
A Cut Separation Approach for the Rolling Stock
Rotation Problem with Vehicle Maintenance
Boris Grimm
Zuse Institute Berlin, Germany
http://www.zib.de
grimm@zib.de

Ralf Borndörfer
Zuse Institute Berlin, Germany
http://www.zib.de
borndorfer@zib.de

Markus Reuther
LBW Optimization GmbH, Berlin, Germany
http://www.lbw-optimization.com
reuther@lbw-optimization.com

Thomas Schlechte
LBW Optimization GmbH, Berlin, Germany
http://www.lbw-optimization.com
schlechte@lbw-optimization.com

Abstract

For providing railway services the company’s railway rolling stock is one if not the most important
ingredient. It decides about the number of passenger or cargo trips the company can offer, about
the quality a passenger experiences the train ride and it is often related to the image of the company
itself. Thus, it is highly desired to have the available rolling stock in the best shape possible.
Moreover, in many countries, as Germany where our industrial partner DB Fernverkehr AG (DBF) is
located, laws enforce regular vehicle inspections to ensure the safety of the passengers. This leads to
rolling stock optimization problems with complex rules for vehicle maintenance. This problem is well
studied in the literature for example see [8, 9], or [5] for applications including vehicle maintenance.
The contribution of this paper is a new algorithmic approach to solve the Rolling Stock Rotation
Problem for the ICE high speed train fleet of DBF with included vehicle maintenance. It is based
on a relaxation of a mixed integer linear programming model with an iterative cut generation to
enforce the feasibility of a solution of the relaxation in the solution space of the original problem.
The resulting mixed integer linear programming model is based on a hypergraph approach presented
in [3]. The new approach is tested on real world instances modeling different scenarios for the ICE
high speed train network in Germany and compared to the approaches of [10] that are in operation
at DB Fernverkehr AG. The approach shows a significant reduction of the run time to produce
solutions with comparable or even better objective function values.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases Railway Operations Research, Integer Programming, Infeasible Path Cuts,
Cut Separation, Rolling Stock Rotation Problem

Digital Object Identifier 10.4230/OASIcs.ATMOS.2019.1

Funding This work has been supported by the Research Campus MODAL Mathematical Optimiza-
tion and Data Analysis Laboratories funded by the Federal Ministry of Education and Research
(BMBF Grant 05M14ZAM). All responsibility for the content of this publication is assumed by the
authors.

© Boris Grimm, Ralf Borndörfer, Markus Reuther, and Thomas Schlechte;
licensed under Creative Commons License CC-BY

19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2019).
Editors: Valentina Cacchiani and Alberto Marchetti-Spaccamela; Article No. 1; pp. 1:1–1:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.zib.de
mailto:grimm@zib.de
http://www.zib.de
mailto:borndorfer@zib.de
http://www.lbw-optimization.com
mailto:reuther@lbw-optimization.com
http://www.lbw-optimization.com
mailto:schlechte@lbw-optimization.com
https://doi.org/10.4230/OASIcs.ATMOS.2019.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

1:2 A Cut Separation Approach for the RSRP

1 Introduction

In a liberalized market companies that offer products or services have to compete with
competitors for market shares. In an increasing number of countries the railway sector is
one of these markets and becomes liberalized more and more. Thus railway companies have
to face the challenging problem to offer the best product possible, i.e., punctual, reliable,
fast, and comfortable train rides for a reasonable price requiring being as cost efficient as
possible. This leads to a wide variety of closely connected optimization problems. Typically
these problems differ in the grade of detail and scope of the planning horizon for which
decisions have to be made or optimized. One of these problems is the Rolling Stock Rotation
Problem (RSRP) where the offered passenger trips of the timetable have to be covered by a
set of available rolling stock vehicles in a most cost efficient way. This assignment has to be
made with respect to a lot of operational requirements, i.e., the assigned vehicle should not
exceed the platform length along a trip’s path, electrical powered vehicles require electrified
tracks, or the assigned number of coaches should match the expected number of passengers.
Although the railway market is liberalized and open for competitors there are many laws
the companies have to comply with. Some of them rule mandatory maintenance checks
the rolling stock fleets have to pass to be able to transport passengers. A regular vehicle
maintenance scheme has also direct and indirect effects on the value of the train journey a
customer perceives. They result in a more reliable level of services and in a better shape of
the vehicles which is directly recognized by the passengers and linked to the company’s image.
In Germany, at DB Fernverkehr AG (DBF) our industrial partner, exists a complex schedule
of increasing maintenance schedules beginning with short checks of parts of the vehicle and
ending in a more or less complete reassembly of the vehicle. Thus, integrating maintenance
constraints in the rolling stock rotation problem is a natural choice. The main contribution
of this paper is a novel solution approach to the rolling stock rotation problem with vehicle
maintenance that differs from the one currently in operation at DBF. It relies completely on
infeasible path cuts to take care of maintenance constraints instead of modelling a linked
resource flow as it is done in the current approach at DBF. Adding these resource constraints
to the arc based RSRP model used at DBF results in a significant increase of problem
complexity and run time thus sophisticated algorithms that reduce that increase are very
welcome at DBF. Another advantage of the new approach is that it produces several rather
different incumbent solutions that are close to optimality which is a feature that planners
like. The drawback of this feature and a disadvantage of the approach is that there is more a
step wise than a monotone improvement of the solution quality during the solution process.

Rolling stock rotation problems were studied extensively under different names, in various
level of detail, and with varying focus in literature the last decades. Since the focus of this
paper is on vehicle maintenance we restrict the literature review to papers that consider
vehicle maintenance rules to some extend. One of the earliest works that apply to this
was done by [5] where locomotives and cars were assigned to passenger trains for scenarios
of VIA Rail in Canada. Cyclic timetables were covered with detailed schedules. Vehicle
maintenance was considered by a time discretization approach to schedule the maintenance
service stops. In [8, 9] the authors proposed solution approaches to re-optimize vehicle
schedules for so called urgent trains that require maintenance services within the next 1
to 3 days. Mixed integer programming models based on multi commodity flows are used
to tackle the problems for real world scenarios of the Dutch railway operator NS Reizigers.
A heuristic solution approach based on an integer linear programming formulation for the
Rolling Stock Rotation Problem with integrated optimization of seat capacity of the assigned

B. Grimm, R. Borndörfer, M. Reuther, and T. Schlechte 1:3

vehicle configurations is presented in [4]. Maintenance rules were added in a mileage based
fashion and the approach is evaluated on scenarios of a regional train operator from Italy.
The authors of [6] report a significant reduction of deadheading trips, respectively empty
train runs, for their solutions computed by a mixed integer linear program using a commercial
MILP-solver to find maintenance feasible Hamiltonian cycles in cyclic network wide instances
of Trenitalia. The same approach was later used by [13] to compute maintenance feasible
rosters for a case study in Japan. In [11] a nice overview of the research done in this field is
presented. Moreover the authors describe heuristic solution approaches to solve the RSRP
with integrated optimization of seat capacity for the DSB S-tog network in Copenhagen.
Compared to the operated rolling stock schedules the heuristically constructed solutions
were proven to be economically more attractive. A solution approach for a re-scheduling
version of the RSRP is presented in [12]. After a disruption has happened re-optimized
vehicle schedules have to be computed that have to consider maintenance appointments of
the effected trains to be feasible. The authors evaluate their mixed integer programming
formulation on instances of the Netherlands Railways. A path based branch-and-price
algorithm to solve a re-scheduling variant of the RSRP is presented in [7]. In this approach
maintenance constraints could be applied naturally to the vehicles due to the model’s path
based structure. The algorithm is designed for applications at on DSB S-tog network in
Copenhagen. All this shows that algorithmic approaches to solve rolling stock scheduling
problems with maintenance rules for real world applications is a growing area of interest for
the scientific community as well as for the railway industry.

The paper is organized as follows, we define the Rolling Stock Rotation Problem with
vehicle maintenance the way it is addressed in this paper in Section 2. This is followed by
a solution approach for this problem based on an iterative cut separation procedure using
infeasible path constraints in Section 3.2. We evaluate the performance of the presented
approach in Section 4 with a comparison to the actual solution approach that is in operation
at DBF. Finally, we conclude our results in Section 5.

2 Problem Definition

In this section we consider the Rolling Stock Rotation Problem as it is modeled in [3] and
refer to the paper for additional technical details. In the following we shortly recapitulate
the main modeling ideas.

Let T be the set of all passenger trips of a given timetable and V be a set of nodes
representing departure and arrival events of dedicated vehicles operating passenger trips of
T . Trips that could be operated with two or more vehicles have the appropriate number
of arrival and departure nodes. Let further A ⊆ V × V be a set of directed standard arcs,
and H ⊆ 2A a set of hyperarcs. Thus, a hyperarc h ∈ H is a set of standard arcs and
includes always an equal number of tail and head nodes, i.e., arrival and departure nodes.
A hyperarc h ∈ H covers t ∈ T if each standard arc a ∈ h represents an arc between
departure and arrival of t. Each of the standard arcs a represents an individual vehicle that
is required to operate t as part of the chosen vehicle configuration the hyperarc models.
We define the set of all hyperarcs that cover t ∈ T by H(t) ⊆ H. By defining hyperarcs
appropriately, vehicle composition rules and regularity aspects can be directly handled by
the model. In more detail for a single trip there are multiple different hyperarcs to chose
from with different operational costs, i.e., for a trip that could be operated with one or two
vehicles there exist hyperarcs that contain one, respectively, two directed arcs and thus a
larger cost coefficient if two arcs, respectively, vehicles are involved. Moreover there are

ATMOS 2019

1:4 A Cut Separation Approach for the RSRP

Figure 1 An example of hyperarcs to model two trips and maintenance services between them.

hyperarcs between two trips containing more than one directed arc if the vehicle composition
does not change between the two trips. If the time between two trips is large enough to
couple or decouple vehicles there are hyperarcs to model this as well. At DBF regularity
is an important aspect during optimization so there are additional hyperarcs that contain
hyperarcs that model exactly the same trip that is operated on multiple days of the week
with exactly the same vehicle configuration. This regularity hyperarc is slightly cheaper than
choosing the individual hyperarcs. Hyperarcs that contain arrival and departure nodes of
different trips are used to model deadhead trips between the operation of two trips. With
this construction it is possible to set up a cost function c : H 7→ Q+ for the hyperarcs that
includes a wide spectrum of different operational costs that have to be addressed by the
model, i.e., costs for energy consumption, vehicle usage, coupling and combining of train
units, short turn penalties, or even artificial cost for modelling regular vehicle movements.
The RSRP hypergraph is denoted by G = (V,A,H). We define sets of hyperarcs coming into
and going out of v ∈ V in the RSRP hypergraph G as H(v)- := {h ∈ H | ∃ a ∈ h : a = (u, v)}
and H(v)+ := {h ∈ H | ∃ a ∈ h : a = (v, w)}, respectively. One major challenge in rolling
stock planning and optimization is vehicle maintenance. At DB Fernverkehr AG there are
several different maintenance rules for the different ICE high speed train fleets that all
have to be considered. In this paper we focus on maintenance rules that are based on the
accumulated kilometers a vehicle is operated between two maintenance services. We denote
the upper bound on the total mileage between two maintenance services by R. Maintenance
services could only be performed at special maintenance locations m ∈M . The kilometers a
vehicle is moved during an operation modelled by a chosen hyperarc is given by a function
r : H 7→ [0, R]. By |h| the number of standard arcs a ∈ h required to model h is defined.
Thus |h| · r(h) gives the aggregated kilometers of all vehicles modelled by h. This includes
necessary deadhead trips to reach maintenance facilities or turn around trips to change the
orientation of the vehicle. To model maintenance services in the RSRP hypergraph additional
maintenance service hyperarcs were defined for each pair of trips if it is possible to visit a
maintenance facility and perform a service between the operation of the two trips. The cost
for the additional deadhead trip and the cost for the maintenance service is added to the
cost of the hyperarc. In this sense, a cycle in G is called maintenance feasible, if and only if
the accumulated kilometers of all trips and deadhead trips along the sub-paths between each
two hyperarcs with a maintenance service of a cycle is smaller or equal than R.

B. Grimm, R. Borndörfer, M. Reuther, and T. Schlechte 1:5

In Figure 1 two trips are shown that could be operated by either one or two (red) vehicles.
Thus, there is a red node for each arrival and departure event of a single vehicle. These are
connected by either a single arc hyperarc or a double arc hyperarc to model the operation
with one, respectively, two vehicles. Between the two trips there are hyperarcs that model
maintenance events. These are marked by the wrench symbol containing single or double
vehicle configurations. Additionally there are single arc hyperarcs to model single vehicle
transitions between the two trips. The double arc hyperarc models a transition without
changing the vehicle configuration.

I Definition 1. Let G be a graph based hypergraph, c its associated cost function, and r
a maintenance resource function with its upper bound R. The Rolling Stock Rotation
Problem (RSRP) is to find a cost minimal, maintenance feasible set of hyperarcs Hx ⊆ H

such that Hx is a set of cycles that covers all trips t ∈ T by a hyperarc h ∈ Hx.

3 Solution Approaches to the RSRP

In the following section, we show how the RSRP is modelled and solved in the current
application of RotOR, which is the optimization software used at DBF. After that the new
approach, which is also implemented in RotOR, using infeasible path constraints in order to
iteratively separate maintenance infeasible sub-paths, is presented.

3.1 Resource Flow Based Solution Approach
The current solution approach to the RSRP implemented in RotOR solves a mixed integer
programming formulation of a hyperflow model with linked resource flow to model the vehicle
maintenances. All details and sophisticated algorithms to solve this model can be found
in [3, 10]. Using a binary decision variable xh for each hyperarc and continuous variables wa
for the linked resource flow, the resource flow based MILP-formulation of the RSRP can be
stated follows:

min
∑
h∈H

chxh, (Flow)

s.t.
∑

h∈H(t)

xh = 1 ∀t ∈ T, (1)

∑
h∈H(v)-

xh =
∑

h∈H(v)+

xh ∀ v ∈ V, (2)

wa ≤
∑

h∈H(a)

Rxh ∀a ∈ A, (3)

∑
a∈A(v)+

wa −
∑

a∈A(v)-

wa =
∑

h∈H(v)+

r(h)xh ∀v ∈ V, (4)

∑
a∈A(m)+

wa =
∑

h∈H(m)+

r(h)xh ∀m ∈M, (5)

wa ∈ [0, R] ⊂ Q+ ∀a ∈ A, (6)
xh ∈ {0, 1} ∀h ∈ H. (7)

The objective function of (Flow) minimizes the sum of the operational cost of all chosen
hyperarcs. This includes all cost for operating a trip, deadhead trips, performing maintenances,
and costs to penalize irregularities. The first constraints (1) ensure the covering of each

ATMOS 2019

1:6 A Cut Separation Approach for the RSRP

trip. Equations (2) take care about the (hyper)flow conservation. The following four sets
of constraints deal with the vehicle maintenance. First, the maintenance variables w were
coupled to the hyperarc variables allowing only those to be used for which a hyperarc was
chosen. Followed by equations (4) which ensure the correct summation of the maintenance
resource consumption. The constraints (5) state the possibility to reset the resource flow
at maintenance service locations. Finally, the variable domains are given by (6) and (7).
The presence of the constraints (3)-(6) makes the model way more difficult to solve as it
implicitly implies a tracing of each individual vehicle while the other parts of the model
can be seen as a vehicle type or fleet based formulation. This is one of the reasons to be
interested in novel powerful algorithmic approaches to solve these kinds of problems.

3.2 Infeasible Path Cut Separation Approach
Besides the mentioned reason for a different approach to tackle the RSRP with included vehicle
maintenance, the fact that maintenance service locations are often closely located to overnight
parking depots is another one. This fact leads to the situation that solutions of the RSRP
without consideration of the maintenance are often trivially maintenance feasible, respectively
could be easily made maintenance feasible by replacing overnight parking hyperarcs with
maintenance hyperarcs. Therefore we developed a new integer programming model that
replaces the continuous resource flow by a rough bound on the overall resource consumption
and a set of infeasible path constraints to forbid maintenance infeasible sub-paths in the
chosen cycles. This class of cuts is well known and studied in the (asymmetric) travelling
salesman community as for example in [1]. However, we are not aware of any publication
applying this technique to rolling stock scheduling. Thus, the following integer program
relies completely on the binary variables for choosing hyperarcs to be part of the solution.
To set up the model, we define by P the set of all maintenance infeasible sub-paths in the
underlying directed graph D = (V,A) of the hypergraph G.

min
∑
h∈H

chxh, (Cut)

s.t.
∑

h∈H(t)

xh = 1 ∀t ∈ T, (8)

∑
h∈H(v)-

xh =
∑

h∈H(v)+

xh ∀ v ∈ V, (9)

∑
h∈H\M

|h| r(h)xh ≤
∑
h∈M

|h|Rxh, (10)

∑
h∈Pi

xh ≤ |Pi| − 1 ∀Pi ∈ P, (11)

xh ∈ {0, 1} ∀h ∈ H. (12)

The objective function of (Cut) and the constraints (8), (9), and (12) are completely
identical to the ones in the (Flow) formulation and model all technical aspects of the
problem with the exception of the vehicle maintenance rules. These rules are implied by the
other two sets of constraints. The first set (10) forces the solution to contain a sufficient
number of maintenance service hyperarcs. Utilizing that the total resource consumption
of the vehicles, i.e., the left hand side of constraints (10), is bounded from above by the
number of maintenance arcs chosen times the product of the upper bound of the resource
consumption and the number of maintained vehicles modelled by the chosen hyperarc. The

B. Grimm, R. Borndörfer, M. Reuther, and T. Schlechte 1:7

obvious argument for this becomes clear if we divide (10) by R. Note that the total resource
consumption of the vehicles is not fixed a priori due to deadhead trips. The second set (11)
then forbids to include maintenance infeasible sub-paths into the cycles of hyperarcs of the
solution.

Trivially, one critical aspect of this model formulation is that it might contain an
exponential number of infeasible path constraints (11). Therefore we solve this model
by adding the infeasible path cuts dynamically to the model during the solution process.
Nevertheless, it is easy to see that for the formulation containing all infeasible path constraints
the following lemma holds.

I Lemma 2. Let XFlow, XCut be the sets of all integer feasible solutions of Cut, respectively
Flow restricted to the x variables. It holds

conv(XFlow) = conv(XCut).

3.2.1 Dynamic Infeasible Path Constraint Separation
As mentioned before, the idea behind the algorithm is to generate the infeasible path
constraints 11, respectively to separate maintenance infeasible solutions of the Cut approach
dynamically. Algorithm 1 provides the respective pseudo code. It works as follow: The
algorithm starts with a solution Hx of the Cut formulation, without any infeasible path
constraint so far, computed by a commercial mixed integer solver with a limit on the optimal
IP tolerance of ε2 . We denote the problem CutP with P := ∅ in the following as maintenance
relaxation of the original problem. It gives the algorithm a feasible solution to the RSRP
without considering the maintenance constraints and therefore a valid lower bound on the
objective function (trivially, since each maintenance feasible solution is still contained in the
solution space). After that, the cycles of the directed arcs contained in the chosen hyperarc
variables were constructed. By tracking each cycle once, beginning at an arbitrarily chosen
maintenance arc, the algorithm checks the maintenance feasibility of the solution by summing
up the resource consumption along the cycle resetting it every time a maintenance arc is
passed. If the sum of the aggregated mileage of the arcs exceeds the upper bound R of the
resource, the chosen cycle is proven to be infeasible and a valid infeasible (sub-)path constraint
is generated automatically by the set of hyperarcs passed since the last maintenance arc, i.e.,
including the arc itself. We denote this set by Pi ⊆ H. In a maintenance feasible solution it
is not possible to chose all |Pi| hyperarcs from this set. The algorithm collects all of these
constraints, denoted by P̂ that could be generated from Hx. If no infeasible path constraint
is generated, the solution is maintenance feasible and optimal since the objective function
value equals the lower bound of the maintenance relaxation. In the opposite case where
Hx was proven to be maintenance infeasible a neighborhood search is applied to substitute
hyperarcs of the solution with their counterparts that include additional maintenance services
to construct a maintenance feasible solution Ĥx. Therefore we define two hyperarcs to
be maintenance equivalent by the definition given in 3. In a nutshell, two hyperarcs are
maintenance equivalent, denoted by h ' g, if they model the same hyperarc with and without
performing a maintenance service in between. With this definition we can set up the so
called Maintenance Assignment Model (MAM) as shown in MAM. This model is then solved
by a commercial mixed integer solver. If it is feasible the algorithm constructs a solution Ĥx

that is feasible to CutP and Cut as well. This solution is then checked whether its quality
in sense of the gap between its objective function value and the best known lower bound is

ATMOS 2019

1:8 A Cut Separation Approach for the RSRP

small enough, i.e., smaller than ε. If this is the case the algorithm terminates returning Ĥx

as found solution. Otherwise CutP , respectively P is updated by P = P ∪ P̂ . The algorithm
then restarts the path separation loop by solving CutP until a fixed number of iterations are
passed or a sufficiently good solution was found.

1 Input : Hypergraph G, resource function r : H 7→ Q, resource limit R

2 Output : Maintenance feasible solution x ⊆ H
3 {
4 x := ∅
5 i := 0; P := ∅
6 do
7 {
8 Hx := MILPSolve (CutP);
9 P̂ := generateInfeasiblePathCuts (Hx);

10 P := P ∪ P̂ ; % update infeasible path cut set
11 if(P̂ = ∅ or Hx = ∅)
12 {
13 return Hx % maintenance feasible and optimal or infeasible
14 }
15 else
16 {
17 Ĥx := solveMAM (Hx);
18 if(Ĥx 6= ∅)
19 {
20 % Solution Ĥx is a maintenance feasible solution for Cut

21 x := Ĥx

22 }
23 }
24 i+ +;
25 }
26 while(c(x)−c(Hx)

c(Hx) < ε or i < I)
27
28 return x

29 }

Algorithm 1 Infeasible Path Constraint Separation Algorithm.

3.2.2 The Maintenance Assignment Model

To perform the neighborhood search for a maintenance infeasible solution Hx of the CutP
model in the cut separation loop, the mixed integer programming model defined in MAM is
solved. To set up the model, we formally define the maintenance equivalence relation for two
hyperarcs as follows.

I Definition 3. Two hyperarcs h, g ∈ G are maintenance equivalent (h ' g) if and only
if A(h) = A(g).

The MAM-model contains a binary decision variable xh for each hyperarc h ∈ H that
is either included (h ∈ Hx) or maintenance equivalent to a hyperarc included in the actual
solution (h ' g ∈ Hx). It also contains a continuous resource flow variable wv ∈ [0, R] for
each node of V that is part of a chosen hyperarc h ∈ Hx.

B. Grimm, R. Borndörfer, M. Reuther, and T. Schlechte 1:9

min
∑

h'hx∈Hx

chxh, (MAM)

s.t. :
∑
h'hx

xh = 1 ∀hx ∈ Hh, (13)

wa +
∑
h'hx

r(h)xh ≤ wb ∀ (a, b) ∈ hx, hx ∈ Hx, (14)

xh ∈ {0, 1} ∀h ∈ Hx, (15)
wa ∈ [0, R] ∀ (a, b) ∈ h, h ∈ Hx. (16)

The objective function of (MAM) minimizes the sum of the operational cost of all chosen
hyperarcs in exactly the same way it is done in (Flow) or (Cut). The constraints (13)
define that either a hyperarc that does or does not perform a maintenance service for
each arc contained in a cycle of the solution Hx is chosen. If a hyperarc that contains a
maintenance service is chosen, the respective constraint (14) ensures that the associated
values for the w values are reset. In the opposite case they ensure the correct propagation of
the resource consumption values to the next w-variables along the cycle. The last two sets
of constraints (15) and (16) define the variable domains. We remark that solutions of this
model may contain an increased number of maintenance arcs than the original solution Hx.
But, if the model is feasible the computed solution is maintenance feasible and therefore a
feasible solution for Cut. For our practical instances these models are very small and easy to
solve by a commercial state of the art mixed integer solver.

4 Computational Results

This section presents the computational results for the presented solution approaches on a
set of real world instances of DB Fernverkehr AG. These instances contain different scenarios
for rolling stock rotation problems for the ICE high speed train vehicles operated by DBF.
They differ in the number of contained timetable trips, operated fleets, and characteristics of
the maintenance rules. All instances contain between 200 and 400 timetabled trips and a
maximum of two coupled vehicles to operate a trip. All computations were performed on
an Intel® Xeon(R) E3-1245 v5 @ 3.50GHz CPU with eight cores and Gurobi 8.1 as LP and
sub-MILP solver.

Table 1 compares the solution process of the LP-relaxation of Flow and Cut, both
implemented in RotOR. The LP-relaxation is solved with an algorithm called Coarse-2-Fine
Column Generation which is described in detail in [2, 10] and out of scope of the paper
to be explained in detail here. At this stage the only difference between the two solution
approaches is the set of constraints that is given to the solver, i.e, the LP model formulation
of (Cut) with no infeasible path cuts respectively the LP model formulation of (Flow). The
first column of Table 1 identifies the instance while the second column shows the total number
of hyperarcs required to model the instance. The following two blocks of three columns each
headlined with Cut, respectively Flow show the solution characteristics of the associated
approach. In detail, Obj. columns show the objective function values of the two approaches
(times a factor of 10−z, z ∈ N), CPU columns give the total computation time of each
approach in seconds, and the columns headlined with Columns mark the number of generated
columns, respectively variables required to solve the LP-relaxation. The Cut approach shows
a significant speed up and a lower number of generated columns for each of the instances,
but for the price of a slightly weaker LP-bound.

ATMOS 2019

1:10 A Cut Separation Approach for the RSRP

Table 1 Computational results for the LP-relaxation of Cut and Flow.

Cut Flow
Id |H| Obj. CPU(s) Columns Obj. CPU(s) Columns

1 229292 7062 5 16683 7064 16 30487
2 116206 6598 7 10881 6600 14 19496
3 1813512 7853 15 56118 7779 55 109303
4 1686124 8170 20 61276 8164 52 82726
5 275356 9340 8 16301 9288 13 21959
6 275356 8886 6 15009 8793 12 22359
7 363132 8976 9 18898 8994 13 25052
8 1452528 9011 30 76346 9007 47 80599
9 471056 10907 11 20883 10868 43 42830
10 471056 11229 15 23027 11216 40 40297
11 229634 7181 13 19829 7181 19 30109
12 226340 7204 6 14661 7212 17 31758
13 229634 7120 7 19501 7104 18 32360
14 226340 7044 5 16631 6977 18 33647

Table 2 Computational results for Cut, Flow solved with RotOR, and Flow solved with Gurobi.

Cut RotOR Gurobi
Id |H| Obj. CPU(s) Obj. CPU(s) Obj. CPU(s)

1 229292 7087 301 7105 45 7090 48
2 116206 6622 6 6619 1 6610 17
3 1813512 7879 22 7937 190 7866 84
4 1686124 8220 78 8230 181 8221 352
5 275356 9405 9 9439 146 9401 18
6 275356 8961 17 8981 199 8939 195
7 363132 9079 19 9055 122 9048 145
8 1452528 9068 292 9091 255 9038 3390
9 471056 11099 23 11006 210 10977 327
10 471056 11350 102 11388 50 11336 47
11 229634 7182 7 7182 20 7182 20
12 226340 7212 6 7212 20 7212 18
13 229634 7183 40 7146 112 7147 26
14 226340 7081 16 7059 72 7116 46∑

939 1635 4734
geometric mean 27.68 81.9 77.5

B. Grimm, R. Borndörfer, M. Reuther, and T. Schlechte 1:11

In the following three different solution approaches to compute an integer solution for
the RSRP were compared. The first approach is the Infeasible Path Constraint Separation
Algorithm described in Section 3.2.1. The second one is the currently used algorithm in
RotOR at DBF which is explained in detail in [2, 10]. In a nutshell, this algorithm makes
use of a heuristic start solution and sophisticated problem specific branching rules fixing
different types of variables at different times of the solution process to solve the remaining
sub-MILPs by Gurobi. The third approach is the default version of Gurobi to solve the
Flow-MILP-formulation. The three different approaches to solve the integer formulation
of Cut or Flow were restricted to the variables generated during the column generation
process. The numbers of generated variables are shown in Table 1. The RotOR and the
Gurobi approach solve exactly the same MIP model containing the variables generated for
the Flow model.

Table 2 shows the characteristics of the solutions computed by the three different ap-
proaches. The first column identifies the instance while the second column shows the total
number of hyperarcs required to model the instance. The next two columns show the
objective function values and computation times for each instance using the Infeasible Path
Constraint Separation Approach, followed by the same values ordered in two columns for
RotOR’s solution approach. Finally the objective function values and computation times of
the default version of Gurobi are shown in the last two columns. For all solution approaches
a limit of 1% on the gap between the best known upper and lower bounds was applied.
All objective function values are shown times a factor of 10−z, z ∈ N. The values for the
objective function values of all three approaches show that each of them is able to find
solutions within the desired bounds. Although, struggeling on two instances the Infeasible
Path Constraint Separation Algorithm shows promising run times for the set of instances,
especially for the largest instances 3, 4 and 8. The two instances 1 and 13 are instances with
a rather small upper bound on the maintenance resource which leads to an increased number
of maintenances in the final IP-solution compared to the LP-relaxation.

5 Conclusion

In this paper we presented an optimization algorithm based on infeasible path constraints
to deal with the Rolling Stock Rotation Problem with integrated vehicle maintenance. The
algorithm is capable to deal with practical sized real world instances. It shows promising
results in terms of solution quality and computation time. For future research it might be
interesting to generate a set of cuts in beforehand of the solution process or to couple cut
generation to certain aspects of the different maintenance rules.

References
1 Norbert Ascheuer, Matteo Fischetti, and Martin Grötschel. A polyhedral study of the

asymmetric traveling salesman problem with time windows. Networks: An International
Journal, 36(2):69–79, 2000.

2 Ralf Borndörfer, Markus Reuther, and Thomas Schlechte. A Coarse-To-Fine Approach to
the Railway Rolling Stock Rotation Problem. In 14th Workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems, volume 42, pages 79–91, 2014.
doi:10.4230/OASIcs.ATMOS.2014.79.

3 Ralf Borndörfer, Markus Reuther, Thomas Schlechte, Kerstin Waas, and Steffen Weider.
Integrated Optimization of Rolling Stock Rotations for Intercity Railways. Transportation
Science, 50(3):863–877, 2015. doi:10.1287/trsc.2015.0633.

ATMOS 2019

https://doi.org/10.4230/OASIcs.ATMOS.2014.79
https://doi.org/10.1287/trsc.2015.0633

1:12 A Cut Separation Approach for the RSRP

4 Valentina Cacchiani, Alberto Caprara, and Paolo Toth. Solving a real-world train-unit
assignment problem. Mathematical Programming, 124(1):207–231, July 2010. doi:10.1007/
s10107-010-0361-y.

5 Jean-François Cordeau, François Soumis, and Jacques Desrosiers. Simultaneous Assignment
of Locomotives and Cars to Passenger Trains. Oper. Res., 49:531–548, July 2001. doi:
10.1287/opre.49.4.531.11226.

6 Giovanni Luca Giacco, Andrea D’Ariano, and Dario Pacciarelli. Rolling stock rostering
optimization under maintenance constraints. Journal of Intelligent Transportation Systems,
18(1):95–105, 2014.

7 Richard M. Lusby, Jørgen Thorlund Haahr, Jesper Larsen, and David Pisinger. A Branch-
and-Price algorithm for railway rolling stock rescheduling. Transportation Research Part B:
Methodological, 99:228–250, 2017. doi:10.1016/j.trb.2017.03.003.

8 Gábor Maróti and Leo Kroon. Maintenance Routing for Train Units: The Transition Model.
Transportation Science, 39:518–525, November 2005. doi:10.1287/trsc.1050.0116.

9 Gábor Maróti and Leo G. Kroon. Maintenance routing for train units: The interchange model.
Computers & OR, pages 1121–1140, 2007.

10 Markus Reuther. Mathematical optimization of rolling stock rotations. PhD thesis, TU Berlin,
2017. doi:10.14279/depositonce-5865.

11 Per Thorlacius, Jesper Larsen, and Marco Laumanns. An integrated rolling stock planning
model for the Copenhagen suburban passenger railway. Journal of Rail Transport Planning &
Management, 5(4):240–262, 2015.

12 Joris C. Wagenaar, Leo G. Kroon, and Marie Schmidt. Maintenance Appointments in
Railway Rolling Stock Rescheduling. Transportation Science, 51(4):1138–1160, 2017. doi:
10.1287/trsc.2016.0701.

13 Takuya Shiina Jun Imaizumi Yuuta Morooka, Naoto Fukumura and Susumu Morito. Rolling
Stock Rostering Optimization Based on the Model of Giacco et al.: Computational. Evaluation
and Model Extensions. In 7th International Conference on railway operations modelling and
Analysis (RailLille 2017), pages 709–725, 2017.

https://doi.org/10.1007/s10107-010-0361-y
https://doi.org/10.1007/s10107-010-0361-y
https://doi.org/10.1287/opre.49.4.531.11226
https://doi.org/10.1287/opre.49.4.531.11226
https://doi.org/10.1016/j.trb.2017.03.003
https://doi.org/10.1287/trsc.1050.0116
https://doi.org/10.14279/depositonce-5865
https://doi.org/10.1287/trsc.2016.0701
https://doi.org/10.1287/trsc.2016.0701

	Introduction
	Problem Definition
	Solution Approaches to the RSRP
	Resource Flow Based Solution Approach
	Infeasible Path Cut Separation Approach
	Dynamic Infeasible Path Constraint Separation
	The Maintenance Assignment Model

	Computational Results
	Conclusion

