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Abstract. This paper focuses on a special case of vehicle routing prob-
lem where perishable goods are considered. Deliveries have to be per-
formed until a due date date, which may vary for different products.
Storing products is prohibited. Since late deliveries have a direct impact
on the revenues for these products, a precise demand prediction is im-
portant. In our practical case the product demands and vehicle driving
times for the product delivery are dependent on weather conditions, i.e.,
temperatures, wind, and precipitation. In this paper the definition and a
solution approach to the Vehicle Routing Problem with Perishable Goods
is presented. The approach includes a procedure how historical weather
data is used to predict demands and driving times. Its run time and so-
lution quality is evaluated on different data sets given by the MOPTA
Competition 2018 [4].
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1 Introduction

Companies that sell goods to customers at multiple locations have to come up
with a dedicated plan how to distribute their products over the different loca-
tions to perfectly fit the customers demands. Detailed vehicle routing problems
arise naturally when planning these deliveries. The Vehicle Routing Problem and
its variants are very well studied in the literature. We refer to [1] for a review.
These problems become even more complex by adding constraints modeling char-
acteristics of goods, vehicles, or strategic decisions. The authors of [5] call these
problems rich vehicle routing problems. This paper focuses on a special case of
these problems where perishable goods are considered, i.e. each product has a
due date. Deliveries have to be performed before this date and it is prohibited
to store the products for a long time at the individual locations. Since late deliv-
eries have a direct impact on the revenues for these products, a precise demand
prediction is even more important. Moreover, the demands and vehicle driving
times required to transport the goods are dependent on the actual weather con-
ditions. The problem we are dealing with was defined for the AIMMS-MOPTA
Optimization Modeling Competition 2018 [4]. It came with a detailed problem
description and a set of historical weather features, which have an influence on
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the product demands and the vehicle driving times to deliver the products. The
data should be used to predict the demands and weather conditions on a fixed
date and to create an optimal plan to deliver the perishable products to a set
of customers. In this paper we present the definition and a solution approach to
the Vehicle Routing Problem with Perishable Goods (VRPPG). This includes
a procedure how historical weather data is used to predict the demands and
driving times. The VRPPG can be seen as a mixture of the Capacitated Vehi-
cle Routing Problem, first defined by [2] and the Vehicle Routing Problem with
Time Windows presented in [3]. We test the approach which let our team finish
second place in the MOPTA Competition 2018, on different data sets given by
the competition. Finally, we discuss the quality of the approach in terms of run
time and quality of the computed solutions.

2 The Vehicle Routing Problem with Perishable Goods

We consider a set of locations I ⊂ N including warehouse 0 and set of retailers
J ⊂ I. Each retailer j ∈ J has a demand of dj ∈ N of perishable goods. Deliveries
of goods are in time if they arrive before a fixed due date h ∈ [0, H[. Each good
delivered later is penalized by cm independently of the actual duration of the
delay. A maximum number of A ∈ N vehicles are available to perform deliveries.
Each vehicle has a capacity of C ∈ N items.

If a vehicle is used it induces the fixed cost MF ∈ R and, additionally, the
variable costs of mt,mv ∈ R for each hour and mile it is operated, respectively.

The possible trips between locations are given by the set E ⊆ I × I. The
resulting graph G := (I, E) is used to compute feasible tours beginning and
ending at the warehouse. It is assumed that unloading goods at a retailer takes
no time. The duration of a trip between two locations and its length is given by
τ, l : E 7→ R+, respectively.

Definition 1. The Vehicle Routing Problem with Perishable Goods is the task
to find the following items: a set of cycles R in G, for each cycle r ∈ R an
assignment of amounts of goods to retailers j, and an assignment of each cycle
r ∈ R to a vehicle in {1, ..., A}. These assignments have to minimize penalties
caused by late deliveries and the costs for operating the vehicles while satisfying
the following conditions: each cycle visits 0; the sum of the goods assigned to a
retailer of a cycle does not exceed C; the sum of all goods assigned to a fixed
retailer j over all cycles satisfies dj.

For the MOPTA Competition 2018 the duration of a trip between two lo-
cations was only given by historical data including the following three weather
features: temperature f ∈ R+ in degrees Fahrenheit, precipitation p ∈ R+ in
cubic centimeters per hour, and wind w ∈ R+ in kilometers per hour. Based
on the historical data, the map τ : E × R3 7→ R+ for travel times between two
locations in dependence of the features had to be generated.
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3 A Solution Approach to the VRPPG

We present an approach to tackle the problem in this section. It is based on a
mixed integer linear programming (MILP) model and optimizes the sequences
of tours that have to be performed by the vehicles. We define a tour as a single
vehicle movement along a cycle beginning at the warehouse, visiting one or
more retailers j ∈ J , before returning to the warehouse. Let T denote the set
of tours. The approach uses minimum and maximum numbers of tours given by

m := d
∑
j∈J dj
C e and M :=

∑
j∈Jd

dj
C e, respectively.

Our solution approach can be summarized as follows. We assume that all
travel times τ(e, f, p, w) are given for a fixed tuple of weather features. We con-
nect all retailers in G to the warehouse 0. For those retailers originally not
directly connected to 0, the length of the edges is set to the length of the
shortest path with respect to travel time. We compute the set P of all pos-
sible cycles that visit at most n + 1 retailers with minimal travel time with
respect to cycles that visit precisely the same retailers. Here, n is defined as
n := max{|S||∑j∈S dj ≤ C, S ⊆ J} and for a cycle p, let cp and τp denote
its length and duration. Further, let Pj denote the set of cycles that visit j
and let τp,j denote the time to reach retailer j from the warehouse along some
p ∈ Pj . The model given in 3.1 is then solved by an commercial state of the art
MILP solver.

3.1 MILP Model for the VRPPG

The MILP model formulation contains binary decision variables xt,p for all t ∈
T, p ∈ P that indicate if tour t performs cycle p, pt,j for all t ∈ T, j ∈ J that
indicate if retailer j is delivered late on tour t, vt for all t ∈ T that indicate if
tour t is operated by an additional vehicle, and rt for all t ∈ T that indicate
if tour t is operated by the same vehicle as tour t − 1. Let lt,j be continuous
variables that define the load of goods deliverd in time for retailer j on tour t
and st,j the respective load delivered late. The continuous variables dt, at define
the departure and arrival time of a tour t at the warehouse. Finally, let H denote
the time horizon. To shorten notation d̃j defines d̃j := min{C, dj}.

Reloading a vehicle for a tour requires that the preceding tour has already
arrived at the warehouse, which is controlled by constraints (3) and (4). The
set of equalities (5) decides which cycle is assigned to an operated tour. The
correct arrival and departure times are set by the constraints (6) with respect
to the cycle operated on a tour. To satisfy the demand of each retailer and to
prevent exceeding the vehicle capacity, the amount of transported goods for each
retailer and each tour are summed up in (7) and (8), respectively. The next two
sets of inequalities restrict the individual loads of each retailer on each tour. In
set (9) the upper bound of the (in time) load variable for a retailer is set to the
minimum of the vehicle capacity and the retailer’s demand, if a cycle containing
the retailer is selected. It is set to zero if the retailer is visited late on the selected
cycle. The upper bounds for the (late) load variables are enforced by (10). The
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set of constraints (11) takes care that the decision variable pt,j becomes 1 if
retailer j will be handled late, i.e., tour t starts too late.

min
∑

t∈T
cpxt,p +

∑

t∈T
MF vt +

∑

t∈T

∑

j∈J
cmst,j ,

s.t.:
∑

t∈T
vt ≤ A, (1)

vt + rt ≤ 1, ∀t ∈ T (2)

dt+1 +H(1− rt) ≥ at ∀t ∈ T, (3)
∑

p∈P
xt,p ≥ rt+1 ∀t ∈ T, (4)

∑

p∈P
xt,p = vt + rt ∀t ∈ T, (5)

dt +
∑

p∈P
τpxt,p ≤ at ∀t ∈ T, (6)

∑

t∈T
lt,j + st,j ≥ dj ∀j ∈ J, (7)

∑

j∈J
lt,j + st,j ≤ C(vt + rt) ∀t ∈ T, (8)

d̃j
∑

p∈Pj
xt,p − d̃jpt,j ≥ lt,j ∀t ∈ T, j ∈ J, (9)

d̃j
∑

p∈Pj
xt,p ≥ st,j ∀t ∈ T, j ∈ J, (10)

∑

p∈Pj
τp,jxt,p + dt ≤ h+Hpt,j ∀t ∈ T, j ∈ J, (11)

xt,p ∈ {0, 1} ∀t ∈ T, p ∈ P, (12)

pt,j ∈ {0, 1}, st,l, lt,l ∈ {0, d̃j}, at, dt ∈ {0, H} ∀t ∈ T, j ∈ J, (13)

vt, rt ∈ {0, 1} ∀t ∈ T. (14)

3.2 Weather Features

So far we assumed that the travel times for each edge are given. As mentioned
before this was not the case for the MOPTA Competition 2018. Instead a set
of historical travel time data linked to weather features was given. To compute
travel times for the edges of G for a fixed tuple of weather features we imple-
mented two different methods.

The first method, which we call Closest Candidate Method (CCM), sim-
ply searches for the ’closest’ weather feature tuple in the historical data set
and applies these travel times to the edges of G. In this sense closest refers
to the distance according to the following metric d. Let w1 := (f1, p1, w1) and
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w2 := (f2, p2, w2) be two weather tuples. The distance d(w1, w2) is a normalized

Euclidean distance given by d(w1, w2) :=

√(
f1−f2
f∆

)2
+
(
p1−p2
p∆

)2
+
(
w1−w2

w∆

)2
.

Where f∆, p∆, w∆ are the ranges between minimum and maximum value of
the respective weather feature included in the historical data set.

The second method, which we call Closest Pair Method (CPM), looks for two
points w1 := (f1, p1, w1) and w2 := (f2, p2, w2) that enclose a given weather fea-
ture w := (f, p, w), i.e., f ∈ [min{f1, f2}, max{f1, f2}], p ∈ [min{p1, p2},max{p1, p2}],
w ∈ [min{w1, w2},max{f1, f2}]. CPM iterates through all pairs of historical
weather w1 and w2 that enclose w to find the pair with a minimum cumula-
tive distance d(w,w1) + d(w,w2). The found pair is then used to interpolate the
searched point as follows. Each each edge e ∈ E is assigned a travel time ac-

cording to the weighted sum τ(e) :=
(

τ1(e)
d(w,w1)

+ τ2(e)
d(w,w2)

)
/
(
d(w,w1) + d(w,w2)

)

where τi(e) is the travel time on edge e and weather feature i. If no suitable pair
of features is found, CCM is used to assign travel times.

4 Computational Results

In this section we present the characteristics of the solution approach both for
the CCM and CPM method to estimate the driving times. Table 1 contains an
individual row for two data sets containing 50 respectively 100 VRPPG instances
as shown in Column #. The “dependent” data set contains instances where
the retailers’ demands are dependent from the weather conditions. Therefore,
the demands were determined from a historical data set in a similar way like
it was done for the driving times. The next two blocks of four columns show
the characteristics of the CCM and CPM approach, respectively. The column
∅(s) marks the arithmetic average of the run times for the instances of each
set. The columns 2m and 5m give the number of instances that were solved to
optimality within 2 and 15 minutes, respectively, whereas the column 1h shows
the number of instances that hit the time limit before proven to be optimal. The
two columns headlined with gap mark the maximum gap between the upper and
lower bound of instances that were not proven to be solved to optimality. Finally,
the columns # and % in the Diff block compare the solutions found by each of
the approaches. The column # gives the number of instances where a different
number of vehicles is used in the solutions of CCM and CPM while Column
% shows |c(CCM) − c(CPM)|/c(CCM), i.e., the absolute value between the
two objective function values divided by the CCM objective function value. All
computations were done with AIMMS 4.53.5.7 with CPLEX 12.7.1 as internal
MILP solver on a Intel(R) Core(TM) i7-4600U CPU with 2.10GHz, four cores,
8 GB RAM and a maximum run time limit of one hour.

Table 1 shows that the presented approaches generate high quality solutions
for all instances of both test sets in a short time, about 24 seconds on average per
instance, in case of the instances with weather independent demands. None of
these instances takes more than 4 minutes to solve, which is a promising result.
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The Diff block shows that both approaches lead to very similar solutions for
most of all instances.

CCM CPM
CPU gap CPU(s) gap Diff

test set # ∅(s) 2m 15m 1h (%) ∅(s) 2m 15m 1h (%) # %

fixed 50 23.5 47 3 0 0.0 23.9 48 2 0 0.0 2 1.9
dependent 100 650 48 28 7 1.01 535 49 33 6 1.12 1 1.0

Table 1: Computational results for CCM and CPM.

5 Conclusion

We presented two approaches for the VRPPG based on a MILP problem formu-
lation with path variables. The chosen approach leads to high quality solutions
combined with fast running times for the instances subject to the competition,
which justifies the presented approach. To further improve the model and solve
larger instances a dynamic cycle construction, i.e., variable generation should be
used.
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