drinking water networks.
Optim. Eng., 10:343–373, 2009.

[BH18] Kai Helge Becker and Benjamin Hiller. ASTS orientations on
undirected graphs. ZIB Report 18-31, Zuse Institute Berlin,
2018. http://opus4.kobv.de/opus4-zib/frontdoor/index/
index/docId/6963.

[CCH+78] M. Collins, L. Cooper, R. Helgason, J. Kennington, and
L. LeBlanc. Solving the pipe network analysis problem using
optimization techniques. Management Sci., 24(7):747–760, 1978.

[dFOdMR95] Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre
Rosenstiehl. Bipolar orientations revisited. Discrete Applied
Mathematics, 56(2-3):157–179, 1995.

[DLWB15] Claudia D’Ambrosio, Andrea Lodi, Sven Wiese, and C. Bragalli.
Mathematical programming techniques in water network opti-
mization. European Journal of Operational Research, 243(3):774–
788, 2015.

[DM02] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimiza-
tion software with performance profiles. MATHP, 91(2):201–213,
2002.

[GBE+18] Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tristan Gally,
Gerald Gamrath, Robert Lion Gottwald, Gregor Hendel, Christo-
pher Hojny, Thorsten Koch, Marco E. Lübbecke, Stephen J.
Maher, Matthias Miltenberger, Benjamin Müller, Marc E.
Pfetsch, Christian Puchert, Daniel Rehfeldt, Franziska Schlösser,
Christoph Schubert, Felipe Serrano, Yuji Shinano, Jan Merlin
Viernickel, Matthias Walter, Fabian Wegscheider, Jonas T. Witt,
and Jakob Witzig. The SCIP Optimization Suite 6.0. ZIB-Report
18-26, Zuse Institute Berlin, July 2018.

[GHHS16] Claudia Gotzes, Holger Heitsch, René Henrion, and Rüdiger
Schultz. On the quantification of nomination feasibility in sta-
tionary gas networks with random load. Mathematical Methods
of Operations Research, 84(2):427–457, 2016.

[GHHV12] A. M. Gleixner, H. Held, W. Huang, and S. Vigerske. Towards
globally optimal operation of water supply networks. Num. Alge-
bra, Control and Optimization, 2:695–711, 2012.

[GMMS12] B. Geißler, A. Martin, A. Morsi, and L. Schewe. Using piecewise
linear functions for solving MINLPs. In Jon Lee and Sven Leyffer,
editors,Mixed Integer Nonlinear Programming, volume 154 of The
IMA Volumes in Mathematics and its Applications, pages 287–
314. Springer New York, 2012.

27

http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6963
http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6963

[GMMS15] Björn Geißler, Alexander Martin, Antonio Morsi, and Lars
Schewe. The MILP-relaxation approach. In Koch et al. [KHPS15].

[GMSS15] Björn Geißler, Antonio Morsi, Lars Schewe, and Martin Schmidt.
Solving power-constrained gas transportation problems using an
MIP-based alternating direction method. Computers & Chemical
Engineering, 82:303–317, 2015.

[GMSS18] Björn Geißler, Antonio Morsi, Lars Schewe, and Martin Schmidt.
Solving highly detailed gas transport MINLPs: Block separability
and penalty alternating direction methods. INFORMS Journal
on Computing, 30(2):309–323, 2018.

[GNS17] Claudia Gotzes, Sabrina Nitsche, and Rüdiger Schultz. Proba-
bility of feasible loads in passive gas networks with up to three
cycles. Preprint, SFB TRR 154, March 2017. Submitted.

[GO19] LLC Gurobi Optimization. Gurobi optimizer reference manual,
2019.

[GPS+19] Martin Groß, Marc E. Pfetsch, Lars Schewe, Martin Schmidt, and
Martin Skutella. Algorithmic results for potential-based flows:
Easy and hard cases. Networks, 73(3), 2019.

[HB18] Benjamin Hiller and Kai Helge Becker. Improving relax-
ations for potential-driven network flow problems via acyclic
flow orientations. ZIB Report 18-30, Zuse Institute Berlin,
2018. http://opus4.kobv.de/opus4-zib/frontdoor/index/
index/docId/6962.

[HF13] Jesco Humpola and Armin Fügenschuh. A new class of valid
inequalities for nonlinear network design problems. ZIB-Report
13–06, Zuse Institute Berlin, Takustr.7, 14195 Berlin, Germany,
2013.

[HHH+15] Benjamin Hiller, Christine Hayn, Holger Heitsch, René Henrion,
Hernan Leövey, Andris Möller, and Werner Römisch. Methods
for verifying booked capacities. In Koch et al. [KHPS15].

[HJ84] Chris T. Hendrickson and Bruce N. Janson. A common network
flow formulation for several civil engineering problems. Civil En-
gineering Systems, 1(4):195–203, 1984.

[KHPS15] Thorsten Koch, Benjamin Hiller, Marc Pfetsch, and Lars Schewe,
editors. Evaluating Gas Network Capacities. MOS-SIAM Series
on Optimization. SIAM, 2015.

[Lam14] LaMaTTO++:a framework for modeling and solving mixed-
integer nonlinear programming problems on networks.,
2014. https://en.www.math.fau.de/edom/projects-edom/
mixed-integer-programming/lamatto/.

[Mau77] J. J. Maugis. Etude de réseaux de transport et de distribution de
fluide. RAIRO Rech. Opér., 11(2):243–248, 1977.

28

http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6962
http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6962
https://en.www.math.fau.de/edom/projects-edom/mixed-integer-programming/lamatto/
https://en.www.math.fau.de/edom/projects-edom/mixed-integer-programming/lamatto/

[PFG+15] Marc E. Pfetsch, Armin Fügenschuh, Björn Geißler, Nina Geißler,
Ralf Gollmer, Benjamin Hiller, Jesco Humpola, Thorsten Koch,
Thomas Lehmann, Alexander Martin, Antonio Morsi, Jessica
Rövekamp, Lars Schewe, Martin Schmidt, Rüdiger Schultz,
Robert Schwarz, Jonas Schweiger, Claudia Stangl, Marc C. Stein-
bach, Stefan Vigerske, and Bernhard M. Willert. Validation of
nominations in gas network optimization: models, methods, and
solutions. Optimization Methods and Software, 30(1):15–53, 2015.

[Rag13] A. U. Raghunathan. Global optimization of nonlinear network
design. SIAM Journal on Optimization, 23(1):268–295, 2013.

[SAB+17] Martin Schmidt, Denis Aßmann, Robert Burlacu, Jesco Humpola,
Imke Joormann, Nikolaos Kanelakis, Thorsten Koch, Djamal
Oucherif, Marc E. Pfetsch, Lars Schewe, Robert Schwarz, and
Mathias Sirvent. GasLib – a library of gas network instances.
Data, 2(40), 2017.

[SKMP15] Lars Schewe, Thorsten Koch, Alexander Martin, and Marc E.
Pfetsch. Mathematical optimization for evaluating gas network
capacities. In Koch et al. [KHPS15].

[VMC15] M. Vuffray, S. Misra, and M. Chertkov. Monotonicity of dis-
sipative flow networks renders robust maximum profit problem
tractable: General analysis and application to natural gas flows.
In IEEE Conference on Decision and Control (CDC), 2015.

29

	Introduction
	General model for potential-driven network flow problems
	ASTS-orientations and their basic properties
	ASTS orientations as combinatorial relaxations for potential-driven network flow problems
	Decomposition results for ASTS orientations
	Decomposition based on pre-oriented edges
	Decomposition into blocks

	Exploiting ASTS orientations algorithmically
	Computational results
	Test instances
	Implementation and computational setup
	Strengthening flow bounds
	Improved models for gas network operation

	Conclusions and further work

